高等数学B(上)复习资料

合集下载

高等数学B上册 求极限方法总结

高等数学B上册 求极限方法总结

求极限的几种常用方法1.约去零因子求极限例1:求极限lim1→x 114--x x【说明】1→x 表明x 与1无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】()()()()1111lim 21-+-+→x x x x x =()()1121lim ++→x x x =42.分子分母同除求极限例2:求极限13323lim+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】311311lim 13lim 3323=+-=+-∞→∞→xx x x x x x 【注】(1)一般分子分母同除x 的最高次方;0 m>n(2)=++++++----∞→011011......lim b xb x b a x a x a m n m n n n n n x ∞ m<nnnb a m=n 3.分子(母)有理化求极限例3:求极限()13lim22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】()()()()131313lim13lim22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】30sin 1tan 1limx x x x +-+→=()xx x xx x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11limx x x xx x x -+++→→=41sin tan lim 2130=-→x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键4.应用两个重要极限求极限两个重要的极限(1)1sin lim0=→xxx(2)()e x n x x x nx xx =+=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+→∞→∞→11lim 11lim 11lim在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。

《高等数学B》答案

《高等数学B》答案

《高等数学B 》复习资料一、选择题:A 、奇函数;B 、偶函数;C 、非奇非偶函数;D 、既是奇函数又是偶函数;E 、不能确定。

若)(x f 为奇函数,)(x g 为偶函数,则下列函数是: 1、)]([x g f ( B ); 2、)]([x f g ( B );A.x y =; B 、1+-=x y ; C 、1+=x y ; D.5132+=x y ; E 、5132-=x y 。

3、 曲线x y ln 2+=在点1=x 的切线方程是( C );4、 曲线53)12()25(+=+x y 在点)51,0(-处的切线方程是( E ); A 、不存在; B 、1; C 、0; D 、-1; E 、2。

5、函数|sin |)(x x f =在点0=x 处的导数是( A ); 6、函数x x f sin )(=在点0=x 处的导数是( B );A 、 -1;B 、-3;C 、3;D 、-9;E 、-12。

若3)(0'-=x f ,则: 7、=--+→h h x f h x f h )2()(lim000( D );8、=-+→hx f h x f h )()(lim000( B );A.满足罗尔定理条件;B.满足拉格朗日中值定理条件;C.满足柯西定理条件;D.三个定理都不满足;E.不能确定。

9、652+-=x x y 在]3,2[上( A ); 10、)1ln(2x y +=在]3,0[上( B ); A 、c x f +)(; B 、)(x f ; C 、dx x f )(; D 、dx x f )('; E 、)('x f ;设)(x f 在],[b a 上可积,则: 11、=⎰dx x f d )('( D ); 12、=⎰dx x f dxd)('( E );A 、x y x x f y x f x ∆∆--→∆),(),(lim 00000;B 、xy x x f y x f x x x ∆∆--→∆),(),(lim 00'00'0;C 、y y x f y y x f y ∆-∆+→∆),(),(lim 00000;D 、y y x f y y x f y y y ∆-∆+→∆),(),(lim 00'00'0;E 、yy x f y y x f x x y ∆-∆+→∆),(),(lim 00'00'0。

