高等数学期末复习资料及答案

合集下载

高数期末考试题及答案

高数期末考试题及答案

高数期末考试题及答案一、选择题(每题4分,共20分)1. 极限的定义中,当x趋近于a时,f(x)趋近于A,则称A为f(x)的极限。

以下哪个选项是正确的?A. 若f(x)在x=a处连续,则f(x)在x=a处的极限存在B. 若f(x)在x=a处不连续,则f(x)在x=a处的极限不存在C. 若f(x)在x=a处的极限存在,则f(x)在x=a处连续D. 若f(x)在x=a处的极限不存在,则f(x)在x=a处不连续答案:A2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^53. 以下哪个函数是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:A4. 以下哪个函数是周期函数?A. f(x) = e^xB. f(x) = sin(x)C. f(x) = ln(x)D. f(x) = x^2答案:B5. 以下哪个函数是单调递增函数?B. f(x) = x^2C. f(x) = e^xD. f(x) = ln(x)答案:C二、填空题(每题4分,共20分)6. 函数f(x) = 3x^2 - 2x + 1的导数是______。

答案:6x - 27. 函数f(x) = sin(x)的不定积分是______。

答案:-cos(x) + C8. 函数f(x) = e^x的不定积分是______。

答案:e^x + C9. 函数f(x) = x^3的不定积分是______。

答案:(1/4)x^4 + C10. 函数f(x) = ln(x)的不定积分是______。

答案:x*ln(x) - x + C三、计算题(每题10分,共30分)11. 求极限lim(x→0) [(x^2 + 1) / (x^2 + x)]。

答案:112. 求不定积分∫(3x^2 - 2x + 1)dx。

答案:(x^3 - x^2 + x) + C13. 求定积分∫(0 to 1) (x^2 - 2x + 3)dx。

数学高数期末试题及答案

数学高数期末试题及答案

数学高数期末试题及答案第一部分:选择题1. 设函数 $f(x) = e^x + \ln x$,则 $f'(1) =$ ( )A. $e$B. $e+1$C. $1$D. $0$2. 设二元函数 $z=f(x,y)$ 在点 $(1,2)$ 处可微,则 $\frac{\partialz}{\partial x}$ 在该点的值为 ( )A. $f_x(1,2)$B. $f_y(1,2)$C. $0$D. $f(1,2)$3. 设平面$2x+y+z=2$,直线$L$ 过点$(1,1,1)$,且与该平面平行,则直线 $L$ 的方程为 ( )A. $x=y=z$B. $2x+y+z=4$C. $x=y=z=1$D. $x+y+z=3$第二部分: 简答题1. 解释什么是极限?极限是一个函数在某一点或者无穷远处的值或趋近于的值。

对于一个给定的函数,当自变量趋近某一特定值时,函数的值也会趋近于某个特定的值。

2. 什么是导数?导数是函数在某一点的切线斜率。

在数学中,导数表示函数在给定点的变化率。

第三部分: 解答题1. 计算函数 $f(x) = \sin(x) - \cos(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值和最小值。

首先,我们求解导数 $f'(x)$,然后令其等于零,解得$x=\frac{\pi}{4}$。

此时,我们可以计算得到 $f(\frac{\pi}{4}) =\sqrt{2}-1$。

另外,我们可以计算 $f(0) = 1$ 和 $f(\frac{\pi}{4}) = \sqrt{2}-1$。

所以,函数 $f(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值为 $1$,最小值为 $\sqrt{2}-1$。

2. 计算二重积分 $\iint_D x^2 y \,dA$,其中 $D$ 是由直线 $x=0$,$y=0$ 和 $x+y=1$ 所围成的区域。

《高等数学二》期末复习题及答案_28171462418361700

《高等数学二》期末复习题及答案_28171462418361700
13、(本题满分12分)求口(1-/一丁)心d1其中。是由》=",y = 0,
D
2 ,2t
x+y= 1
在第一象限内所围成的区域。
x= 0
14、(本题满分12分)一质点沿曲线>,= /从点(0,0,0)移动到点
z = r
(0, 1, 1),求在此过程中,力户=Jl + x*7-£ + 9所作的功W。
15、(本题满分10分)判别级数ynsin-的敛散性。
23、设L为连接(1,0)与(0,1)两点的直线段,则j(x+y)4s=
24、lim/x"=
(21。。)次+/ +1 _1
25、2=3,b=4,[与B的夹角是工,«')axb =2
26、已知三角形的顶点A(U,T),8(2J,0),C(0,0,2),则AABC的面积等于
27、点(2,3』)至1|点加2(274)的距离附|“[=
3、积分/=JJje4/b的值为x2+y2<4
4、若a,b为互相垂直的单位向量,则a b=
5、交换积分次序jjiZrJo /(x,yMy=
6、级数£(:+/)的和是
“1LJ
7、二一即=
Dxy,T)
8、二元函数z = sin(2x + 3y),则」=
9、设/(x, y)连续,交换积分次序J:八[J(x,y}dy=
11、B解:若级数£%收敛,由收敛的性质4G。三个选项依然是“■1
收敛的,而£(%+2)未必收敛,或者排除法选择B。/1.1
12、C解:二重积分|].f(#,y)d#dy的值与函数有关,与积分区域有关, 而与积分变量的字母表达没关系。
13、B解:利用平行向量对应的坐标成比例,Z=(84,-2),则

高数期末考试题大题及答案

高数期末考试题大题及答案

高数期末考试题大题及答案一、极限题目1:求函数 \( f(x) = \frac{3x^2 - x}{x^2 + 2} \) 在 \( x \to \infty \) 时的极限。

解答:首先,我们可以通过分子分母同时除以 \( x^2 \) 来简化函数:\[ f(x) = \frac{3 - \frac{1}{x}}{1 + \frac{2}{x^2}} \]当 \( x \to \infty \) 时,\( \frac{1}{x} \) 和\( \frac{2}{x^2} \) 都趋向于 0,所以:\[ \lim_{x \to \infty} f(x) = \frac{3 - 0}{1 + 0} = 3 \]二、导数与微分题目2:求函数 \( g(x) = x^3 - 2x^2 + x \) 的导数。

解答:使用幂函数的导数规则,我们有:\[ g'(x) = 3x^2 - 4x + 1 \]三、积分题目3:计算定积分 \( \int_{0}^{1} x^2 dx \)。

解答:首先,我们需要找到 \( x^2 \) 的原函数,即:\[ F(x) = \int x^2 dx = \frac{x^3}{3} + C \]然后,我们可以计算定积分:\[ \int_{0}^{1} x^2 dx = F(1) - F(0) = \frac{1^3}{3} -\frac{0^3}{3} = \frac{1}{3} \]四、无穷级数题目4:判断级数 \( \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \) 的收敛性。

解答:该级数可以重写为:\[ \sum_{n=1}^{\infty} \left(\frac{1}{n} -\frac{1}{n+1}\right) \]这是一个交错级数,我们可以通过比较测试来判断其收敛性。

由于每一项都是正的且递减,我们可以得出结论,该级数是收敛的。

高等数学(下册)期末复习试题及答案

高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yz x z ∂∂∂∂,. 解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -=,xz F y -=,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x. (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为)!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分) 五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x , 且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅.由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→nn a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(ln 3)(+=x x f .(5分) 八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为)(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有x x x x e C e C xe e y --++='2212, x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π.4。

高等数学复习题(含答案)

高等数学复习题(含答案)

