大学物理实验偏振光的观测与研究样本
偏振光的观测与研究~~实验报告[学习]
![偏振光的观测与研究~~实验报告[学习]](https://img.taocdn.com/s3/m/32b618c70875f46527d3240c844769eae009a31e.png)
偏振光的观测与研究~~实验报告
[学习]
偏振光的观测与研究是一种研究光学行为的方法,它可以用来分析光在特定条件下的反射、折射和透射情况。
实验步骤:
1.准备实验仪器:使用双偏振仪、分光仪、光源等仪器,以及实验样品。
2.观察偏振光的效果:将双偏振仪通过光源投射到实验样品上,以及根据实验样品的反射、折射和透射情况,观察偏振光的效果。
3.分析偏振光的效果:使用分光仪分析实验样品的反射、折射和透射情况,根据分光仪的测量结果,得出偏振光的效果。
4.编写实验报告:根据观测和分析的结果,编写实验报告,对实验数据进行详细分析,并作出总结和结论。
【大学物理实验(含 数据+思考题)】偏振光的特性研究实验报告

实验3.4 光的偏振特性研究一、实验目的(1)了解自然光和偏振光的定义及特性。
(2)观察光的偏振现象,了解偏振光的产生方法和检验方法。
(3)了解波片的作用和用波片产生椭圆和圆偏振光及其检验方法。
二、实验仪器GSZ-Ⅱ光学平台(配有光具座、氦氖激光器及电源、扩束镜、偏振片、波片、观察屏等)。
三、实验原理1.自然光和偏振光的定义自然光:由普通光源所发射的光波,在光的传播方向上,任意一个场点,光矢量既有空间分布的均匀,又有时间分布的均匀性。
偏振光:光矢量相对于光的传播方向分布的非对称性。
部分偏振光:光波光矢量的振动在传播过程中只是在某一确定的方向上占有相对优势。
平面偏振光:光在传播的过程中光矢量的振动只限于某一特定的平面内。
圆偏振光:在光的传播方向上,任意一个场点光矢量以一定的角速度转动它的方向,但大小不变,其光矢量的末端在垂直于光传播方向的平面内的投影是一个圆。
椭圆偏振光:在光的传播方向上,任意一个场点光矢量即改变它的大小,又以一定的角速度转动它的方向,其光矢量的末端在垂直于光传播方向的平面内的投影是一个椭圆。
2.偏振光的产生及检验方法(1)平面偏振光的产生和检验方法:产生:本次实验中我们利用偏振片来生成平面偏振光。
偏振片是由具有二向色性的晶体制作成的,这些晶体对不同方向振动的光矢量具有不同的吸收本领,当自然光入射到这些晶体上时,透射光的光矢量仅在某一个特定的方向上,形成了平面偏振光。
检验:线性偏振光通过检偏器后,按照马吕斯定律,强度为I0的线偏振光通过检偏器,透射光的强度为I=I0cos2α,α=0/π时,透射光的强度最大,当α= (π/2)/(3π/2)时,透射光的强度为0,出现消光现象。
所以偏振器旋转一周,透射光的强度将发生强弱变化,并且消光两次,根据这个特点可以检测是否有平面偏振光。
(2)椭圆和圆偏振光的产生和检验方法:产生:波片是光轴平行于晶面的各向异性晶体薄片。
双折射是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。
大学物理实验报告 偏振光

大学物理实验报告偏振光大学物理实验报告:偏振光引言在物理学中,光是一种电磁波,它的振动方向可以是任意的。
然而,当光通过特定的材料或经过特定的处理后,它的振动方向会被限制在一个特定的方向上,这种光称为偏振光。
偏振光在现代科技中有着广泛的应用,例如液晶显示屏、偏振墨镜等。
本次实验旨在通过实际操作和测量,深入了解偏振光的特性和相关原理。
实验一:偏振片的特性实验一旨在研究偏振片的特性。
我们使用了一束白光,通过一系列偏振片,观察光的强度变化。
首先,我们将一片偏振片放在光源前方,并调整偏振片的方向。
我们观察到,当偏振片的方向与光的振动方向垂直时,光的强度最小;而当偏振片的方向与光的振动方向平行时,光的强度最大。
这表明偏振片可以选择性地通过特定方向的光,而阻挡其他方向的光。
接下来,我们在光源后方再放置一片偏振片,并将其方向与前一片偏振片的方向垂直。
我们发现,光的强度几乎为零,无法通过第二片偏振片。
这是因为第一片偏振片已经选择性地通过了特定方向的光,而第二片偏振片的方向与通过的光垂直,导致光无法通过。
