偏振光的观察与研究实验数据处理示例

合集下载

偏振光的观察与分析

偏振光的观察与分析

偏振光的观察与分析【实验内容及数据处理要求】1)将半导体激光器、功率计探头与激光功率计后面板上的相应插座相连。

2)在光学导轨一端分别安装半导体激光器和功率计探头,开启功率计,选择直径为6.0 mm 的圆孔作为功率计探头的入射光阑。

3)调整激光器、功率计探头在支架上的固定高度及激光器的二维调节螺旋,使激光束同轴等高地平行射入功率计探头的Φ6.0光阑孔中。

4)验证马吕斯定律① 在靠近激光器的一侧加入一个偏振片并调整其高度与激光器、功率计探头同轴等高。

旋转偏振片使功率计的示数为极大值(功率计应选恰当档位,如2 mW )。

② 对功率计清零:先用白屏紧贴半导体激光器遮住激光,调节功率计的“调零”旋钮使其示数为0,然后拿走白屏。

③ 在靠近功率计探头的一侧加入另一个偏振片(作检偏器),并调整其高度与之前安装的光学元件同轴等高,并对功率计清零。

④ 转动检偏器直至功率计的示数恰好为零,记录下检偏器上的角度θ0和功率计示数;接着以此角度为基准,沿同一方向转动检偏器,每转15°就记录下检偏器上的角度θ和相应的功率计示数。

数据处理要求:以加入检偏器后功率计的最大示数作为I 0,先由马吕斯定律计算出各相对角度α所对应的理论功率,然后在同一坐标纸上绘出马吕斯定律的理论曲线和实测值拟合曲线,计算各α对应功率值的百分偏差,并根据结果得出是否验证的结论。