高等数学复习题与答案解析一、 一元函数微积分概要 (一)函数、极限与连续1.求下列函数的定义域: (1) y =216x -+x sin ln ,(2) y =)12arcsin(312-+-xx .解 (1) 由所给函数知,要使函数y 有定义,必须满足两种情况,偶次根式的被开方式大于等于零或对数函数符号内的式子为正,可建立不等式组,并求出联立不等式组的解.即⎩⎨⎧>≥-,0sin ,0162x x 推得⎩⎨⎧⋅⋅⋅±±=+<<≤≤-2,1,0π)12(π244n n x n x 这两个不等式的公共解为 π4-<≤-x 与π0<<x所以函数的定义域为)π,4[-- )π,0(.(2) 由所给函数知,要使函数有定义,必须分母不为零且偶次根式的被开方式非负;反正弦函数符号内的式子绝对值小于等于1.可建立不等式组,并求出联立不等式组的解.即⎪⎪⎩⎪⎪⎨⎧<->-≠-,112,03,032xx x 推得⎩⎨⎧≤≤<<-,40,33x x即 30<≤x , 因此,所给函数的定义域为 )3,0[.2.设)(x f 的定义域为)1,0(,求)(tan x f 的定义域. 解:令x u tan =, 则)(u f 的定义域为)1,0(∈u∴)1,0(tan ∈x , ∴x ∈(k π, k π+4π), k ∈Z ,)(tan x f 的定义域为 x ∈(k π, k π+4π), k ∈Z .3.设)(x f =x-11,求)]([x f f ,{})]([x f f f .解:)]([x f f =)(11x f -=x--1111=x 11- (x ≠1,0),{})]([x f f f =)]([11x f f -=)11(11x--= x (x ≠0,1).4.求下列极限:(1)123lim 21-+-→x x x x , (2)652134lim 2434-++-∞→x x x x x ,解:原式=1)1)(2(lim 1---→x x x x 解: 原式=424652134lim xx x x x -++-∞→ =)2(lim 1-→x x =2.(抓大头)= 1-.(恒等变换之后“能代就代”)(3)xx x -+-→222lim 2, (4)330sin tan lim x x x →, 解:原式=)22)(2()22)(22(lim2++-+++-→x x x x x 解:0→x 时33~tan x x ,=221lim2++→x x 33~sin x x ,=41. (恒等变换之后“能代就代”) ∴原式=330lim x x x →=1lim 0→x =1.(等价)(5))100sin (lim +∞→x x x , (6) 2121lim()11x x x→--- ,解:原式=100lim sin lim∞→∞→+x x x x解: 原式=2211212(1)lim()lim 111x x x x x x→→-+-=--- =0 + 100= 100 (无穷小的性质) 11(1)11limlim (1)(1)12x x x x x x →→-===-++.(7)215lim+-+∞→x x x .解 : 原式=52115lim=+-+∞→xxx .(抓大头) (8)11lim 21-+→x x x .解:因为0)1(lim 1=-→x x 而0)1(lim 21≠+→x x ,求该式的极限需用无穷小与无穷大关系定理解决.因为011lim 21=+-→x x x ,所以当1→x 时,112+-x x 是无穷小量,因而它的倒数是无穷大量,即 ∞=-+→11lim 21x x x . (9)limx解:不能直接运用极限运算法则,因为当x →+∞时分子,极限不存在,但sin x 是有界函数,即sin 1x ≤而 0111lim1lim33=+=++∞→+∞→x x xx x x ,因此当+∞→x 时,31xx +为无穷小量.根据有界函数与无穷小乘积仍为无穷小定理,即得lim0x =.(10)203cos cos limxxx x -→ . 解:分子先用和差化积公式变形,然后再用重要极限公式求极限原式=202sin sin 2limx x x x →=441)22sin 4(lim sin lim 0=⨯=⋅⋅∞→→x xx x x x .(也可用洛必达法则)(11)xx x)11(lim 2-∞→.解一 原式=10])11[(lim )11(lim )11()11(lim --∞→→∞→-⋅+=-+x x x x x x x xx x x =1ee 1=-,解二 原式=)1()(2])11[(lim 2x x x x--∞→-=1e 0=.(12)30tan sin limx x xx →-.解 :x x x x 30sin sin tan lim -→=xx x x x cos )cos 1(sin lim 30-→ 20sin (1cos )1lim cos x x x x x x→-=⋅⋅ =222sin 2limx xx →=21 ( 222~2sin ,0⎪⎭⎫⎝⎛→x x x ) .(等价替换) 5.求下列极限(1)201cot limx x x x -→ (2))e e ln()3ln(cos lim33--+→x x x x (3))]1ln(11[lim 20x x x x +-→ (4))ln (lim 0x x n x ⋅+→ (5) xxx cos 1lim ++∞→解 :(1)由于0→x 时,1tan cot →=x x x x ,故原极限为0型,用洛必达法则 所以 xx xx x x x x x x sin sin cos lim 1cot lim 2020-=-→→30sin cos limx xx x x -=→ (分母等价无穷小代换)20cos sin cos lim3x x x x xx →--=01sin lim 3x x x→-=31-=.(2) 此极限为∞∞,可直接应用洛必达法则 所以 )e e ln()3ln(cos lim 33--+→x x x x =)e e ln()3ln(lim cos lim 333--⋅++→→x x x x x 3e e lim e 1lim 3cos 333--⋅⋅=++→→x x x x xxx e lim 3cos e133+→⋅⋅=3cos = . (3) 所求极限为∞-∞型 ,不能直接用洛必达法则,通分后可变成00或∞∞型.)]1ln(11[lim 20x x x x +-→xx xx x x x 2111lim )1ln(lim 020+-=+-=→→ 21)1(21lim )1(211lim00=+=+-+=→→x x x x x x .(4)所求极限为∞⋅0型,得nx nx xx x x 10ln lim ln lim -→→++=⋅ (∞∞型) =1111lim --→-+n x x nx =.01lim lim 0110=-=-++→+→nx n xnxx nx (5)此极限为∞∞型,用洛必达法则,得 1sin 1lim cos lim x x x x x x -=++∞→+∞→不存在,因此洛必达法则失效! 但 101c o s 1lim 11cos 11lim cos lim =+=+=+=++∞→+∞→+∞→x xxx x x x x x x .6.求下列函数的极限:(1)42lim 22--→x x x , (2)()⎪⎩⎪⎨⎧++=,1,1sin 2xa x x x f ,0,0><x x 当a 为何值时,)(x f 在0=x 的极限存在. 解: (1)41)2)(2(2lim 42lim 222-=+--=----→→x x x x x x x ,41)2)(2(2lim 42lim 222=+--=--++→→x x x x x x x ,因为左极限不等于右极限,所以极限不存在.(2)由于函数在分段点0=x 处,两边的表达式不同,因此一般要考虑在分段点0=x 处的左极限与右极限.于是,有a a x x a x x x f x x x x =+=+=----→→→→0000lim )1sin (lim )1sin (lim )(lim ,1)1(l i m )(l i m 2=+=++→→x x f x x , 为使)(lim 0x f x →存在,必须有)(lim 0x f x +→=)(lim 0x f x -→, 因此 ,当a =1 时, )(lim 0x f x →存在且 )(lim 0x f x →=1.7.讨论函数 ⎪⎩⎪⎨⎧=,1sin ,)(x x xx f0>≤x x , 在点0=x 处的连续性.解:由于函数在分段点0=x 处两边的表达式不同,因此,一般要考虑在分段点0=x 处的左极限与右极限.因而有01sin lim )(lim ,0lim )(lim 0====++--→→→→xx x f x x f x x x x , 而,0)0(=f 即0)0()(lim )(lim 00===+-→→f x f x f x x , 由函数在一点连续的充要条件知)(x f 在0=x 处连续.8. 求函数xx x x f )1(1)(2--=的间断点,并判断其类型:解:由初等函数在其定义区间上连续知)(x f 的间断点为1,0==x x .21lim)(lim 11=+=→→xx x f x x 而)(x f 在1=x 处无定义,故1=x 为其可去间断点.又∞=+=→x x x f x 1lim)(0 ∴0=x 为)(x f 的无穷间断点. 综上得1=x 为)(x f 的可去间断点, 0=x 为)(x f 的无穷间断点.