第10章 结构动力学

合集下载

第十章结构动力学

第十章结构动力学

度 法
m m11
yቤተ መጻሕፍቲ ባይዱ(t) 2 y(t) 0
Fm=y(1t) m 11
l EI
二阶线性齐次常微分方程
y(t) 11 F y(t) 11[my(t)]
11

1 k11
柔 度 法
其通解为
y(t) c1 cost c2 sin t
由初始条件 y(0) y0 y(0) y0
第二,结构在动荷载作用下,产生抵抗结构加速度的 惯性力。动力计算必须考虑惯性力。
4、结构动力计算中体系的自由度
自由度的定义
确定体系中所有质量位置所需的独立几何参数,称 作体系的动力自由度数。
自由度的简化
实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有:
结构动力学的研究内容 结构动力学是研究工程结构的动力特性及其在动荷载
作用下的动力反应分析原理和方法的一门理论和技术学科。
结构动力学的任务 讨论结构在动力荷载作用下反应的分析的方法。
寻找结构固有动力特性、动力荷载和结构反应三者间 的相互关系,即结构在动力荷载作用下的反应规律,为结 构动力可靠性设计、保证结构的经济与安全以及结构健康 诊断提供科学依据。
或者
y
ky
F P(t)
y 2 y FP (t)
m
上式就是单自由度体系强迫振动的微分方程
1、简谐振动作用时的强迫振动
运动方程及其解
F(t)
F(t) F sin t
l
F --荷载幅值 --荷载频率
运动方程
my(t) k11y(t) F sin t

y(t) 2 y(t) F sin t m

结构动力学:Chapter_10(结构动力学)

结构动力学:Chapter_10(结构动力学)

= =
C1 sin ωt + C1ω cosωt
C2 cos
− C2ω
ωt
sin
ωt
得:⎧⎪C2 = y0
⎨ ⎪⎩C1
=
y0
ω
于是:
y=
y0
ω
sin ωt +
y0
cos ωt
进一步可确定式 y = C sin(ωt + φ) 中的C和φ
⎧ ⎪C = ⎪
C12 +C22 =
y02
+(
y0
ω
)2

⎪⎪⎩φ
第10章 结构动力学
本章内容的基本要求
本章课程的任务是使学生了解和掌握结构的动力特性和动力响应 的计算分析方法 ,具体为:
(1)掌握结构动力分析的基本方法,掌握单自由度及两自由度体 系的自由振动及其在简谐荷载作用下的强迫振动的计算方法 ;
(2)了解阻尼的作用,了解频率的近似计算方法。
1/109
10-1 动力计算概述
φ
C2
C1
y

ω

C
φ
ωt
31/109
3、几个术语
(1)周期:振动一次所需的时间。
(2)工程频率
T = 2π ω
单位时间内的振动次数(与周期互为倒数)。
f=1= ω T 2π
(3)频率(圆频率)
旋转向量的角速度,即体系在2π秒内的振动 次数。自由振动时的圆频率称为“自振频率”。
32/109
自振频率是体系本身的固有属性,与体系的 刚度、质量有关,与激发振动的外部因素无关。
P(t)
固端弯矩 M = PL
自由端位移 w = Pδ1 δ1: 单位荷载下的位移

第10章 结构动力学

第10章 结构动力学

例. 计算图示体系的自振频率。
m1 m
A l /2 l B EI= k C
解:单自由度体系,
1 m2 m 3
D l /2
以表示位移参数的幅值,
各质点上所受的力为:
A1
. .
m1
B

k
C
m2
.A .
2
l I1 m1 2 A1 m 2 2 1 2 2 3 I 2 m2 A2 m l 3 2 1 m 2 l 2
动力荷载
FI my
k 弹簧刚度系数
FI FD FS Fp (t ) my(t ) cy(t ) ky(t ) Fp (t )
第10章 结构动力学
重力影响
k c
Fs k st
FD cy Fs ky
m W
m
W
Fp(t) y(t) 静位移
st
V
l /2
l /2
1
A,E,I
E,I
E,A

l3 ml 3 48 EI T 2 3 48 EI ml 48 EI
H
1 m H
l
V
1 m V
第10章 结构动力学
例3.计算图示刚架的频率和周期。
1
m EI1= I
6 EI h2 6 EI h2
k
12 EI h3
Fp (t ) k y y 4m 2m
第10章 结构动力学
1 k 2 m
例2
A l/2 l/2
B l/2 l/2
FI my
C m y
F 1
1 1 l 2 l 1 l l 2 l l3 11 ( l ) EI 2 2 3 2 2 2 2 3 2 8EI l3 y (my) 11 (my) 8EI