高等数学B(上)复习资料

高等数学B(上)复习资料

华南理工大学网络教育学院 《高等数学(上)》辅导一、 求函数值 例题:1、若2()f x x =,()x x e ϕ=,则(())f x ϕ= . 解:()22(())()xx x f x f e ee ϕ===2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+即 ()23f x x =+二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小:无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无穷小替换例题:1、320sin 3lim x xx →=? 解:当0sin3~3x x x →,, 原式=3200(3)lim lim270x x x x x→→==2、0sin3limx xx→=?解:原式=03lim 3x xx →=3、201-cos limx xx→=? 解:当210cos ~2x x x →,1-原式=220112lim 2x xx →=4、0ln(13)lim x x x →+=?解:当03)~3x x x →,ln(1+原式=.03lim 3x x x →=.5、201lim x x e x→-=?解:当201~2x x e x →-,原式=.02lim 2x x x →=.三、 多项式之比的极限2lim 03x xx x →∞=+,2211lim 33x x x x →∞-=+,23lim x x x x→∞+=∞四、 导数的几何意义(填空题)0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率曲线..()y f x =..在点00(,())M x f x 处的切线方程为: 曲线()y f x =在点00(,())M x f x 处的法线方程为: 例题:1、曲线44xy x +=-在点(2,3)M 的切线的斜率.解:222(4)'(4)(4)(4)(4)x x x x x x y x =='+--+-'=- 2、曲线cos x xy e =在点(0,1)M 处的切线方程.解:2(cos )'cos ()()x x x x x x e x e y e =='-'= 所以曲线cos x xy e=在点(0,1)M 处的切线方程为:1(0)y x -=--,即10x y +-=3、曲线y =在点(1,1)M 处的切线方程. 解:53112233x x y x =='=-=-所以曲线y =在点(1,1)M 处的切线方程为:21(1)3y x -=--,即2350x y +-=五、 导数的四则运算、复合函数的导数、微分 复合函数求导的链式法则: 微分:()dy f x dx '= 例题:1、设y =,则'y =?解:()()1'2221112y x x -'=+⋅+=2、设2sin y x =,则'y =? 解:()''222cos 2cos y x xx x =⋅=3、设sin 2x y =,则dy =?解:()''sin sin 2ln 2sin 2cos ln 2x x y x x =⋅= 则dy =sin 2cos ln 2x x dx 4、设sin x y e =,则dy =? 解:()''cos cos xx xx y e eee =⋅=所以cos x x dy e e dx = 5、设2x y e-=,则dy =?(答案:22x xedx --)六、 运用导数判定单调性、求极值 例题:1、求ln y x x =的单调区间和极值. 解:定义域(0,)x ∈+∞令ln 10y x '=+=,求出驻点1x e -=函数的单调递减区间为1(0,]e -,单调递增区间为1(,)e -+∞极小值为11()y e e =-.2、求x y xe -=的单调区间和极值. 解:定义域(,)x ∈-∞+∞令(1)0x x x y e xe x e --'=-=-=,求出驻点1x =函数的单调递减区间为[1,)+∞,单调递增区间为(,1)-∞,极大值为1(1)y e -=. 3、求函数.2()x f x e-=.的单调区间和极值.解:定义域(,)x ∈-∞+∞ 令2()2x f x xe-'=-,得0x =极大值为(0)1f =.4、求函数31()3f x x x =-的极值.答案:极小值为2(1)3y =-,极大值为2(1)3y -=七、 隐函数求导 例题:1、求由方程2sin 0x e y xy +-=所确定的隐函数()y y x =的导数dydx. 解:方程两边关于x 求导,得:即 2cos 2xy e y y xy-'=-2、求由方程cos()y x y =+所确定的隐函数()y y x =的导数dy dx. 解:方程两边同时关于x 求导,得: 即3、求由方程sin()y x y =+所确定的隐函数()y y x =的导数dydx. 答案: cos()1cos()dy x y dx x y +=-+4、求由方程ln ln 0xy x y ++=所确定的隐函数()y y x =的导数dydx. 答案: dy y dx x =-八、 洛必达法则求极限,注意结合等价无穷小替换原理 例题:1、求极限011lim 1sin x x e x →⎛⎫- ⎪-⎝⎭ 解:原式0sin (1)lim (1)sin x x x x e e x→--=-20sin (1)lim x x x e x→--=.()0sin ~,1~xx x x e x →- 当时,. 