(二)一元函数微分学1.判断:(1)若曲线y =)(x f 处处有切线,则y =)(x f 必处处可导.答:命题错误. 如:x y 22=处处有切线,但在0=x 处不可导.(2)若A ax a f x f ax =--→)()(lim(A 为常数),试判断下列命题是否正确.①)(x f 在点a x = 处可导, ②)(x f 在点a x = 处连续, ③)()(a f x f -= )()(a x o a x A -+-. 答:命题①、②、③全正确.(3)若)(x f ,)(x g 在点0x 处都不可导,则)()(x g x f +点0x 处也一定不可导. 答:命题不成立.如:)(x f =⎩⎨⎧>≤,0,,0,0x x x )(x g =⎩⎨⎧>≤,0,0,0,x x x)(x f ,)(x g 在x = 0 处均不可导,但其和函数)(x f +)(x g = x 在x = 0 处可导.(4)若)(x f 在点0x 处可导,)(x g 在点0x 处不可导,则)(x f +)(x g 在点0x 处一定不可导. 答:命题成立.原因:若)(x f +)(x g 在0x 处可导,由)(x f 在0x 处点可导知)(x g =[)(x f +)(x g ])(x f -在0x 点处也可导,矛盾.(5))('0x f 与)]'([0x f 有区别. 答:命题成立.因为)('0x f 表示0)(x x x f =在处的导数; )]'([0x f 表示对0)(x x x f =在处的函数值求导,且结果为0.(6)设)(x f y =在点0x 的某邻域有定义,且-∆+)(0x x f )(0x f =2)(x b x a ∆+∆,其中b a ,为常数,下列命题哪个正确?①()x f 在点0x 处可导,且()a x f ='0,②()x f 在点0x 处可微,且()x a x f x x d |d 0==, ③()()x a x f x x f ∆+≈∆+00 ( ||x ∆很小时). 答:①、②、③三个命题全正确.2.已知x x cos )'(sin =,利用导数定义求极限xx x 1)2πsin(lim 0-+→.解:xx x 1)2πsin(lim 0-+→=xx x 2sin)2πsin(lim0π-+→ =2π|)'(sin =x x = 2πcos=0. 3.求 ()⎩⎨⎧+=,,xx x f 1ln )(0<≥x x ,的导数.解: 当0>x 时,xx f +='11)( ,当0<x 时,1)(='x f ,当0=x 时,xf x f x f x f f x x )0()(lim 0)0()(lim)0(00-=--='→→, 所以 10lim )0(0=-='-→-xx f x , 1e ln )1ln(lim 0)1ln(lim )0(100==+=-+='++→→+x x x x xx f , 因此 1)0(='f ,于是 ⎪⎩⎪⎨⎧+=',1,11)(xx f .0,0≤>x x4.设))((),1ln()(x f f y x x f =+=,求dxdy解:)]1ln(1ln[))((x x f f y ++==,)]'1ln(1[)1ln(11d d x x x y ++⋅++=∴)1)](1ln(1[1x x +++=.5.已知arctanxy=求y ''. 解:两端对x 求导,得)(1)()(1122222'++='⋅+y x y x y xyx ,222222222221yx y y x yx yy x y y x y +'⋅+⋅+='-⋅+,整理得 x y y x y -='+)( ,故 xy xy y +-=', 上式两端再对x 求导,得22)()())(1())(1(x y x y y x y y x y x y y y x y x y y x y y y ++-'+'--'+-'=+-+'-+-'=''=2)(22x y yy x +-',将 xy xy y +-='代入上式,得2)(22x y y x y xy x y +-+-⋅=''322)(2222y x xy y x xy +---=322)()(2x y y x ++-=. 6.求y = 323)4()3)(2)(1(⎥⎦⎤⎢⎣⎡+⋅+++x x x x x 的导数x yd d 解:两边取对数:y ln =)]4ln(ln 3)3ln()2ln()1[ln(32+--+++++x x x x x , 两边关于x 求导:]413312111[32'1+--+++++=⋅x x x x x y y , ∴)413312111(32d d +--+++++=x x x x x y x y . 7.设xx x f e )(=,求)('x f .解:令xx y e =, 两边取对数得:x y x ln e ln =, 两边关于x 求导数得:xx y y x xe ln e '1+⋅=⋅)e ln e ('xx y y x x+=即 )e ln e ('e xx x y xxx+=. 8.设,sin ),(2x u u f y ==求x y d d 和22d d xy.解:xy d d =2cos 2)(x x u f ⋅⋅', 22d d xy=)sin 4cos 2)(()(cos 4)(222222x x x u f x x u f -'+⋅''. 9.xx y e 4+=, 求y)4(.解:xx y e 43+=', xx y e 122+='',xx y e 24+=''', x y e 24)4(+=.10.设cos sin x t t y t=-⎧⎨=⎩,, 求 22d d x y . 解:d (sin )cos d 1sin (cos )y t tx tt t '=='+- ,22d d d cos d cos d cos 1()()()d d d d 1sin d 1sin d 1sin d y y t t t t xx x x t t t x t t''===⋅=+++ 222sin (1sin )cos 11(1sin )1sin (1sin )t t t t t t -+--=⋅=+++. 11.求曲线⎩⎨⎧==,,3t y t x 在点(1,1)处切线的斜率. 解:由题意知:⎩⎨⎧==,1,13t t 1=⇒t ,33)()(d d 12131==''====t t t t t t xy,曲线在点(1,1)处切线的斜率为3 12. 求函数x x y tan ln e =的微分.解一 用微分的定义x x f y d )(d '=求微分, 有x x xx x x y xx x d ]sec tan 1e e [d )e (d 2tan ln tan ln tan ln ⋅+='= x xxx d )2sin 21(e tan ln +=. 解二 利用一阶微分形式不变性和微分运算法则求微分,得 x x xx x x y tan ln tan ln tan ln e d d e )e(d d +==)tan (ln d e d e tan ln tan ln x x x x x +=)tan d(tan 1e d e tan ln tan ln x x x x x x ⋅+= x xx x x x x d cos 1tan 1e d e 2tan ln tan ln ⋅+= x xxx d )2sin 21(e tan ln +=. 13.试证当1≠x 时,x xe e >.证明:令x x f x e e )(-=,易见()f x 在),(+∞-∞内连续,且0)1(=f e e )(-='xx f .当1<x 时,e e )(-='xx f 0<可知()f x 为]1,(-∞上的严格单调减少函数,即()(1)0.f x f >=当1>x 时,e e )(-='xx f 0>,可知()f x 为),1[+∞上的严格单调增加函数,即()(1)0f x f >=.故对任意 ,1≠x 有()0,f x >即 .0e e >-x x x xe e >.14.求函数344x x y -=的单调性与极值. 解:函数的定义域为),(+∞-∞.)3(3223-=-='x x x x y , 令 ,0='y 驻点 3,021==x x 列表由上表知,单调减区间为)3,(-∞,单调增区间为),3(+∞,极小值 4)3(-=y 求函数的极值也可以用二阶导数来判别,此例中0,6302=''-=''=x y x x y 不能确定0=x 处是否取极值, ,093>=''=x y 得427)3(-=y 是极小值. 15.求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值.解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f . ∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.16.求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分.当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , 曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.17.求函数)1ln(2x y +=的凹向及拐点. 