实验二:马吕斯定律的验证实验二旨在验证马吕斯定律,即光的振动方向在经过偏振片后会发生旋转。
我们使用了一束偏振光,并在光路中加入了一片旋转的偏振片。
通过调整旋转偏振片的角度,我们观察到光的强度发生了周期性的变化。
这说明光的振动方向在经过旋转偏振片后发生了旋转。
进一步实验表明,当旋转偏振片的角度为90°时,光的强度最小;而当旋转偏振片的角度为0°或180°时,光的强度最大。
这与马吕斯定律的预期结果一致。
实验三:马吕斯定律的应用实验三旨在利用马吕斯定律,实现光的偏振和解偏振。
我们使用了一束偏振光,并在光路中加入了一片旋转的偏振片。
通过调整旋转偏振片的角度,我们可以改变光的偏振方向。
然后,我们加入一片固定方向的偏振片,将光通过。
我们观察到,当旋转偏振片的角度与固定偏振片的方向垂直时,光无法通过;而当旋转偏振片的角度与固定偏振片的方向平行时,光可以通过。
大学物理偏振光实验报告

大学物理偏振光实验报告大学物理偏振光实验报告引言:偏振光是光波在传播过程中振动方向固定的光波,其振动方向与传播方向垂直。
在本次实验中,我们将通过一系列实验来研究偏振光的性质和应用。
通过实验,我们将探索偏振光在介质中的传播规律、偏振片的工作原理以及偏振光的应用。
实验一:偏振片的特性研究在这个实验中,我们将使用偏振片来研究偏振光的特性。
首先,我们将光源调整到最亮的状态,然后将一个偏振片放在光源前方。
随着我们旋转偏振片,我们会观察到光的强度发生变化。
这是因为偏振片只允许特定方向的光通过,其他方向的光被滤除掉。
通过旋转偏振片,我们可以改变通过偏振片的光的振动方向,从而改变光的强度。
实验二:马吕斯定律的验证在这个实验中,我们将验证马吕斯定律,即入射光的偏振方向与透射光的偏振方向之间的关系。
我们将使用一个偏振片作为偏振器,一个偏振片作为分析器。
我们将调整偏振器的角度,观察透射光的强度变化。
根据马吕斯定律,当偏振器和分析器的偏振方向相同时,透射光的强度最大;当两者的偏振方向垂直时,透射光的强度最小。
通过实验,我们可以验证这一定律。
实验三:双折射现象的观察在这个实验中,我们将研究双折射现象。
我们将使用一块具有双折射性质的晶体,如石英晶体。
当将光线通过这块晶体时,我们会观察到光线分裂成两束,这是因为晶体中存在两个不同的折射率。
我们可以调整入射光的角度和晶体的厚度,观察到不同的双折射现象,如双折射光线的偏振状态和双折射光线的干涉等。
实验四:偏振光的应用在这个实验中,我们将研究偏振光的应用。
首先,我们将使用偏振片来解析光源中的偏振光,从而得到纯净的偏振光。
然后,我们将使用偏振光来研究材料的光学性质,如透射率和反射率。
通过调整偏振光的偏振方向和入射角度,我们可以得到不同的光学性质数据,从而深入了解材料的光学特性。
结论:通过这一系列的实验,我们深入研究了偏振光的性质和应用。
我们通过验证马吕斯定律,了解了入射光和透射光的偏振方向之间的关系。
偏振光的观察与研究实验报告

偏振光的观察与研究实验报告一、实验目的1. 观察光的偏振现象,加深偏振的基本概念。
2. 了解偏振光的产生和检验方法。
3. 观测椭圆偏振光和圆偏振光。
二、实验仪器偏振光观察与研究的实验装置包括一下几个部分:光源(可发出多种类型激光),偏振片,波晶片(λ/2和λ /4波长) ,光屏。
1.光源:双击实验桌上光源小图标弹出光源的调节窗体。
单击调节窗体的光源开关可以切换光源开关状态;可以选择光源发出光的类型,包括自然光、椭圆偏振光、圆偏振光、线偏振光、部分偏振光。
光源默认发出是自然光。
2.偏振片:双击桌面上偏振片小图标,弹出偏振片的调节窗体。
初始化时偏振片的旋转角度是随机的,用户使用时需要手动去校准。
最大旋转范围为 360°,最小刻度为1°。
可以通过点击调节窗体中旋钮来逆时针或顺时针旋转偏振片。
3.波晶片:分为λ /2 和λ /4 波长波片,双击桌面上波晶片小图标,弹出波晶片的调节窗体。
初始化时波晶片的旋转角度是随机的,用户使用时需要手动去校准。
最大旋转范围为360°,最小刻度为 1°。
三、实验原理1. 偏振光的概念和产生:光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。
光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光。