2、求极限30sin lim tan x x x x →-00⎛⎫⎪⎝⎭ 解:原式=3sin limx x xx→-()0tan ~x x x → 当时, =22012lim 3x xx → 2101cos ~2x x x ⎛⎫→- ⎪⎝⎭ 当时, 3、求201lim x x e x x →--00⎛⎫ ⎪⎝⎭(答案:12) 九、 原函数、不定积分的概念及其性质 知识点:设()()F x f x '=,则称()F x 是()f x 的一个原函数,()F x C +是()f x 的全体原函数,且有:例题:1、( )是函数33x x +的原函数.A .233x + B .421342x x + C .42x x + D .421142x x +解:因为42313342x x x x '⎛⎫+=+ ⎪⎝⎭所以421342x x +是33x x +的原函数.2、( )是函数2cos x x 的原函数. A .22sin x -B .22sin xC .21sin 2x -D .21sin 2x解:因为22211sin (cos )2cos 22x x x x x '⎛⎫=⋅= ⎪⎝⎭g所以21sin 2x 是2cos x x 的原函数.3是( )的原函数A .12xBC .ln xD解:因为'=的原函数.4、( )是函数1x的原函数.A .21xB .21x -C .ln x -D .ln ||x解:因为()1ln ||x x'=所以ln ||x 是1x的原函数.十、 凑微分法求不定积分(或定积分)简单凑微分问题:2x e dx ⎰,sin 4xdx ⎰,cos5xdx ⎰,ln ln xd x ⎰ 一般的凑微分问题:⎰,⎰,sin 1cos x dx x +⎰,ln x dx x ⎰例题: 1、⎰解:注意到2(1)2x x '-=-原式=()2112x --⎰C ⎛⎫=+ ⎪⎝⎭参考公式 2、⎰解:注意到2(23)6x x '-=-原式21=(23)6x --3223x C ⎛⎫=+ ⎪⎝⎭⎰参考公式=319C -+ 3、sin 1cos x dx x+⎰解:注意到(1cos )sin x x '+=-原式1=(1cos )1cos d x x -++⎰1ln ||dx x C x ⎛⎫=+ ⎪⎝⎭⎰参考公式=ln |1cos x |C -++ 4、5x e dx +⎰解:原式=5(5)x e d x ++⎰()x x e dx e C =+⎰参考公式=5x e C ++5、cos5xdx ⎰ 解:原式1cos5(5)5xd x =⎰()cos sin xdx x C =+⎰参考公式 6、sin 3xdx ⎰ 解:原式1sin3(3)3xd x =⎰()sin cos xdx x C =-+⎰参考公式 十一、 不定积分的第二类换元法——去根号(或定积分)等 例题: 1、求不定积分t =,则221ln(1)x e t x t =-⇒=-原式=22121211t dt dt t t t ⋅=--⎰⎰2、4⎰.t =,则22x t dx tdt =⇒= 当0042x t x t ====时,;当时,原式=2200111221+t 1+tt tdt dt +-⋅=⎰⎰3、1⎰t =,则21x t =-,2dx tdt =当0x =时,1t =;当1x =时,t =原积分211)2t t tdt =-⋅ 十二、 不定积分的分部积分法(或定积分)诸如sin x xdx ⎰,cos x xdx ⎰,x xe dx ⎰,x xe dx -⎰,ln x xdx ⎰,可采用分部积分法分部积分公式:()()()()()()u x dv x u x v x v x du x =-⎰⎰ 例题:1、求不定积分sin x xdx ⎰. 解 sin (cos )x xdx xd x =-⎰⎰2、求不定积分x xe dx -⎰ 解 x x xe dx xde --=-⎰⎰3、求不定积分ln x xdx ⎰解 21ln ln ()2x xdx xd x =⎰⎰十三、 定积分的概念及其性质知识点:定积分的几何意义,奇偶对称性等 例题:1、定积分23ax a x e dx -⎰等于 .解: 因为23x x e 是x 的奇函数,所以原式=0 2、定积分23sin aa x xdx -⎰等于 .解: 因为23sin x x 是x 的奇函数,所以原式=0 3、定积分22sin 1x xdx x π-π+⎰等于 . 解: 因为22sin 1x xx+是x 的奇函数,所以原式=0十四、 变上限积分函数求导 例题:1、 设函数()f x 在[,]a b 上连续,3()()x aF x f t dt =⎰,则()F x '=( C ).A .()f xB .3()f xC .233()x f xD .23()x f x2、设21()arctan x f x tdt =⎰,则()f x '=22arctan x x .3、设30()sin xf x t dt =⎰,则()f x '=3sin x .十五、 凑微分法求定积分(或不定积分) 思想与不定积分类似 例题:1、10x ⎰解:注意到32(1)3x x '+=原式301(1)3x =+⎰3223x C ⎛⎫=+ ⎪⎝⎭⎰参考公式=13029 十六、 定积分的第二类换元法——去根号(或不定积分, 思想与不定积分类似 例题:1、4⎰.t =,则22x t dx tdt =⇒= 当0042x t x t ====时,;当时,原式=2200111221+t 1+tt tdt dt +-⋅=⎰⎰2、1⎰t =,则21x t =-,2dx tdt =当0x =时,1t =;当1x =时,t =原积分211)2t t tdt =-⋅ 十七、 定积分的分部积分法(或不定积分) 思想与不定积分类似 例题:1、求定积分20sin x xdx π⎰. 解220sin (cos )x xdx xd x ππ=-⎰⎰2、求定积分10x xe dx -⎰ 解11xx xe dx xde --=-⎰⎰十八、 求平面图形面积知识点:X 型积分区域的面积求法 Y 型积分区域的面积求法通过作辅助线将已知区域化为若干个X 型或Y 型积分区域的面积求法 例题:1、求由ln y x =、0x =,ln 2y =及ln 7y =所围成的封闭图形的面积.解:由ln y x =得y x e =面积为ln 7ln 2(0)y S e dy =-⎰2、计算由曲线y =1y =及0x =所围成的图形的面积.解:由1y y ⎧=⎪⎨=⎪⎩A 为(1,1)面积为1(1S dx =-⎰3、求由曲线1y x =与直线y x =及2x =所围成的平面图形的面积.解:由2y xx =⎧⎨=⎩得交点A 为(2,2)由1y x y x =⎧⎪⎨=⎪⎩得交点B 为(1,1)面积为211()S x dx x =-⎰。