解:函数的定义域 ),(+∞-∞,,122x x y +=' 222222)1()1(2)1(22)1(2x x x x x x y +-=+⋅-+='', 令 ,0=''y 得1±=y , 列表由此可知,上凹区间(1,1)-,下凹区间(,1)(1,)-∞-+∞,曲线的拐点是)2ln ,1(±.的渐近线.18.求下列曲线的渐近线 (1)x x y ln = ,(2)1222-+-=x x x y ,(3)()()213--+=x x x y .解 (1)所给函数的定义域为),0(+∞.由于 011lim ln lim ==+∞→+∞→x x xx x ,可知 0=y 为 所给曲线xxy ln =的水平渐近线.由于 -∞=+→xxx ln lim0, 可知 0=x 为曲线xxy ln =的铅直渐近线.(2) 所给函数的定义域)1,(-∞,),1(∞+.由于 -∞=-+-=--→→122lim )(lim 211x x x x f x x , +∞=-+-=++→→122lim )(lim 211x x x x f x x , 可知 1=x 为所给曲线的铅直渐近线(在1=x 的两侧()f x 的趋向不同).又 a x x x x x x f x x ==-+-=∞→∞→1)1(22lim )(lim 2,[]b x x x x x x x ax x f x x x =-=-+-=--+-=-∞→∞→∞→112lim ])1(22[lim )(lim 2, 所以 1-=x y 是曲线的一条斜渐近线.(3)()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .19.求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=. (2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(三)一元函数积分学1. 在不定积分的性质x x f k x x kf d )(d )(⎰=⎰中,为何要求0≠k ?答:因为0=k 时,C x x x kf =⎰=⎰d 0d )((任意常数),而不是0. 2. 思考下列问题:(1) 若C x x x f x ++=⎰sin 2d )(,则)(x f 为何? 答:x x x f x f x cos 2ln 2)d )(()(+='⎰=. (2) 若)(x f 的一个原函数为3x ,问)(x f 为何? 答:233)()(x x x f ='=(3)若)(x f 的一个原函数的x cos ,则dx x f )('⎰为何?答:C x C x f x x f x x x f +-=+='⎰-='=sin )(d )(,sin )(cos )(. 3. 计算下列积分:(1))sin d(sin 5x x ⎰, (2)x x d cos 3⎰, (3)⎰+x xx x d )sin (,(4)x xe x d 2⎰, (5)⎰-21d xx x , (6)⎰-41d xx x ,(7)⎰x x x d 2ln , (8)x x d )32(2+⎰, (9)⎰-⋅dx x x 211arcsin 1, (10)⎰+x x x d arctan )1(12, (11)⎰+22d x x , (12)⎰-24d x x .解:(1)C xx x +=⎰6sin )sin d(sin 65. (2)x x x x x d cos )sin 1(d cos 23-⎰=⎰ =)sin d()sin 1(2x x -⎰ =)sin d(sin )sin d(2x x x ⎰-⎰=C xx +-3sin sin 3. (3)x x x x x xx x d sin 2d d )sin (⎰+⎰=+⎰=C x x +-cos 222. (4)C x x x x x x +=⎰=⎰222e 21)(d e 21d e 2.(5)C x x x x x x+--=--⎰-=--⎰2221221)1(d )1(21d 1.(6)C x x x x xx +=-=-⎰⎰22224arcsin 21)(1)(d 211d .(7(8)C x x x x x ++=++⎰=+⎰322)32(6)32(d )32(2d )32(.(9)C x x x x x x +==-⋅⎰⎰|arcsin |ln )arcsin d(arcsin 1d 11arcsin 12.(10)C x x x x x x +==+⎰⎰|arctan |ln )arctan d(arctan 1d arctan )1(12.(11)C x x x x x x x +=+=+=+⎰⎰⎰22arctan 22)2(d )2(1121)2(1d 212d 222. (12)⎰2-4d x x =⎰2)2(-12d x x=)2(d )2(-112xx ⎰=C x +2arcsin .4. 计算下列不定积分:(1)⎰++x xd 111,(2)x x d 162-⎰,(3)⎰+232)4(d x x ,(4)⎰-x xx d 122.解:(1) 令t x =+1, 则 =x 12-t , t t x d 2d =,于是原式=⎰+t t t d 12=⎰+-+t t t d 1112=]1d d [2⎰⎰+-t tt =C t t ++-1ln 22=C x x +++-+11ln 212. (2)令)2π2π(sin 4<<-=t t x ,则t x cos 4162=-,t t x d cos 4d =, 于是 t t t t t x x d )2cos 1(8d cos 4cos 4d 162+⎰=⋅⎰=-⎰ =C t t ++2sin 48.由右图所示的直角三角形,得81641642cos sin 22sin 22xx x x t t t -=-⋅⋅==, 故 C xx x dx x +-+⋅=-⎰2164arcsin81622. (2)令)2π2π(tan 2<<-=t t x ,则t t x t x d sec 2d ,sec 8)4(23232==+,x于是C t t t t t tx x +==⋅=+⎰⎰⎰2sin d 2cos d sec 2sec 41)4(d 23232. 由右图所示的直角三角形,得24sin xx t +=故C x x x x ++=+⎰223242)4(d .(4) 设 t x sin = ,t x cos 12=-,t t x d cos d = , 于是原式=⎰t t tt d cos cos sin 2=⎰t t d sin 2=⎰-t t d 22cos 1 =21⎰⎰-)2(d 2cos 41d t t t ==+-C t t 2sin 4121C t t t +-cos sin 2121=C x xx +--212arcsin 21. 5.计算下列积分:(1)⎰x x d 2ln , (2)⎰x x d 2arctan , (3) ⎰x x xd e4,(4)⎰x x xd 4sin e5, (5)⎰x x x d 100sin , (6) ⎰x x x d 2arctan .解:(1))2ln d(2ln d 2ln x x x x x x ⎰-=⎰=x xx x x d 222ln ⋅⎰- =C x x x +-2ln .(2)⎰x x d 2arctan =)d(arctan22arctan x x x x ⎰- =x x x x x d )2(122arctan 2+⋅⎰-=⎰+-2241)(d 2arctan xx x x =)41(d 411412arctan 22x xx x ++-⎰ =C x x x ++-)41ln(412arctan 2.(3)x x x x x x x xx d e 41e 41de 41d e 4444⎰-==⎰⎰=C x xx +-44e 161e 41. x221x -1x t(4)5555e 1e e sin 4d sin 4d()e sin 4d(sin 4)555x xxx x x x x x ⎰=⎰=-⎰ =x x x xxd 4cose 544sin e5155⎰-=5e d 4cos 544sin e 5155xx x x ⎰-=⎥⎦⎤⎢⎣⎡--⎰)4cos d(5e 4cos 5e 544sin e 51555x x x xx x=x x x x xx xd 4sine 25164cos e 2544sin e 51555⎰--, 移项合并,得C x x x x xx+-=⎰)4cos 44sin 5(e 411d 4sin e55. (5)⎰---=-⎰=⎰x xx x x x x x x d )100100cos (100100cos )100100cos (d d 100sin =C xx x +-100100cos 10000100sin . (6)⎰x x x d 2arctan =⎰)2d(2arctan 2x x=⎰-)2(arctan d 22arctan 222x x x x =x x x x x d )2(1222arctan 2222⎰+⋅-=x x x x d )4111(412arctan 222⎰+-- =C x x x x ++-2arctan 8142arctan 22. 6.计算 (1)x x xd e )1(2⎰+ , (2) 3s e c d x x ⎰. 