反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p分量);而透射光则正好相反。
在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。
折射光为部分偏振光,而且此时的反射光线和折射光线垂直。
2.改变偏振态的方法和器件:①光学棱镜:如尼科耳棱镜、格兰棱镜等,利用光学双折射的原理制成的;②偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光.马吕斯定律:马吕斯在 1809 年发现,完全线偏振光通过检偏器后的光强可表示为,其中的α是检偏器的偏振方向和入射线偏振光的光矢量振动方向的夹角。
《大学物理》光的偏振现象的研究实验

图2 二向色性起偏《大学物理》光的偏振现象的研究实验姓 名学 号 班 级桌 号 教 室实验日期 20 年 月 日 时段 指导教师一. 实验目的1. 观察光的偏振现象,加深对光偏振基本规律的认识;2. 了解产生和检验偏振光的基本方法;3. 验证马吕斯定律;4.1/2波片,1/4波片的研究; 5.利用旋光现象测定蔗糖溶液浓度. 二. 实验仪器导轨和机座, 带布儒斯特窗的氦氖激光器, 激光器架, 偏振片、波片架, 滑动座(4个), 光传感器(光电探头),光功率测试仪,偏振片(2个),1/2波片(波长632.8nm ),1/4波片(波三. 实验原理1. 偏振光的基本概念光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向。
通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向所构成的平面称为光的振动面。
在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。
振动面的取向和光波电矢量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,评 分教师签字图1 平面偏振光、自然光和部分偏振光图3 双折射起偏原理图人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称为右旋椭圆或右旋圆偏振光,反之为左旋。
通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。
这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。
将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。
实际上,起偏器和检偏器是互为通用的。
下面介绍几种常用的起偏和检偏方法。
2. 二向色性起偏、马呂斯定律、双折射起偏二向色性起偏:物质对不同方向的光振动具有选择吸收的性质,称为二向色性。
偏振光的观察与研究实验报告

偏振光的观察与研究研究λ/4波片对偏振光的影响考题内容:研究λ/4波片对偏振光的影响:1、按光路图使偏振片A和B 的偏振轴正交(消光)。
然后插入一片λ/4波片C(实际实验中要使光线尽量穿过元件的中心)。
2、以光线为轴先转动C使消光,然后使B转过360°观察现象。
3、将C从消光位置转过15°、30°、45°、60°、75°、90°,每次都将B转过360°,观察实验现象,将上面几次的实验结果记录在表中。
一、仪器使用顺序正常及仪器使用正确1、仪器使用顺序正常及仪器使用正确学生答案:仪器使用顺序正常及仪器使用正确标准答案:仪器使用顺序正常及仪器使用正确二、圆偏光和椭圆偏振光的产生1、将C从消光位置转过15°、30°、45°、60°、75°、90°,每次都将B转过360°,观察实验现象,将上面几次转动的实验结果记录在表中(请选择相应的答案,偏振片A的透振方向为0°)2、答案选项: A:光强发生变化,但不消光 B:光强发生变化,且消光 C:光强没有发生变化 D:某位置有光,其他位置消光 E:椭圆偏振光 F:圆偏振光 G:线偏振光 H:部分偏振光研究λ/2波片对偏振光的影响总分: 50本题得分:50考题内容:研究λ/2波片对偏振光的影响1:使偏振片A和B的偏振轴正交(消光),并在A和B之间插入一个λ/2波片C。