高等数学B上

高等数学B上

华南理工大学高等数学B上(随堂练习)第一章函数与极限1.函数的定义域是( )A. B. C. D.参考答案:A2.函数的定义域是 ( )A. B.C. D.参考答案:C3.函数的定义域是( )A. B.C. D.参考答案:A4.函数的定义域为( )A. B.C. D.参考答案:B5.函数的定义域是()A. B. C. D.参考答案:C6.函数的定义域是( ) A. B. C. D.参考答案:C7.函数的定义域是()A. B. C. D.参考答案:A8.若,则( )A. B.C. D.参考答案:A9.若,,则( ) A. B. C. D.参考答案:D10.设,则( ) A. B. C. D.参考答案:A11. ( ) A. B. C. D.参考答案:B12.( ) A. B.不存在 C. D.参考答案:D13. ( ) A.不存在 B. C. D.参考答案:C14.( ) A. B.不存在 C. D.参考答案:D15.( ) A. B. C. D.参考答案:A16.( ) A. B. C.不存在 D.参考答案:B17.当时,下列变量是无穷小的是( ) A. B. C. D.参考答案:C18.当时,与等价的无穷小是( ) A. B. C. D.参考答案:A19. ( )A.0 B. C. D.1参考答案:B20.( )A.8 B.2 C. D.0参考答案:D21.( )A.0 B.1 C. D.2参考答案:D22.下列等式成立的是( )A. B.C. D.参考答案:C问题解析:23.( )A. B.1 C.不存在 D.参考答案:A24.( )A.1 B. C.不存在 D.参考答案:D25.( )A.0 B.1 C. D.参考答案:C26.设函数在点处极限存在,则( ) A.2 B.4 C.1 D.0参考答案:A27.设,则 ( )A.0 B.-1 C.1 D.2参考答案:C28.设,则( )A.1 B.2 C.0 D.不存在参考答案:A29.设在处连续,则=( ) A.1 B.2 C.0 D.不存在参考答案:A第一章函数与极限·第二节数列的极限1.曲线在点处的切线的斜率为( ) A.-2 B.2 C.-1 D.1参考答案:B2.曲线在点处的切线方程为( )A. B.C. D.参考答案:B3.曲线在点处的切线方程为( )A. B.C. D.参考答案:C4.曲线在点(1,1)处的切线方程为( )A. B.C. D.参考答案:B5.设直线是曲线的一条切线,则常数( ) A. -5 B. 1 C.-1 D.5参考答案:D6.设函数,则( )A. B. C. D.参考答案:C7.设函数,则 ( )A. B.C. D.参考答案:A8.设函数,则( )A. B.C. D.参考答案:A9.设函数,则 ( )A. B.C. D.参考答案:D10.设函数,则( )A. B.C. D.参考答案:B11.设函数,在( )A. B.C. D.参考答案:C12.设函数,则( ) A. B.C. D.参考答案:A13.设函数,则( )A. B. C. D.参考答案:C14.设函数,则( )A. B. C. D.参考答案:D15.设函数,则 ( )A. B.C. D.参考答案:C16.设函数,则( )A. B. C. D.参考答案:A17.设函数,则( )A. B. C. D.参考答案:B18.设确定隐函数,则( )A. B. C. D.参考答案:B19.设函数,则( )A.4 B.-4 C.1 D.-1参考答案:C20.设方程所确定的隐函数为,则( )A. B. C. D.参考答案:B21.设函数由方程所确定,则( ) A.0 B. C. D.参考答案:B22.设方程所确定的隐函数为,则( ) A. B. C. D.参考答案:A23.设方程所确定的隐函数为,则( ) A. B.0 C. D.参考答案:D问题解析:24.设,则( )A. B.C. D.参考答案:A25.设函数,则( )A. B.C. D.参考答案:B26.设函数,则( )A. B.C. D.