解:(1) 选 12+=x u ,=v d x e x d , =v xe , x x u d 2d =, 于是原式 )1(2+=x x e ⎰-x 2x e x d ,对于⎰x x e x d 再使用分部积分法,选x u =, =v d x e x d , 则 x u d d =,=v xe ,从而⎰x xex d =x x e ⎰-x x d e =x x e C x +-e .原式=xe =+--)e e (21C x x x )12(2++x x Cx+e (12C C =),为了简便起见,所设 x u =,=v xe 等过程不必写出来,其解题步骤如下:⎰x xe dx =⎰x d x e =x C x x x x x x +-=-⎰e e d e e . (2)3secd x x ⎰=)(tan d sec x x ⎰=x x tan sec ⎰-)(sec d tan x x=x x tan sec ⎰-x x x d sec tan 2=sec tan x x -x x x d sec )1(sec 2-⎰=sec tan x x -⎰x x d sec 3+⎰x x d sec =sec tan x x -⎰x x d sec3+x x tan sec ln +,式中出现了“循环”,即再出现了⎰x x d sec 3移至左端,整理得3sec d x x ⎰=21[x x tan sec +x x tan sec ln +]+C . 7. 利用定积分的估值公式,估计定积分⎰-+-1134)524(x x x d 的值.解:先求524)(34+-=x x x f 在[]1,1-上的最值,由0616)(23=-='x x x f , 得0=x 或83=x . 比较 7)1(,102427)83(,5)0(,11)1(=-===-f f f f 的大小,知 11,102427max min =-=f f , 由定积分的估值公式,得[])1(1d )524()]1(1[max 1134min --⋅≤+-≤--⋅⎰-f x x x f ,即 22d )524(512271134≤+-≤-⎰-x x x . 8. 求函数21)(x x f -=在闭区间[-1,1]上的平均值.解:平均值⎰-=⋅⋅=---=11224π21π21d 1)1(11x x μ. 9. 若⎰=2d sin )(2x xt t x f ,则)(x f '=?解:)(x f '=242222sin sin 2sin )sin()(x x x x x x -=-'.10.已知 ⎰+=t t x xx F d 1sin )(2 , 求 )(x F '.解:)(x F '=)2(12x x +-+x x cos sin 1⋅+=++-212x x x x cos sin 1⋅+.11. 求极限x tt x x πcos 1d πsin lim11+⎰→.解:此极限是“0”型未定型,由洛必达法则,得xtt x x πcos 1d πsin lim11+⎰→=)πcos 1()d πsin (lim11'+'⎰→x t t xx =π1)π1(lim πsin ππsin lim11-=-=-→→x x x x12.计算下列定积分(1)⎰-20d |1|x x , (2)⎰-122d ||x x x , (3)⎰π20d |sin |x x .解:(1)⎰-2d |1|x x =⎰-10d )1(x x +⎰-21d )1(x x=212122)1(2)1(-+--x x =2121+=1.(2)⎰-122d ||x x x =⎰--023d )(x x +⎰103d x x=1402444x x +--=4+41741=.(3)⎰π20d |sin |x x =⎰πd sin x x +⎰-π2πd )sin (x x=π2ππ0cos )cos (x x +-=2+2=4.13.计算下列定积分(1)⎰--2π2π3d cos cos x x x ,(2)⎰--112d 1x x .解:(1)x x x x x x d sin )(cos 2d cos cos 212π2π2π03⎰⎰-=-=34cos 34)cos d()(cos 22π0232π021=-=-⎰x x x .(2)⎰⎰⎰---=-=-112π2π2π2π222d )(cos )sin d()(sin 1d 1t t t t x x=2=+=+=⎰⎰2π02π02π02)2sin 21(d 22cos 12d )(cos t t t t t t 2π.14.计算 (1)⎰+-4d 11x xx, (2)⎰4π4d tan sec x x x .解:(1)利用换元积分法,注意在换元时必须同时换限.令 x t =,x 2t = ,t t x d 2d = ,当0=x 时,0=t ,当4=x 时,2=t ,于是⎰+-40d 11x x x=⎰+-20d 211t t t t =⎰+--20d ]1424[t tt [].3ln 44021ln 442-=+--=tt t(2)⎰4π4d tan sec x x x =⎰4π03)(sec d sec x x43411sec 414π04=-==x .15. 计算下列定积分:(1)x x xd e )15(405⎰+, (2)x x d )12ln(e21⎰+,(3)x x x d πcos e 10π⎰, (4)x x x x x d )e 3(133⎰++.解:(1)x x xd e )15(405⎰+=5e d )15(540x x ⎰+=⎰+-+10515)15(d 5e )15(5e x x x x =5155e 5e 51e 6=--x.(2)x x d )12ln(e21⎰+=()())12ln d(12ln e21e21+-+⎰x x x xx x xd 1223ln )1e 4ln(e 2e21⎰+--+= --+=3ln )1e 4ln(e 2x x )d 1211(e 21⎰+---+=3ln )1e 4ln(e 2()e21)12ln 21(+-x x()1e 23ln 231e 4ln )21e 2(+--++=.(3) x x xd πcose 10π⎰=ππsin d e 10πx x ⎰x x x x πde ππsin πsin e π11010π⎰-= =0x x x d πsin e 10π⎰-=)ππcos d(e 10πx x--⎰ x x x x πde ππcos πcos e π11010π⎰-==-+-)1e (π1πx x x d πcos e 10π⎰ 移项合并得x x x d πcos e 10π⎰)1e (π21π+-=. (4)x x x xxd )e 3(1033⎰++)e 313ln 34(d 3104xx x x ++=⎰⎰++-++=1034134d )e 313ln 34()e 313ln 34(x x x x xx x x=4514e 923ln 23ln 3)e 913ln 320(e 313ln 3413213253++-=++-++x x x 16.计算(1)⎰1d arctan x x , (2)x x x d ln 2e e1⎰.解:(1)⎰1d arctan x x =10arctan x x⎰+-102d 1x x x=102)1ln(214πx +- =2ln 214-π .(2) 由于在[1,e1]上0ln ≤x ;在[2e ,1]上0ln ≥x ,所以x x x d ln 2e e1⎰=x x x d )ln (1e1⎰-+x x x d ln 2e 1⎰=)2(d ln 21e1x x ⎰-+)2d(ln 2e 12x x ⎰=[-x x ln 22+42x ]1e 1+[x x ln 22-42x ]2e 1=41-(412e 1+212e 1)+(4e -414e +41) =21-432e 1+434e . 17.判别下列广义积分的敛散性,如果收敛计算其值 . (1)⎰∞++022d )1(x x x, (2) ⎰∞+02d 1x x , (3)x xd e 1100⎰∞+-, (4)⎰∞++02100d xx . 解:(1) 因为积分区间为无穷区间,所以原式=+∞→b lim ⎰+bx x x 022d )1(=+∞→b lim ⎰++b x x 0222)1()1(d 21=bb x 02])1(21[lim +-+∞→ =]21)1(21[lim 2++-+∞→b b =21, 故所给广义积分收敛,且其值为21. (2)⎰∞+02d 1x x =+∞=-=-+∞→→+∞+xx x x x 1lim 1lim )1(00,∴⎰∞+02d 1x x 发散. (3)x xd e1100⎰∞+-=1001001100e 1001)100e (0100e --+∞-=--=-x .(4)⎰∞++02100d x x =20π10arctan 1010=+∞x . 18.求曲线22)2(,-==x y x y 与x 轴围成的平面图形的面积.解:如图,由⎪⎩⎪⎨⎧-==,)2(,22x y x y 得两曲线交点(1,1). 解一 取x 为积分变量,]2,0[∈x , 所求面积323)2(3d )2(d 213103212102=-+=-+=⎰⎰x x x x x x A . 解二 取y 为积分变量,y 的变化区间为[0,1],32)d y -y -2(1==⎰y A . 显然,解法二优于解法一.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 19. 求下列曲线所围成的图形的面积:抛物线 22xy =与直线42=-y x . 