2:以光线为轴将λ/2波片转动任意角度,破坏消光现象,再将B转动360°,观察消光现象。
改变C(λ/2波片)的慢(或快)轴与激光振动方向之间的夹角θ,使其分别为15°、30°、45°、60°、75°、90°、120°,转动B到消光位置θ′,记录角度θ′,并将记录填入下表:一、仪器使用顺序正常及仪器使用正确1、仪器使用顺序正常及仪器使用正确学生答案:仪器使用顺序正常及仪器使用正确标准答案:仪器使用顺序正常及仪器使用正确二、改变λ/2波片的慢(或快)轴与偏振片A的方向之间的夹角θ,使其分别为15°、30°、45°、60°、75°、90°、120°,转动B到消光位置θ′,记录角度θ′,并记录数据。
偏振光的观察与研究报告

实验报告课程名称:大学物理实验(一)实验名称:偏振光的观察与研究振现象在生活和生产中有广泛应用,比如利用偏振眼镜可以观看立体电影,用偏振片可以突出蓝天中的白云,在液晶显示器中可以控制字符显示,在显微镜中可用来检测样品的各向异性和双折射性,检测材料的结构、厚度、折射率和应力分布等。
光的偏振在建筑工程学方面可以检测桥梁和水坝的安全度。
起偏器和检偏器根据光学元件在实验中的作用,分为起偏器和检偏器。
起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。
产生偏振光的方式:1.光在界面的反射和透射:根据布儒斯特定律,入射角为一特定值时,反射光为完全线偏振光,折射光为部分偏振光。
2.光学棱镜:利于晶体的双折射原理得到的o光和e光是完全偏振光。
3.偏振片:利于有机分子(如聚乙烯醇)的平行排列,只允许垂直于排列方向的光振动通过,可以产生线偏振光。
该方法因工艺简单且价格便宜得到广泛应用,本实验中采用偏振片作为起偏器和检偏器。
马吕斯定律偏振光的研究从马吕斯定律开始,马吕斯定律也是最基本和最重要的偏振定律。
马吕斯于1809年发现,完全线偏振光通过检偏器后的光强可表示为:其中是检偏器的偏振方向和起偏器偏振方向的夹角。
波晶片波晶片又称位相延迟片,是改变光的偏振态的元件。
它是利用不同偏振方向的光在晶体中的传播速度不同来产生相位延迟的,传播速度较大()的振动方向成为快轴,传播速度较小()的振动方向称为慢轴。
设快轴和慢轴对应的折射率分别为,波片的厚度为,则光束通过波片后的光程差为:对应的相位差为•若光程差满足即相位差,我们称之波片。
•若光程差满足即相位差,我们称之2波片。
图5,波片的o轴与偏振方向平行图6,波片旋转图7,波片旋转上图坐标轴表示波晶片,o轴和e轴表示波片的快轴和慢轴方向,o和e轴相互垂直。
红色箭头表示自然光经过检偏器后的电矢量方向,实验中起偏器的设置始终不变。
绿色箭头表示偏振光经过波片后的偏振状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验3.8 偏振光的观测与研究
偏振光的理论意义和价值是, 证明了光是横波。
同时, 偏振光在很多技术领域得到了广泛的应用。
如偏振现象应用在摄影技术中可大大减小反射光的影响, 利用电光效应制作电光开关等。
【实验目的】
1.经过观察光的偏振现象, 加深对光波传播规律的认识。
2.掌握偏振光的产生和检验方法。
3.观察布儒斯特角及测定玻璃折射率。
4.观测圆偏振光和椭圆偏振光。
【实验仪器】
光具座、激光器、光点检流计、起偏器、检偏器、1/4波片、1/2波片、光电转换装置、观测布儒斯特角装置、带小孔光屏、钠光灯。
【实验原理】
按照光的电磁理论, 光波就是电磁波, 电磁波是横波, 因此光波也是横波。
在大多数情况下, 电磁辐射同物质相互作用时, 起主要作用的是电场, 因此常以电矢量作为光波的振动矢量。
其振动方向相对于传播方向的一种空间取向称为偏振, 光的这种偏振现象是横波的特征。
根据偏振的概念, 如果电矢量的振动只限于某一
确定方向的光, 称为平面偏振光, 亦称线偏振光; 如果
电矢量随时间作有规律的变化, 其末端在垂直于传播方向的平面上的轨迹呈椭圆( 或圆) , 这样的光称为椭圆偏振光( 或圆偏振光) ; 若电矢量的取向与大小都随时间作无规则变化, 各方向的取向率相同, 称为自然光, 如图3-26所示; 若电矢量在某一确定的方向上最强, 且各向的电振动无固定相位关系, 则称为偏振光。