参考答案:B27.设,则( )A. B.C. D.参考答案:A第一章函数与极限·第三节函数的极限1.( )A. B.0 C. D.1参考答案:C2.( )A. B.0 C. D.13.( )A. B. C. D.不存在参考答案:B4.( )A. B. C.1 D.不存在参考答案:A5.( )A. B. C.1 D.不存在参考答案:A6.( )A. B. C.1 D.0参考答案:A7.函数的单调减少区间是 ( ) A. B. C. D.参考答案:A8.函数的单调区间是 ( ) A. B. C. D.9.函数的单调增加区间是( )A. B. C. D.参考答案:A10.函数的单调增加区间为 ( ) .A. B. C. D.参考答案:C11.函数的单调减区间为( ) A. B. C. D.参考答案:B12.函数的单调增加区间为( )A. B. C. D.参考答案:D13.函数的极值等于( )A.1 B.0 C. D.参考答案:C14.函数的极值为( )A. B. C.0 D.1参考答案:A15.函数的极值为( )A.1 B.0 C. D.参考答案:A16.函数的极大值为( )A.-16 B.0 C.16 D.-7参考答案:B问题解析:17.函数的极大值为( )A.3 B.1 C.-1 D.0参考答案:A18.有一张长方形不锈钢薄板,长为,宽为长的.现在它的四个角上各裁去一个大小相同的小正方形块,再把四边折起来焊成一个无盖的长方盒.问裁去小正方形的边长为( )时,才能使盒子的容积最大.A. B. C. D.参考答案:B19.设有一根长为的铁丝,分别构成圆形和正方形.为使圆形和正方形面积之和最小,则其中一段铁丝的长为( )A. B. C. D.参考答案:A20.欲围一个面积为150m2的矩形场地,围墙高3米.四面围墙所用材料的选价不同,正面6元/ m2,其余三面3元/ m2.试问矩形场地的长为( )时,才能使材料费最省.A.15 B.10 C.5 D.8参考答案:A21.设两个正数之和为8,则其中一个数为( )时,这两个正数的立方和最小.A.4 B.2 C.3 D.5参考答案:A22.要造一个体积为的圆柱形油罐,问底半径为( )时才能使表面积最小.A. B. C. D.参考答案:C23.某车间靠墙壁要盖一间方长形小屋,现有存砖只够砌20m长的墙壁.问围成的长方形的长为( )时,才能使这间小屋的面积最大.A.8 B.4 C.5 D.10参考答案:D24.曲线的下凹区间为( )A. B. C. D.参考答案:A25.曲线的拐点坐标为( )A. B. C. D.不存在参考答案:B第一章函数与极限·第六节极限存在准则:两个重要极限1. ( )是的一个原函数.A. B. C. D.参考答案:C2.下列函数中,()是的原函数A. B. C. D.参考答案:C3.下列函数中,( )是的原函数A. B. C. D.参考答案:D4. ( )是函数的原函数.A. B. C. D.参考答案:D5.下列等式中,( )是正确的A. B.C. D.参考答案:D6.若,则( )A. B. C. D.参考答案:B7.若满足,则().A. B. C. D.参考答案:B8.( )A. B.C. D.参考答案:D问题解析:9.( )A. B. C. D.参考答案:B10.( )A. B. C. D.参考答案:A11.( )A. B.C. D.参考答案:B12.( )A. B. C. D.参考答案:B13.( ) A. B.C. D.参考答案:A14.( ) A. B.C. D.参考答案:C15.( ) A. B.C. D.参考答案:A16.( ) A. B.C. D.参考答案:A问题解析:17.( ) A. B.C. D.参考答案:A18.( )A. B.C. D.参考答案:D19.( )A. B.C. D.参考答案:A20.( )A. B.C. D.参考答案:B21.( )A. B.C. D.参考答案:C22.( )A. B.C. D.参考答案:A第二章导数与微分·第一节导数概念1.