解:先画图,如图所示,并由方程⎪⎩⎪⎨⎧=-=4222y x x y ,求出交点为(2,1-),(8,2). 解一 取y 为积分变量,y 的变化区间为[1-,2], 在区间[1-,2]上任取一子区间[y ,y +y d ],则面积微元 A d =y y y d )242(2-+,则所求面积为A =⎰--+212d )242(y y y = (32324y y y -+)21-=9.解二 取x 为积分变量,x 的变化区间 为[0,8],由图知,若在此区间上任取子区间, 需分成[0,2],[2,8]两部分完成.在区间[0,2]上任取一子区间[x ,x +x d ], 则面积微元 A d 1=x xd ]22[, 在区间[2,8]上任取一子区间[x ,x +x d ],2)2-y则面积微元 A d 2=[)4(212--x x ]x d , 于是得=A 1+A 2 =⎰20d 22x x +x x x d )222(82+-⎰=23322x 20+[23322x 224x x -+]82=9 .显然,解法一优于解法二.因此作题时,要先画图,然后根据图形选择适当的积分变量,尽量使计算方便. 20.用定积分求由0,1,0,12===+=x x y x y 所围平面图形绕x 轴旋转一周所得旋转体的体积. 解:如右图,所求体积⎰+=122d )1(πx x V⎰++=1024d )12(πx x x=135)325(πx x x ++=π1528. 二、 微分方程1. 验证x x C C x C y --+=e e 21为微分方程0'2''=++y y y 的解,并说明是该方程的通解. 证明: x x C C x C y --+=e e 21,x x C x C C C y ----=∴e e )('121, x x C x C C C y --+-=e e )2(''112,于是0'2''=++C C C y y y ,故C y 是0'2''=++y y y 的解.x x -e 与x -e 线性无关,∴0'2''=++y y y 中的1C 与2C 相互独立,即C y 中含有与方程0'2''=++y y y 阶数相同(个数均为2)的独立任意常数,故C y 是该方程的通解. 2. 用分离变量法求解下列微分方程:(1)22d d y x x y =, (2)21d d x yx y -=, (3)y x x x y )1(d d 2++=,且e )0(=y . 解:(1)分离变量得x x yyd d 22=,(0≠y ) 两边积分得⎰⎰=x x y yd d 122 ,x求积分得 3313Cx y +=-,从而通解为Cx y +-=33及验证0=y 也是方程的解.(特别注意,此解不能并入通解) (2)分离变量得21d d xxy y -=,(0≠y ) 两边积分得⎰⎰-=x x y y d 11d 12,求积分得 1arcsin ||ln C x y +=,即 )e (e e e 11arcsin arcsin Cx x CC C y ±==±=,从而通解为 x C y arcsin e =,验证0=y 也是方程的解. (3)分离变量得x x x yyd )1(d 2++=,(0≠y ) 两边积分得⎰⎰++=x x x y y d )1(d 12 求积分得 13232||ln C x x x y +++=, 即 )e (eee 1332232132C x x x C C C y x x x ±==±=++++,从而通解为3232ex x x C y ++=,验证0=y 也是方程的解.由e )0(=y ,得e =C , 故特解为32132e x x x y +++=.3.求解下列一阶线性微分方程(1)x b ay y sin '=+(其中b a ,为常数), (2)21d d yx x y +=. 解:(1)因a x P =)(, x b x Q s i n)(=, 故通解为 ⎰⎰⋅+⎰=-]d e sin [e d d x x b C y xa x a⎰⋅+=-)d e sin (e x x b C ax ax)]cos sin (e 1[e 2x x a a b C axax -++=-. (2)方程变形为2d d y x yx=-, 这是x 关于y 的一阶线性微分方程,其中2)(,1)(y y Q y P =-=,通解为:⎰⋅⎰⋅+⎰=---]d e [e d )1(2d )1(y y C x yy⎰-⋅+=]d e [e 2y y C y y)22(e 2++-=y y C y .以上是用一阶线性微分方程的通解公式求解,要熟练掌握常数变易法! 4.求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y的特解.解:这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-, 两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .5.求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为 1d d +=xyx y x y ,令 x yu =,则 1d d +=+u u x u x u ,即 x x u uu d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u u ln ln ln 1-=-,将xy u =代入原方程,整理得原方程的通解为 yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程 01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =,所以原方程的通解为 1ln C y y x=,即yxC ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy x y 2d d =,x x yy d 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数). 解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d e cos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).6.求微分方程 123='+''y x y x 的通解.解:方程中不显含未知函数y ,令P y =',x P y d d ='',代入原方程,得 1d d 23=+P x xP x, 311d d xP x x P =+,这是关于未知函数)(x P 的一阶线性微分方程,代入常数变易法的通解公式,所以 =)(x P 1d 13d 1d e 1(eC x xxx x x +⎰⎰⎰-) =1ln 3ln d e 1(e C x x x x+⎰-)=13d 1(1C x x x x +⋅⎰)=11(1C x x +-)=x C x 121+-, 由此x y d d =x Cx121+-,⎰+-=x x C xy d )1(12=21ln 1C x C x ++, 因此,原方程的通解为 y =21ln 1C x C x++ (21,C C 为任意常数). 7.求微分方程 )1()(22-''='y y y 满足初始条件21==x y ,11-='=x y 的特解.解:方程不显含x ,令 P y =',y P Py d d ='',则方程可化为 )1(d d 22-=y yP PP , 当 0≠P 时y y P P d 12d -=,于是 21)1(-=y C P .根据 21==x y,11-='=x y ,知12-='=y y 代入上式,得 11-=C ,从而得到x y yd )1(d 2-=-,积分得 211C x y +=-,再由21==x y ,求得 02=C ,于是当0≠P 时,原方程满足所给初始条件的特解为x y =-11, 当0=P 时,得C y =(常数),显然这个解也满足方程,这个解可包含在解x y =-11中. 故原方程满足所给初始条件的特解为x y =-11,即 xy 11+=. 8.求方程0)'(''2=-y yy 的通解.解:方程不显含自变量x , 令)('y p y =原方程可变为0d d 2=-⋅⋅p ypp y , 即0=p 或p ypy=d d , 由0'==p y 得C y =.由p y p y=d d 分离变量,得yy p p d d =, 两边积分得⎰⎰=y yp p d d ,求积分得 1ln ln ln C y p +=, 即y C p 1=, 解y C y 1'= 得xC C y 1e 2=,因C y =包含于xC C y 1e2=中, 故原方程通解为 xC C y 1e2=.9.写出下列微分方程的通解:(1)0'2''=+-y y y , (2)08'=+y y . 解:(1)特征方程0122=+-r r , 特征根121==r r , 通解为x x C C y e )(21+=.(2)特征方程08=+r , 特征根8-=r , 通解为xC y 81e-=.10.求下列微分方程满足所给初始条件的特解:(1)xy y y 3e6'2''-=-+, 1)0(',1)0(==y y ,(2) x y y sin 2''=+,1)0(',1)0(==y y . 解:(1)先解06'2''=-+y y y ,。