1.获得偏振光的方法
( 1) 非金属镜面的反射, 当自然光从空气照射在折射率为n 的非金属镜面( 如玻璃、 水等) 上, 反射光与折射光都将成为部分偏振光。
当入射角增大到某一特定值φ0时, 镜面反射光成为完全偏振光, 其振动面垂直于射面, 这时入射角φ称为布儒斯特角, 也称起偏振角, 由布儒斯特定律得:
0tan n φ= ( 3-51) 其中, n 为折射率。
( 2) 多层玻璃片的折射, 当自然光以布儒斯特角入射到叠在一起的多层平行玻璃片上时, 经过多次反射后透过的光就近似于线偏振光, 其振动在入射面内。
( 3) 晶体双折射产生的寻常光( o 光) 和非常光( e 光) , 均为线偏
图3-26 自
振光。
( 4) 用偏振片能够得到一定程度的线偏振光。
2.偏振片、 波片及其作用
( 1) 偏振片
偏振片是利用某些有机化合物晶体的二向色性, 将其渗入透明塑料薄膜中, 经定向拉制而成。
它能吸收某一方向振动的光, 而透过与此垂直方向振动的光, 由于在应用时起的作用不同而叫法不同, 用来产生偏振光的偏振片叫做起偏器, 用来检验偏振光的偏振片叫做检偏器。
按照马吕斯定律, 强度为I 0的线偏振光经过检偏器后, 透射光的强度为:
θ20cos I I = ( 3-52)
式中θ为入射偏振光的偏振方向与检偏器偏振化方向之间的夹角, 显然当以光线传播方向为轴转动检偏器时, 透射光强度I 发生周期性变化。
当θ=0°时, 透射光强最大; 当θ=90°时, 透射光强为极小值( 消光状态) ; 当0°<θ<90°时, 透射光强介于最大和最小之间。
自然光经过起偏器后可变为线偏振光, 线偏振光振动方向与起偏器的透光轴方向一致。
因此, 如果检偏器的透光轴与起偏器的
透光轴平行, 则在检偏器后面可看到一定光强, 如果二者垂直时, 则无光透过, 如图3-27所示。
其中( a) 图为起偏器透光轴P 1与检偏器透光轴P 2平行的情况; ( b) 图为起偏器透光轴P 1与检偏器透光轴P 2垂直的情况。
此时透射光强为零, 此种现象称为消光。
在实验中要经常利用”消光”现象来判断光的偏振状态。
图3-27 偏振光
( 2) 波片
波片也称相位延迟片, 是由晶体制成的厚度均匀的薄片, 其光轴与薄片表面平行, 它能使晶片内的o 光和e 光经过晶片后产生附加相位差。
根据薄片的厚度不同, 能够分为1/2波长片, 1/4波长片等, 所用的1/2、 1/4波长片皆是对钠光而言的。
当线偏振光垂直射到厚度为L , 表面平行于自身光轴的单轴晶片时, 则寻常光( o 光) 和非常光( e 光) 沿同一方面前进, 但传播的速度不同。
这两种偏振光经过晶片后, 它们的相位差φ为:
()o e 2πn n L ϕλ=- ( 3-53)
其中, λ为入射偏振光在真空中的波长, n o 和n e 分别为晶片对o 光e 光的折射率, L 为晶片的厚度。
我们知道, 两个互相垂直的, 同频率且有固定相位差的简谐振动, 可用下列方程表示( 经过晶片后o 光和e 光的振动) :
()
e o sin sin X A t Y A t ωωϕ=⎧⎪⎨=+⎪⎩ 从两式中消去t , 经三角运算后得到全振动的方程式为:
222222cos sin e o e o X Y XY A A A A ϕϕ++= ( 3-54)
由此式可知;
①当ϕ=K π( K = 0, 1.2.……) 时, 为线偏振光。
②当()π212K ϕ=+( K = 0, 1.2.……) 时, 为正椭圆偏振光。
在A o = A e 时, 为圆偏振光。
③当ϕ为其它值时, 为椭圆偏振光。
在某一波长的线偏振光垂直入射于晶片的情况下, 能使o 光和e 光产生相位差ϕ= (2K + 1)π( 相当于光程差为λ/2的奇数倍) 的晶片, 称为对应于该单色光的二分之一波片( λ/2波片) , 与此相似, 能使o 光和e 光产生相位()π212
K ϕ=+( 相当于光程差为λ/4的奇数倍) 的晶片, 称为四分之一波片( λ/4波片) 。
本实验中所用波片( λ/4) 是对6328A( H e -N e 激光) 而言的。