第10章结构动力学

第10章结构动力学

由此可知,体系的自由振动由两部分组成:一部分由初位移 y 0 引
0 引起,变现为正弦规律 起,表现为余弦规律;另一部分由初速度 y
[图10-13(a)、(b)],两者叠加为简谐振动[图10-13(c)]。
目录
上页
下页
图10-13

y0 A sin
(d)
目录

则有
0 y
A cos
下页
图10-8 简支梁的广义位移
3. 有限单元法 有限元法是将实际结构离散成有限个单元,对每个单元给定插
目录
值函数,然后叠加单元在各个相应结点的贡献建立系统求解方程。 有限单元法根据基本未知量选取的不同,分为位移有限元法、应力
有限元法和混合有限元法。其中,位移有限元方法应用最广。
上页
在确定结构震动自由度时,应注意不能根据结构有几个集中 质量就判定它有几个自由度,而应该由确定集中质量位置所需的独
小,如图10-2。例如打桩机的桩锤对桩的冲击、各种爆炸荷载等。
目录
上页
下页
图10-2 冲击荷载
(3)突加荷载。在一瞬间施加于结构上并继续留在结构上的荷载, 如图10-3。例如吊重物的起重机突然启动时施加于钢丝绳的荷载就 是这种突加荷载。
目录
上页
下页
图10-3 突加荷载
(4)快速移动荷载。例如高速通过桥梁的列车、汽车等。
普通高等学校土木工程专业精编系列规划教材
结构力学
主编 丁克伟
目录
上页
10 结构动力学
下页
目录
目录
上页
10.1 结构动力学计算基本概念 10.2 自由度结构自由振动 10.3 简谐荷载作用下的单自由度体系受迫振动 10.4 一般荷载作用下的单自由度体系受迫振动

第10章 结构动力学基础1

第10章 结构动力学基础1

(1)重力 W 为静力荷载
(2)弹性恢复力 S(t) k[ y jw y(t)] 与位移成正比,方向与位移指向相
反的。在k质为点刚上度R所(系t加)数的,c力其y• (意t) 义是使质点沿位移方向产生的单位位移时所需
(3)阻尼力
•• 与质点的速度成正比,方向与速度相反。c为
粘滞阻尼系I (数t) 。 m y(t)
my(t) cy(t) ky(t) 0
当动力位移由质点的静力平衡位置算起时,可不考虑质点的重力。
(二)柔度法:取振动体系为研究对象。
I (t) R(t)
FP 1
m y(t)
δ(柔度 系数)
按动静法,体系的动力位移可看为是由于惯性力和阻尼力静力作 用所引起的可得方程:
y(t) [I(t) R(t)]
10.1 一般概念
一、结构的动力荷载及分类
动力荷载:是指荷载的大小、方向、位置随时间迅速变化的 荷载;它使结构质量产生不容忽视的加速度,使结构发生明 显的振动,即在平衡位置附近往返运动。
静力荷载:是指荷载的大小、方向、位置不随时间变化的荷 载;同时考虑其对结构的影响来看,如果荷载变化极其缓慢, 使结构质量产生的加速度可以忽略不计时,仍属于静力荷载
T
T
T
(二)自振周期与频率
自振频率(圆频率)
自振周期
T 2
k 1 g g m m W st
T 2π m 2π mδ 2π Wδ 2π Δst
动静法 根据达朗贝尔(d’Alembert)原理,设想将惯性力I(t)加
于振动体系的质点上,则任一瞬时体系中的实际各力与惯 性力处于平衡状态。
三、 动力计算简图和动力自由度
动力计算中要引入惯性力,因此计算简图要考虑质量的 分布。

第10章动力学分析介绍

第10章动力学分析介绍

第10章动力学分析介绍在实际工程结构的设计工作中,动力学设计和分析是必不可少的一部分。

几乎现代的所有工程结构都面临着动力问题。

在航空航天、船舶、汽车等行业,动力学问题更加突出,在这些行业中将会接触大量的旋转结构例如:轴、轮盘等等结构。

这些结构一般来说在整个机械中佔有及其重要的地位,它们的损坏大部分都是由于共振引起较大振动应力而引起的。

同时由于处于旋转状态,它们所受外界激振力比较複杂,更要求对这些关键部件进行完整的动力设计和分析。

通常动力分析的工作主要有系统的动力特性分析(即求解结构的固有频率和振型),和系统在受到一定载荷时的动力响应分析两部分构成。

根据系统的特性可分为线性动力分析和非线性动力分析两类。

根据载荷随时间变化的关係可以分为稳态动力分析和瞬态动力分析。

谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。

可以用瞬态动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合作用下的随时间变化的位移,应变,应力及力。