大一高数期末考试复习题及标准答案

大一高数期末考试复习题及标准答案

大一高数期末考试复习题及答案————————————————————————————————作者:————————————————————————————————日期:一.填空题(共5小题,每小题4分,共计20分)1.21lim()xx x e x →-=.2.()()1200511xx x x e e dx --+-=⎰.3.设函数()y y x =由方程21x yt e dt x+-=⎰确定,则0x dydx==.4. 设()x f 可导,且1()()xtf t dt f x =⎰,1)0(=f ,则()=x f .5.微分方程044=+'+''y y y 的通解为 .二.选择题(共4小题,每小题4分,共计16分)1.设常数0>k ,则函数k e x x x f +-=ln )(在),0(∞+内零点的个数为( ).(A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程43cos2y y x ''+=的特解形式为( ).(A )cos2y A x *=; (B )cos2y Ax x *=;(C )cos2sin 2y Ax x Bx x *=+; (D )x A y 2sin *=. 3.下列结论不一定成立的是( ).(A )若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcdxx f dx x f ;(B )若0)(≥x f 在[]b a ,上可积,则()0b af x dx ≥⎰;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D )若可积函数()x f 为奇函数,则()0x t f t dt⎰也为奇函数.4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( ).(A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点. 三.计算题(共5小题,每小题6分,共计30分) 1.计算定积分2230x x e dx-⎰.2.计算不定积分dx x xx ⎰5cos sin .本页满分36分 本页得分本页满分 12分 本页得分3.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程. 4. 设20()cos()xF x x t dt=-⎰,求)(x F '.5.设n n n n n x nn )2()3)(2)(1(Λ+++=,求n n x∞→lim .四.应用题(共3小题,每小题9分,共计27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.2.设平面图形D 由222x y x +≤与y x ≥所确定,试求D 绕直线2=x旋转一周所生成的旋转体的体积.3. 设1,a >at a t f t-=)(在(,)-∞+∞内的驻点为 (). t a 问a 为何值时)(a t 最小? 并求最小值.五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ' 一.填空题(每小题4分,5题共20分):1. 21lim()x x x e x →-=21e .2.()()1200511xxx xe e dx --+-=⎰e 4.3.设函数()y y x =由方程21x yt e dt x+-=⎰确定,则0x dydx==1-e .4. 设()x f 可导,且1()()x tf t dt f x =⎰,1)0(=f ,则()=x f 221x e.5.微分方程044=+'+''y y y 的通解为xe x C C y 221)(-+=.二.选择题(每小题4分,4题共16分):本页满分 12分 本页得分本页满分15分 本页得分本页满分18分 本页得分本页满分7分 本页得分1.设常数0>k ,则函数ke x x xf +-=ln )( 在),0(∞+内零点的个数为( B ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程x y y 2cos 34=+''的特解形式为 ( C )(A )cos2y A x *=; (B )cos2y Ax x *=; (C )cos2sin 2y Ax x Bx x *=+; (D )x A y 2sin *= 3.下列结论不一定成立的是 ( A )(A) (A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤bad cdx x f dx x f ;(B) (B) 若0)(≥x f 在[]b a ,上可积,则()0baf x dx ≥⎰;(C) (C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D) (D) 若可积函数()x f 为奇函数,则()0xt f t dt ⎰也为奇函数.4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( C ). (A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点. 三.计算题(每小题6分,5题共30分): 1.计算定积分⎰-2032dxe x x .解:⎰⎰⎰----===20202322121,2t t x tde dt te dx e x t x 则设 -------2⎥⎦⎤⎢⎣⎡--=⎰--200221dt e te t t -------2 2223210221----=--=ee e t --------22.计算不定积分dx x xx ⎰5cos sin .解:⎥⎦⎤⎢⎣⎡-==⎰⎰⎰x dx x x x xd dx x x x 4445cos cos 41)cos 1(41cos sin --------3 C x x x x x d x x x +--=+-=⎰tan 41tan 121cos 4tan )1(tan 41cos 43424 -----------33.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程. 解:切点为)),12((a a -π-------22π==t dx dy k 2)cos 1(sin π=-=t t a t a 1= -------2切线方程为 )12(--=-πa x a y 即ax y )22(π-+=. -------24. 设⎰-=xdtt x x F 02)cos()(,则=')(x F )cos()12(cos 222x x x x x ---. 5.设n n n n n x nn )2()3)(2)(1(Λ+++=,求nn x ∞→lim .解:)1ln(1ln 1∑=+=n i n n i n x ---------2 ⎰∑+=+==∞→∞→101)1ln(1)1ln(lim ln lim dxx n n i x n i n n n --------------2=12ln 211)1ln(101-=+-+⎰dx x xx x ------------2 故 n n x∞→lim =e e 412ln 2=- 四.应用题(每小题9分,3题共27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.解:设切点为),00y x (,则过原点的切线方程为xx y 2210-=,由于点),00y x (在切线上,带入切线方程,解得切点为2,400==y x .-----3过原点和点)2,4(的切线方程为22xy =-----------------------------3面积dyy y s )222(22⎰-+==322-------------------3或322)2221(2212042=--+=⎰⎰dx x x xdx s2.设平面图形D由222x y x+≤与y x≥所确定,试求D绕直线2=x旋转一周所生成的旋转体的体积.解:法一:21VVV-=[][]⎰⎰⎰---=-----=12212122)1(12)2()11(2dyyydyydyyπππ-------6)314(21)1(31423-=⎥⎦⎤⎢⎣⎡--=ππππy--------3法二:V=⎰---12)2)(2(2dxxxxxπ⎰⎰----=1122)2(22)2(2dxxxdxxxxππ------------------ 5[]⎰--+--=12234222)22(ππdxxxxxxππππππππ32213421323414121)2(3222232-=-+=-⎥⎦⎤⎢⎣⎡⨯⨯+-=xx------------- 43. 设1,a>atatf t-=)(在(,)-∞+∞内的驻点为().t a问a为何值时)(at最小? 并求最小值.解:.lnlnln1)(ln)(aaataaatf t-==-='得由--------------- 3)(ln1lnln)(2eeaaaaat==-='得唯一驻点又由------------3.)(,0)(,;0)(,的极小值点为于是时当时当ateaateaatea eee=<'<>'>-----2 故.11ln1)(,)(eeeetatea ee-=-==最小值为的最小值点为--------------1五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ'证明:设()()F x f x x =-,()F x 在[0,1]上连续在(0,1)可导,因(0)=(1)=0f f ,有(0)(0)00,(1)(1)11F f F f =-==-=-,--------------- 2又由1()=12f ,知11111()=()-=1-=22222F f ,在1[1]2,上()F x 用零点定理, 根据11(1)()=-022F F <,--------------- 2可知在1(1)2,内至少存在一点η,使得1()=0(,1)(0,1)2F ηη∈⊂,,(0)=()=0F F η由ROLLE 中值定理得 至少存在一点(0,)(0,1)ξη∈⊂使得()=0F ξ'即()1=0f ξ'-,证毕. --------------3。