( )A. B.C. D.参考答案:B2.曲线,直线,及轴所围成的图形的面积是( ) A. B. C. D.参考答案:A3.定积分等于( )A.2 B.1 C.0 D.-1参考答案:C4.( )A.2 B.1 C.0 D.-1参考答案:C5.( )A.2 B.0 C.1 D.-1参考答案:B6.设函数在上连续,,则( ) A. B. C. D.参考答案:C7.设,则等于( )A. B. C. D.参考答案:D8.( )A. B. C. D.参考答案:C9.A.0 B. C.1 D.参考答案:B10.A.1 B.0 C. D.-1参考答案:D11.A. B. C. D.1 参考答案:C12.( )A.4 B.9 C.6 D.5参考答案:A13.( )A.1 B.2 C. D.参考答案:B14.( )A.2 B.C. D.参考答案:D15.( )A. B. C.1 D.参考答案:A16. ( )A. B. C.1 D.参考答案:B17.( )A. B.1 C. D.参考答案:D18.( )A. B.0 C.1 D.参考答案:A19.( )A.0 B. C.1 D.参考答案:B20.( )A.1 B. C. D.参考答案:B21.( )A. B. C. D.1参考答案:A22.( )A. B.1 C. D.2 参考答案:C23.( )A. B. C. D.1 参考答案:A24.( )参考答案:A25.( )A. B.C. D.参考答案:C26.( ) A. B.1 C. D.参考答案:A27.( ) A. B.1 C. D.参考答案:B问题解析:28. ( )A.1 B. C.0 D.参考答案:A29.( )A. B.C. D.参考答案:B30. ( )A. B.C.1 D.参考答案:A31.( )A. B. C. D.1 参考答案:C32.广义积分( )A. B.不存在 C.0 D.1参考答案:A33.广义积分( )A.1 B.不存在 C.0 D.参考答案:A34.广义积分( )A.1 B.不存在 C.0 D.参考答案:B35.由抛物线,直线,及所围成的平面图形的面积等于( )A.2 B.1 C. D.参考答案:A36.由直线,,及曲线所围成的平面图形的面积等于( ) A. B.1 C. D.参考答案:A37.由抛物线与直线及所围成的封闭图形的面积等于( ) A. B. C.2 D.1参考答案:A38.由曲线与直线及所围成的平面图形的面积等于( )A. B.2 C.1 D.参考答案:A39.由曲线与所围图形的面积等于( )A.1 B. C.3 D.参考答案:B40.由,,所围成的封闭图形的面积等于( )A. B.1 C.3 D.2参考答案:A41.由及在点(1,0)处的切线和y轴所围成的图形的面积等于( ) A.1 B. C.2 D.3参考答案:B问题解析:42.由曲线与所围图形的面积等于( )A. B.1 C. D.参考答案:A问题解析:43.设由抛物线;,及所围成的平面图形为D,则D 绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.参考答案:D44.设由直线,,及曲线所围成的平面图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.参考答案:A45.设由曲线与直线及所围成的平面图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.参考答案:B46.设由抛物线与直线及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )参考答案:D47.设由曲线与直线,及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B. C. D.参考答案:C48.设由曲线与直线及所围成的封闭图形为D,则D绕轴旋转一周所得旋转体的体积等于( )A. B.C. D.参考答案:A。