注意:相对角度α(090θθ=-︒-)是因为功率计示数为0时,检偏器与起偏器的透振方向夹角为90°。

实验中每加入一个光学元件,就需要对功率计进行清零,以消除由该元件折射、反射进入功率计探头的杂散光对实验结果的影响。

5)产生和鉴别(椭)圆偏振光① 紧接4)的第④步,转动检偏器重新使功率计示数为零(系统处于消光状态)此时检偏器的角度记为初始位置0θ。

② 在起偏器和检偏器之间插入1/4波片,旋转1/4波片角度使功率计示数有极大值,然后调整1/4波片使与之前安装的光学元件同轴等高,并对功率计清零。

偏振光的研究实验报告

偏振光的研究实验报告

偏振光的研究实验报告偏振光的研究实验报告引言:偏振光是指光波中电场矢量在空间中的振动方向固定的光。

它在光学领域有着广泛的应用,包括材料的表征、光学器件的设计和光通信等。

本实验旨在通过研究偏振光的性质和特点,探索其在实际应用中的潜力。

实验一:偏振片的特性在实验中,我们首先使用了一块偏振片。

偏振片是一种能够选择性地通过特定方向偏振光的光学器件。

我们将偏振片放置在光源前方,并逐渐旋转它。

观察到当光通过偏振片时,光强度会随着旋转角度的变化而发生明显的变化。

这说明偏振片能够选择性地通过特定方向的偏振光。

实验二:马吕斯定律的验证马吕斯定律是描述光的偏振现象的基本定律之一。

它表明,当一束偏振光通过一个偏振片时,出射光的偏振方向与入射光的偏振方向之间的夹角保持不变。

我们使用了两块偏振片,并将它们叠加在一起。

通过旋转第二块偏振片,我们观察到光的强度随着旋转角度的变化而发生周期性的变化。

这一结果验证了马吕斯定律的正确性。

实验三:偏振光的干涉在实验中,我们使用了一束激光器发出的偏振光,并将其分成两束,分别通过两个不同的光程。

然后,我们将两束光重新合并在一起。

通过调节两束光的光程差,我们观察到干涉现象。

当光程差等于整数倍的波长时,干涉现象最为明显。

这一实验结果说明了偏振光的干涉现象是由于光的相位差引起的。

实验四:偏振光的旋光性质偏振光的旋光性质是指光在通过旋光物质时,偏振方向会发生旋转的现象。

我们使用了一块旋光片,并将它放置在光源前方。

通过观察光通过旋光片后的偏振方向,我们发现光的偏振方向确实发生了旋转。

这一实验结果验证了偏振光的旋光性质。

结论:通过以上实验,我们对偏振光的性质和特点有了更深入的了解。

偏振光的研究不仅有助于我们理解光的本质,还在许多实际应用中发挥着重要作用。

例如,在材料的表征中,偏振光可以用来分析材料的结构和性质。

在光学器件的设计中,偏振光可以用来控制光的传输和调制。

在光通信中,偏振光可以用来提高信号传输的可靠性和速率。

偏振光实验报告

偏振光实验报告

偏振光实验报告验证马吕斯定律实验原理:某些双折射晶体对于光振动垂直于光轴的线偏振光有强烈吸收, 而对于光振动平行于光轴的线偏振光吸收很少(吸收 o 光,通过 e 光),这种对线 偏振光的强烈的选择吸收性质, 叫做二向色性。

具有二向色性的晶体叫做偏振片。

偏振片可作为起偏器。

自然光通过偏振片后,变为振动面平行于偏振片光轴(透振方向),强度为自然光一半的线偏振光。

如图 1、图 2 所示:P P1 2P 1 P 2A 0θ A 0cos θ单色自然光 线偏光 线偏光图 2图 1图 1 中挨近光源的偏振片P 为起偏器, 设经过P 后线偏振光振幅为A (图1 1 02 所示),光强为 I 0。

P 2与P 1夹角为9 ,因此经P 2后的线偏振光振幅为A = A 0cos 9 ,光强为I = A 2 cos 2 9 = I cos 2 9 ,此式为马吕斯定律。

0 0实验数据及图形:从图形中可以看出符合余弦定理,数据正确。

实验 2.半波片, 1/4 波片作用实验原理:偏振光垂直通过波片以后,按其振动方向(或者振动面)分解为寻 常光(o 光)和非常光(e 光)。

它们具有相同的振动频率和固定的相位差(同波 晶片的厚度成正比),若将它们投影到同一方向,就能满足相干条件,实现偏振 光的干涉。

分振动面的干涉装置如图 3 所示, M 和N 是两个偏振片, C 是波片,单色自 然光通过 M 变成线偏振光, 线偏振光在波片 C 中分解为 o 光和 e 光,最后投影在 N 上,形成干涉。

M N单色自然光偏振片 波片 偏振片 图3 分振动面干涉装置考虑特殊情况, 当 M⊥N 时, 即两个偏振片的透振方向垂直时, 出射光强为:I = 0(sin 2 29 )(1 cos 6 ) ;当 M∥N 时,即两个偏振片的透振方向平行时,出射」4光强为: I = 0 (1 2 sin 2 9 cos 2 9 + 2 sin 2 9 cos 2 9 cos 6 ) 。

光的偏振现象观察

光的偏振现象观察

二、测布儒斯特角,计算平玻片的折射率 测布儒斯特角,
注意事项
(1)取放光学元件应小心,不许触摸光学表面。
(2)因有些偏振片的检偏特性不理想, 不能完全消光,只有采取比较的方法, 找到一个消光相对来说能达到最暗的位置。
【预习思考题】 预习思考题】
1. 利用偏振片,如何区分自然向与入 射面有何关系?
光的偏振现象观察 实验简介 实验目的 实验原理 实验仪器 实验内容 注意事项 数据处理
实验简介
光的偏振现象证明了光波是 一种横波,即光的振动方向 是垂直于它的传播方向的。
实验目的
1、观察光的偏振现象,掌握产生偏振光的方法 2、学会区分自然光、偏振光、部分偏振光 3、测量平玻璃片的起偏角及相对折射率
实验原理
1. 偏振片、起偏与检偏 偏振光通过旋转的检偏器, 偏振光通过旋转的检偏器, 光强发生变化
自然光 线偏振光
.
....
起偏器
检偏器
I = I 0 cos θ
2
实验原理
2. 反射起偏、布儒斯特定律 S
R
b
n1 n2
T 图4-16-3 布儒斯特定律示意图
实验仪器
分光计、偏振片(二片)、平玻片、玻璃片堆、钠光灯
平 行 光 管
平 玻 片
α
实验内容
一、观察光的偏振现象
1、按实验3.7(分光仪的调整)中的要求, 调整好分光仪望远镜对准平行光管狭缝像。 2、 在望远镜物镜前套上一偏振片,用作检偏器, 旋转检偏器一周,观察狭缝像的光强有无变化。 3. 再在平行光管物镜前套上一偏振片,用作起偏器, 旋转检偏器一圈,观察狭缝光强有无变化。