高等数学期末复习题及答案

高等数学期末复习题及答案

高等数学期末复习题及答案一. 单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)1、.11)(;)1(21arctan )(;1ln arctan )(;1lnarctan )(,d arctan2222C xD C x x x C C x x x B C x x x A I x x I +++++++-++-==⎰ 则设答(A ) 2、[) ) 答(和、 依赖于 ,不依赖于 依赖于 和 依赖于 ,不依赖于 依赖于 的值则, 上连续,且,在设函数t x s D s t C s t B t s A I t s dx sxt f sI x f st)()()()()00()(10)(0>>+=∞+⎰答( C )3、 cx x x x D cx x x x C cx x x x B cx x x x A I xdx I +⋅-+-+⋅-++⋅-++⋅++==⎰sec tan 21|tan sec |ln 21)(sec tan 21|tan sec |ln 21)(sec tan 21tan sec ln)(sec tan 21|tan sec |ln 21)(,sec3 则设答( A ) 4、 答( ) 等于是同阶无穷小,则与时,且当,,,有连续的导数,设4)(3)(2)(1)()(0)()()(0)0(0)0()(022D C B A k x x F x dt t f t x x F f f x f kx'→-=≠'=⎰答( C ) 5、) 答( 是等价无穷小,则的导数与时,若已知21)( 1)(21)( 1)()0(d )()()(0222--=''''-=→⎰D C B A f x t t f t x x F x x答( B ) 6、)()()()()()()()()(0, 2cos 1)(lim,0)0(,0)(0 答 的驻点但不是极值点 是的驻点 不是的极小值点 是的极大值点 是则点且的某邻域内连续在设x f D x f C x f B x f A x xx f f x x f x ==-==→答( B ) 7、( ) 答 是单调的 不为极植 取极大值 取极小值 处必在函数)()()()(3)3cos cos 2()(0D C B A x dt t t x f xπ=+=⎰答( B ) 8、 .)1ln(2)(;)1ln(2)(;)1ln()()1ln()(,d 11c e x D c x e C c e B c e A I x e e I xx xx x x++-+-++++-=+-=⎰ 则设 答(C ) 9、 ) 答( 不为常数 恒为零 为负常数 为正常数 则设)()()()()(,sin )(2sin D C B A x F tdt e x F x xtdt⎰+⎰=π答( C )10、 设函数在点处可导则它在处关于自变量改变量的微分等于 答 y f x x x x dy A f x x f x B f x f x x C f x x D f x =+--+''(),()()()()()()()()()()()∆∆∆∆答()C 11、极限的值为.;. . .. 答( )limtan sin x x xx A B bC D →-∞030112答( C ) 12、 设 则点 是的极大值点 是的极小值点 是的驻点但不是极值点 不是的驻点 答 lim()()(),()()()()()(),,()()()x af x f a x a x aA f xB f xC f xD f x →--=-=21答( A ) 13、[] 答( ) 无穷多 内零点的个数必为,在则函数,上连续,且,在设函数)( 2)(1)( 0)()()(1)()(0)()(D C B A b a dt t f dt t f x F x f b a x f xbxa⎰⎰+=>答( B ) 14、[] ) 答(要条件 既不是充分也不是必 充分必要条件 充分条件 必要条件 的为奇函数是积分上连续,则,在设)( )()( )(0)()()(D C B A dx x f x f a a x f aa=-⎰-答( B )15、)()()()( )())((0)(,0)()(0000 答  必不取得极值能不取得极大值 可能取得极大值也可 必有极小值 必有极大值 处则在的某邻域有定义且在函数D C B A x f x x x f x f x x x f ==''='=答()C 16、cx D c x x x C cx x B c xA I x x I ++-++==⎰2)(ln 21)(ln )(ln )(;1)( d ln 则设答( C )17、 答( ) 确定定积分4)(2)(1)(0)(cos 0D C B A dx x ⎰π=答( C )二. 填空题(将正确答案填在横线上)(本大题共 5 小题,每小题3分,总计 15 分 )1、_____________000)(sin 2sin ==⎪⎩⎪⎨⎧=≠-=a x x a x xe e xf xx 处连续则 在, ,设 填: 12、. ___________0 , 001sin )(2==⎪⎩⎪⎨⎧=≠-+=a x x a x xe x xf ax 处连续,则在 ,当,当填 : 1- 3、已知是的一个原函数cos (),x xf x =⋅⎰x xxx f d cos )(则___________. ⎪⎭⎫⎝⎛==⋅⎰⎰)cos d(cos d cos )(x x x x x xxx f 填c xx +2)cos (21 4、⎰='x x f x xxx f d )(,sin )(则的一个原函数为设______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学高等数学期末复习资料及答案
课程名称:高等数学 出题教师:岳健民
适用班级:本科多学时(不含职教)
一、 单项选择题(15分,每小题3分)
1、当∞→x 时,下列函数为无穷小量的是( )
(A )x Cosx x - (B )x Sinx
(C )121-x (D )x x )11(+
2.函数)(x f 在点0x 处连续是函数在该点可导的( ) (A )必要条件 (B )充分条件
(C )充要条件 (D )既非充分也非必要条件 3.设)(x f 在),(b a 内单增,则)(x f 在),(b a 内( ) (A )无驻点 (B )无拐点 (C )无极值点 (D )0)(>'x f
4.设)(x f 在][b a ,内连续,且0)()(<⋅b f a f ,则至少存在一点
),(b a ∈ξ使( )成立。

(A )0=)(ξf (B )0=')(ξf
(C )0='')(ξf (D ))()()()(a b f a f b f -⋅'=-ξ 5.广义积分)0(>⎰∞
+a dx
a
x p
当( )时收敛。

(A )1>p (B)1<p (C)1≥p (D)1≤p
二、填空题(15分,每小题3分)
1、 若当0→x 时,22~11x ax --,则=a ;
2、设由方程22a xy =所确定的隐函数)(x y y =,则
=dy ;
3、函数)0(8
2>+
=x x
x y 在区间 单减;
在区间 单增;
4、若x xe x f λ-=)(在2=x 处取得极值,则=λ ;
5、若dx x f dx x xf a ⎰⎰=1
01
02
)()(,则=a ;
三、计算下列极限。

(12分,每小题6分)
1、x
x x
x )1(lim +∞→ 2、 2
00
)1(lim x
dt
e x
t x ⎰-→
四、求下列函数的导数(12分,每小题6分)
1、241
x y -=,求y ' 2、⎪⎩⎪⎨⎧-=+=t
t y t x arctan )
1ln(2 ,求22dx y d
五、计算下列积分(18分,每小题6分)
1、dx x x
x ⎰+++2
1arctan 1 2、
dx x x ⎰-
-22
3cos cos π
π
3、设dt t
t
x f x ⎰=2
1sin )(,计算dx x xf ⎰10)(
六、讨论函数⎪⎪⎩⎪
⎪⎨⎧≤>-=2,
22,cos 2)(π
π
π
πx x x x x x f 的连续性,若有间断点,
指出其类型。

(7分)
七、证明不等式:当0>x 时,2
)1ln(2
x x x ->+ (7分)。

相关文档
最新文档