高数b2教材大一知识点归纳

高数b2教材大一知识点归纳

高数b2教材大一知识点归纳高等数学(高数)是大学中必修的一门基础课程,也是理工科学生的必备技能之一。

在高数课程中,B2教材是大一上学期所学的内容,它包含了许多重要的知识点。

本文将对B2教材中的一些关键知识点进行归纳整理,帮助大家更好地理解和掌握这些内容。

1. 一元函数的极限与连续:一元函数的极限是高等数学中最基本的概念之一。

通过对极限的学习,我们可以更好地理解函数的性质和行为。

在B2教材中,我们学习了极限的定义、性质以及一些常见函数的极限计算方法。

另外,连续函数也是高数中非常重要的内容之一。

我们需要掌握连续函数的定义、性质以及常见函数的连续性分析方法。

2. 导数与微分:导数是函数的变化率的量化描述,也是微积分的重要内容之一。

在B2教材中,我们学习了导数的定义、性质以及一些基本的求导法则。

同时,我们还学习了一些特殊函数的导数计算方法,如幂函数、指数函数、对数函数等。

除了导数,微分也是高数中需要重点掌握的内容。

我们需要了解微分的定义、性质,以及利用微分进行近似计算的方法。

3. 函数的应用:函数的应用是高数教材中非常重要的一部分。

在B2教材中,我们学习了函数在几何、物理、经济等领域中的应用。

例如,我们可以用函数来描述曲线的运动规律、计算物体的速度、解决最优化问题等。

这些应用不仅在理论中具有重要意义,而且在实际生活中也有广泛的应用。

4. 定积分与不定积分:定积分和不定积分是微积分中的另外两个重要概念。

在B2教材中,我们学习了定积分的定义、性质以及一些基本的定积分计算方法,如换元法、分部积分法等。

同时,我们还学习了不定积分的定义、性质以及一些基本的不定积分计算法则。

定积分主要用于计算曲线下的面积、曲线长度等问题,而不定积分则广泛应用于求函数的原函数以及解微分方程等方面。

5. 微分方程:微分方程是高数中的另一个重要内容。

在B2教材中,我们学习了一阶常微分方程的基本概念和解法。

通过学习微分方程,我们可以研究函数的变化规律,解决实际问题,如人口增长模型、药物动力学问题等。

高等数学b复习题

高等数学b复习题

高等数学b复习题高等数学B复习题在大学学习的过程中,高等数学B是一门重要的课程,它涉及到微积分、线性代数、概率统计等多个方面的知识。

为了更好地掌握这门课程,复习题是不可或缺的。

本文将围绕高等数学B的复习题展开讨论,帮助读者更好地复习这门课程。

一、微积分微积分是高等数学B中最重要的部分之一。

在复习微积分时,我们可以从以下几个方面入手:1. 导数与微分导数与微分是微积分的基础概念。

我们可以通过计算导数、求解极值、应用微分等方式来复习这一部分知识。

例如,可以选择一些典型的函数进行求导,如多项式函数、三角函数等,通过计算导数的过程来熟悉导数的定义和性质。

2. 积分与定积分积分与定积分是微积分的另一个重要概念。

在复习这一部分时,可以选择一些典型的函数进行积分计算,如多项式函数、三角函数等。

同时,还可以通过解决一些应用题,如求曲线下面积、求曲线长度等,来加深对积分的理解。

3. 微分方程微分方程是微积分的一个重要应用领域。

在复习微分方程时,可以选择一些常见的微分方程进行求解,如一阶线性微分方程、二阶常系数齐次线性微分方程等。

同时,还可以通过解决一些实际问题的微分方程模型,如弹簧振动问题、人口增长问题等,来加深对微分方程的理解。

二、线性代数线性代数是高等数学B中的另一个重要部分。

在复习线性代数时,我们可以从以下几个方面入手:1. 矩阵与行列式矩阵与行列式是线性代数的基础概念。

在复习这一部分时,可以选择一些典型的矩阵与行列式进行计算,如矩阵的加减乘除、行列式的计算等。

同时,还可以通过解决一些线性方程组的问题,如高斯消元法、矩阵求逆等,来加深对矩阵与行列式的理解。

2. 向量空间与线性变换向量空间与线性变换是线性代数的另一个重要概念。

在复习这一部分时,可以选择一些典型的向量空间与线性变换进行计算,如向量的线性组合、向量的内积、线性变换的矩阵表示等。

同时,还可以通过解决一些线性变换的问题,如矩阵的相似对角化、线性变换的特征值与特征向量等,来加深对向量空间与线性变换的理解。

广工环境B类高数上册总复习

广工环境B类高数上册总复习

0 , i 不是特征根 , k 1 , i 是特征方程的单根 .
Qm ( x ) 是与 Pm ( x )同次的多项式,系数待定.
(3)定积分的换元法和分部积分法
例1:设 f (x) 有一个原函数 sin x ,求


2

2
x
x f '( x) d x
解: f ( x ) ( sin x ) ' x cos x sin x 2
x
x
x f '( x ) d x


2
x d f ( x ) x f ( x )
2.定积分的几何应用:平面图形的面积和 旋转体的体积
四、微分方程:一阶线性微分方程,可降阶微分 方程,二阶常系数齐次线性微分方程,二阶常系 数非齐次线性微分方程的特解形式.
1. 求积分:原函数与不定积分的概念,换元法 和分部积分法,倒代换,对称性,广义积分.
重点: (1)对称区间上奇函数和偶函数积分性质
1

3 2
1 |xx |
2
dx
1
1 2
1 xx
2
dx
1
3 2
1 x2 x
dx
2

1
1 2
1 1 1 2 (x ) 4 2
1 d (x ) 2

1
3 2
1 1 d (x ) 2 1 2 1 (x ) 2 4
1
3 2
1 |xx |
2
1 1 2 (x ) 2 4 2 3 2 1 1 d (x ) 1 2 1 2 1 (x ) 2 4 3 1 1 1 1 2 1 2 arcsin 2 ( x ) ln ( x ( x ) ) 2 1 2 2 4 1 2 3 ) lim arcsin ( 2 x 1 ) ln ( 1 2 x1 1 1 2 1 1 1 2 3 ) 2x lim ln ( x ( x ) )ln | ln ( 2 d x x x a | c d x arcsin 2 x 2 2 2 x 1 2 a a 2 42