偏振光的观测与研究~~实验报告

偏振光的观测与研究~~实验报告

偏振光的观测与研究光的干涉和衍射实验证明了光的波动性质。

本实验将进一步说明光是横波而不是纵波,即其 E 和H 的振动方向是垂直于光的传播方向的。

光的偏振性证明了光是横波,人们通过对光的偏振性质的研究,更深刻地认识了光的传播规律和光与物质的相互作用规律。

目前偏振光的应用已遍及于工农业、医学、国防等部门。

利用偏振光装置的各种精密仪器,已为科研、工程设计、生产技术的检验等,提供了极有价值的方法。

【实验目的】1.观察光的偏振现象,加深偏振的基本概念。

2.了解偏振光的产生和检验方法。

3.观测布儒斯特角及测定玻璃折射率。

4.观测椭圆偏振光和圆偏振光。

【实验仪器】光具座、激光器、偏振片、1/4 波片、1/2 波片、光电转换装置、光点检流计、观测布儒斯特角装置图 1 实验仪器实物图【实验原理】1.偏振光的基本概念按照光的电磁理论,光波就是电磁波,它的电矢量 E 和磁矢量H 相互垂直。

两者均垂直于光的传播方向。

从视觉和感光材料的特性上看,引起视觉和化学反应的是光的电矢量,通常用电矢量E 代表光的振动方向,并将电矢量E 和光的传播方向所构成的平面称为光振动面。

在传播过程中,光的振动方向始终在某一确定方位的光称为平面偏振光或线偏振光,如图2 (a)。

光源发射的光是由大量原子或分子辐射构成的。

由于热运动和辐射的随机性,大量原子或分子发射的光的振动面出现在各个方向的几率是相同的。

一般说,在10 6s 内各个方向电矢量的时间平均值相等,故出现如图2(b)所示的所谓自然光。

有些光的振动面在某个特定方向出现的几率大于其他方向,即在较长时间内电矢量在某一方向较强,这就是如图2 (c)所示的所谓部分偏振光。

还有一些光,其振动面的取向和电矢量的大小随时间作有规则的变化,其电矢量末端在垂直于传播方向的平面上的移动轨迹呈椭圆(或圆形),这样的光称为椭圆偏振光(或圆偏振光),如图2(c)所示。

图 2 光波按偏振的分类2.获得偏振光的常用方法(1)非金属镜面的反射。

光偏振现象的研究实验报告

光偏振现象的研究实验报告

光偏振现象的研究实验报告篇一:偏振光实验报告实验题目:偏振光的研究实验者:PB08210426 李亚韬实验目的:掌握分光计的工作原理,熟悉偏振光的原理和性质。

验证马吕斯定律,并根据布儒斯特定律测定介质的折射率。

实验原理:为了研究光的偏振态和利用光的偏振特性进行各种分析和测量工作,需要各种偏振元件:产生偏振光的元件、改变光的偏振态的元件等,下面分类介绍。

1 产生偏振光的元件在激光器发明之前,一般的自然光源产生的光都是非偏振光,因此要产生偏振光都要使用产生偏振光的元件。

根据这些元件在实验中的作用,分为起偏器和检偏器。

起偏器是将自然光变成线偏振光的元件,检偏器是用于鉴别光的偏振态的元件。

在激光器谐振腔中可以利用布儒斯特角使输出的激光束是线偏振光。

将自然光变成偏振光的方法有很多,一个方法是利用光在界面反射和透射时光的偏振现象。

我们的先人在很早就已经对水平面的反射光有所研究,但定量的研究最早在1815年由布儒斯特完成。

反射光中的垂直于入射面的光振动(称s 分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。

在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。

折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。

该方法是可以获得线偏振光的方法之一。

如图1所示。

因为此时i0????2 ,n1sini0?n2sin?,tgi0?sini0sini0n??cosi0sin?n1,若n1=1(为空气的折射率),则n2?tgi0(1)i0叫做布儒斯特角,所以通过测量布儒斯特角的大小可以测量介质的折射率。

由以上介绍可以知道利用反射可以产生偏振光,同样利用透射(多次透射)也可以产生偏振光(玻璃堆)。

第二种是光学棱镜,如尼科耳棱镜、格兰棱镜等,它是利用晶体的双折射的原理制成的。

在晶体中存在一个特殊的方向(光轴方向),当光束沿着这个方向传播时,光束不分裂,光束偏离这个方向传播时,光束将分裂为两束,其中一束光遵守折射定律叫做寻常光(o光),另一束光一般不遵守折射定律叫做非寻常光(e光)。