而谱分析主要用于确定结构对随机载荷或随时间变化载荷的动力响应情况。

提供了强大的动力分析工具,可以很方便地进行各类动力分析问题:模态分析、谐响应分析、瞬态动力分析和谱分析。

动力学分析根据载荷形式的不同和所有求解的内容的不同我们可以将其分为:模态分析、谐响应分析、瞬态动力分析和谱分析。

下面将逐个给予介绍。

模态分析在动力学分析过程中是必不可少的一个步骤。

在谐响应分析、瞬态动力分析动分析过程中均要求先进行模态分析才能进行其他步骤。

模态分析用于确定设计机构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要引数。

同时,也可以作为其他动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析。

其中模态分析也是进行谱分析或模态叠加法谱响应分析或瞬态动力学分析所必需的前期分析过程。

ansys的模态分析可以对有预应力的结构进行模态分析和迴圈对称结构模态分析。

【结构动力学】第10章 多自由度体系2020

【结构动力学】第10章 多自由度体系2020

0
0
N
其中,ωn— 第n阶自振频率,{φ}n—第 n阶振型。
[Φ]和[Ω]也分别称为振型矩阵和谱矩阵。
13
5 DOF with uniform mass and stiffness
5 DOF Base Isolated 14
15
5 DOF with uniform mass and stiffness
k22 2m22 k2N 2m2n 0
k N1 2mN1 k N 2 2mN 2 k NN 2mNN
10
对于N个自由度的稳定结构体系,频率方程是关于ω2的 N次方程,
a N ( 2 ) N a N 1 ( 2 ) N 1 a1 2 a 0 0
由此可以解得N个正实根(ω12<ω22<ω32…<ωN2)。 ωn(n=1, 2, …, N)即为体系的自振频率。其中量值最小的 频率ω1叫基本频率(相应的周期T1=2π/ω1叫基本周期)。 从以上分析可知,多自由度体系只能按一些特定的频 率即按自振频率做自由振动。按某一自振频率振动时,结 构将保持一固定的形状,称为自振振型,或简称振型。
上述齐次方程组有非零解条件为:系数行列式为零
A [I ] 0
N×N矩阵[A]一般将有N个特征值,对应N个特征向量
6
§10-2 多自由度体系的自由振动
多自由度体系无阻尼自由振动的方程为:
M u K u 0
其中:[M]、[K]为N×N阶的质量和刚度矩阵 {u}和{ü}是N阶位移和加速度向量 {0}是N阶零向量
11
把相应的自振频率ωn代入运动方程的特征方程得到振型
K n 2 M n 0
{φ}n={φ1n, φ2n , …, φNn }T—体系的第n阶振型 。 ➢ 由于特征方程的齐次性(线性方程组是线性相关的),振型向量 是不定的,只有人为给定向量中的某一值,例如令φ1n=1,才能确 定其余的值。 ➢ 实际求解时就是令振型向量中的某一分量取定值后才能求解。 虽然令不同的分量等于不同的量,得到的振型在量值上会不一样, 但其比例关系是不变的。

第10章 结构动力学

第10章 结构动力学

5.与其它课程之间的关系
结构动力学以和数学为基础。 要求熟练掌握已学过的知识和数学知识(微分方程的求解)。 结构动力学作为结构抗震、抗风设计计算的基础。
2014-1-10
第10章
10.2体系的动力自由度
1.动力自由度的定义
动力问题的基本特征是需要考虑惯性力,根据达朗贝尔(D‘Alembert Jean Le Rond)原理,惯性力与质量和加速度有关,这就要求分析质量分布和质量位 移,所以,动力学一般将质量位移作为基本未知量。 确定体系中全部质量位置所需要的独立几何参数数目,成为体系的动力自由 度。
4 ( x) sin
2014-1-10

广义坐标法是一种数学简化方法
第10章
10.2体系的动力自由度
有限单元法:
可以看作是分区的广义坐标法,其要点与静力问题一样,是先把结构划分 成适当数量的区域(称为单元),然后对每一单元施行广义坐标法。详见 有限单元法参考资料,这里不再赘述。 一般地说,有限元法是最灵活有效的离散化方法,它提供了既方便又可靠 的理想化模型,并特别适合于用电子计算机进行分析,是目前最为流行的 方法,已有不少专用的或通用的程序可供结构动力学分析之用。 有限单元法也是一种数学简化方法
2014-1-10
第10章
10.1 概述
2.动力荷载及其分类
动力荷载分类方法有很多种,常见的是按动力作用随时间的变化规律来分。 周期性荷载:其特点是在多次循环中荷载相继呈现相同的时间历程。如旋 转机械装置因质量偏心而引起的离心力。 周期性荷载又可分为简谐荷载和非简谐周期荷载,所有非简谐周期荷载均 可借助Fourier级数分解成一系列简谐荷载之和。 冲击和突加载荷: 其特点是荷载的大小在极短的时间内有较大的变化。冲 击波或爆炸是冲击载荷的典型来源;吊车制动力对厂房的水平作用是典型 的突加荷载。 随机载荷:其时间历程不能用确定的时间函数而只能用统计信息描述。风 荷载和荷载均属此类。对于随机荷载,需要根据大量的统计资料制定出相 应的荷载时间历程(荷载谱)。 前两种荷载属于确定性荷载,可以从运动方程解出位移的时间历程并进一 步求出应力的时间历程。 随机荷载属于非确定性荷载,只能求出位移响应的统计信息而不能得到确 定的时间历程,因而~92层之间有一颗巨 大的‘金色大球’,由实 心钢板堆焊而成,直径约 5.4米,重达680吨,价值 400W美元。其实质是调质 阻尼器TMD(Tuned Mass Damper),作用是减轻飓 风、地震给大楼带来的震 动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档