偏振光的观察与研究实验报告

偏振光的观察与研究实验报告

偏振光的观察与研究实验报告一、实验目的1。

观察光的偏振现象,加深偏振的基本概念.2. 了解偏振光的产生和检验方法。

3。

观测椭圆偏振光和圆偏振光。

二、实验仪器偏振光观察与研究的实验装置包括一下几个部分:光源(可发出多种类型激光),偏振片,波晶片(λ/2 和λ/4 波长),光屏。

1.光源:双击实验桌上光源小图标弹出光源的调节窗体.单击调节窗体的光源开关可以切换光源开关状态;可以选择光源发出光的类型,包括自然光、椭圆偏振光、圆偏振光、线偏振光、部分偏振光。

光源默认发出是自然光.2.偏振片:双击桌面上偏振片小图标,弹出偏振片的调节窗体。

初始化时偏振片的旋转角度是随机的,用户使用时需要手动去校准。

最大旋转范围为360°,最小刻度为1°。

可以通过点击调节窗体中旋钮来逆时针或顺时针旋转偏振片。

3.波晶片:分为λ/2 和λ/4 波长波片,双击桌面上波晶片小图标,弹出波晶片的调节窗体。

初始化时波晶片的旋转角度是随机的,用户使用时需要手动去校准.最大旋转范围为360°,最小刻度为1°。

三、实验原理1。

偏振光的概念和产生:光的偏振是指光的振动方向不变,或光矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆的现象。

光有五种偏振态:自然光(非偏振光),线偏振光,部分偏振光,圆偏振光,椭圆偏振光.反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。

在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。

折射光为部分偏振光,而且此时的反射光线和折射光线垂直。

2. 改变偏振态的方法和器件:①光学棱镜:如尼科耳棱镜、格兰棱镜等,利用光学双折射的原理制成的;②偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。

偏振光的观察与研究实验报告

偏振光的观察与研究实验报告

偏振光的观察与研究研究λ/4波片对偏振光的影响考题内容:研究λ/4波片对偏振光的影响:1、按光路图使偏振片A和B 的偏振轴正交(消光)。

然后插入一片λ/4波片C(实际实验中要使光线尽量穿过元件的中心)。

2、以光线为轴先转动C使消光,然后使B转过360°观察现象。

3、将C从消光位置转过15°、30°、45°、60°、75°、90°,每次都将B转过360°,观察实验现象,将上面几次的实验结果记录在表中。

一、仪器使用顺序正常及仪器使用正确1、仪器使用顺序正常及仪器使用正确学生答案:仪器使用顺序正常及仪器使用正确标准答案:仪器使用顺序正常及仪器使用正确二、圆偏光和椭圆偏振光的产生1、将C从消光位置转过15°、30°、45°、60°、75°、90°,每次都将B转过360°,观察实验现象,将上面几次转动的实验结果记录在表中(请选择相应的答案,偏振片A的透振方向为0°)2、答案选项: A:光强发生变化,但不消光 B:光强发生变化,且消光 C:光强没有发生变化 D:某位置有光,其他位置消光 E:椭圆偏振光 F:圆偏振光 G:线偏振光 H:部分偏振光研究λ/2波片对偏振光的影响总分: 50本题得分:50考题内容:研究λ/2波片对偏振光的影响1:使偏振片A和B的偏振轴正交(消光),并在A和B之间插入一个λ/2波片C。

2:以光线为轴将λ/2波片转动任意角度,破坏消光现象,再将B转动360°,观察消光现象。

改变C(λ/2波片)的慢(或快)轴与激光振动方向之间的夹角θ,使其分别为15°、30°、45°、60°、75°、90°、120°,转动B到消光位置θ′,记录角度θ′,并将记录填入下表:一、仪器使用顺序正常及仪器使用正确1、仪器使用顺序正常及仪器使用正确学生答案:仪器使用顺序正常及仪器使用正确标准答案:仪器使用顺序正常及仪器使用正确二、改变λ/2波片的慢(或快)轴与偏振片A的方向之间的夹角θ,使其分别为15°、30°、45°、60°、75°、90°、120°,转动B到消光位置θ′,记录角度θ′,并记录数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档