高数B(1)期末复习ppt课件

高数B(1)期末复习ppt课件

例14
计算下列极限
x s i n x ( 2 ) l i mx 2 x 0( e 1 ) l n ( 1 5 x )
x2 (1) lim 2 x x e
例15
3 2 求函数 y x 3 x 7的单调区间和极值。
5 x x 2 0 0 在区间(-2, 0)内有且只有 例16 证明方程
四、中值定理和导数的应用
1.掌握拉格朗日中值定理,会求拉格朗日中值; 2.熟练掌握洛必达法则求未定式的极限; 3.熟练掌握函数单调性的判别方法. 4.会判断函数的极值并求函数的极值. 5.掌握一元函数微分学在经济分析中的应用.
3 例13 函数 f (x )x 2 x 在 [ 1,1] 上满足拉格朗日中值 定理条件,求中值 .
2x ( 3 ) li m x 0 x
2 1 xs in x 1 ( 5 )lim x 0( 1 c o sx )a r c s inx
5 x7 (2 ) lim ( 1 ) x x
x 2 ( 4 )l i m ( ) x 1 3 x 3 l nx
x2 2x1 例3. 求函数 f (x) 2 的水平渐近线和铅直渐近线。 x x2
解(1)定义域为:R.
x R,
1 x f (x) ( e e x ) f ( x ) 2
因此,f (x)是偶函数。
1 ,1 ). x D, (2)定义域 D( 1 1 ( x ) 1 x 1 x 1 x ln f (x) ln ln ln 1 x 1 ( x) 1 x 1 x
高数B(1)期末复习教学
内容提要与典型例题
一、函数
1.理解函数的定义与特性: 函数的三要素——定义域、值域、法则; 四种特性——有界性、单调性、奇偶性、周期性。 2.会求函数的定义域及函数表达式 注意常用函数:复合函数、分段函数、初等函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华南理工大学网络教育学院 《高等数学(上)》辅导一、 求函数值 例题:1、若2()f x x =,()x x e ϕ=,则(())f x ϕ= . 解:()22(())()xx x f x f e ee ϕ===2、若(1)21f x x -=+,则()f x = . 解:令1x t -=,则1x t =+ 所以()2(1)123f t t t =++=+即 ()23f x x =+二、 常见的等价无穷小及等价无穷小替换原理 常见的等价无穷小:0~sin ~tan ~arcsin ~arctan x x x x x x →时,~ln(1)~x x x e +-1211cos ~,2x x -11~2x -无穷小替换原理:在求极限过程中,无穷小的因子可以用相应的等价无穷小替换例题:1、320sin 3lim x xx →= 解:当0sin3~3x x x →,, 原式=3200(3)lim lim270x x x x x→→==2、0sin3lim x xx →=解:原式=03lim3x xx→=3、201-cos limx xx→=? 解:当210cos ~2x x x →,1-原式=220112lim 2x xx →=4、0ln(13)limx x x→+=?解:当03)~3x x x →,ln(1+原式=.03lim3x xx→=.5、201lim x x e x→-=?解:当201~2x x e x →-,原式=.02lim 2x x x →=.三、 多项式之比的极限2lim 03x xx x →∞=+,2211lim 33x x x x →∞-=+,23lim x x x x→∞+=∞四、 导数的几何意义(填空题)0()f x ':表示曲线()y f x =在点00(,())M x f x 处的切线斜率曲线..()y f x =..在点00(,())M x f x 处的切线方程为:000()()()y f x f x x x '-=-曲线()y f x =在点00(,())M x f x 处的法线方程为:0001()()()y f x x x f x -=--' 例题: 1、曲线44xy x+=-在点(2,3)M 的切线的斜率. 解:222(4)'(4)(4)(4)(4)x x x x x x y x =='+--+-'=- 2282(4)x x ===-2、曲线cos x xy e =在点(0,1)M 处的切线方程.解:20(cos )'cos ()()x x x x x x e x e y e =='-'= 2sin cos 1()x xx x xe xe e =--==-所以曲线cos x xy e=在点(0,1)M 处的切线方程为: 1(0)y x -=--,即10x y +-=3、曲线y =在点(1,1)M 处的切线方程. 解:53112233x x y x =='=-=-所以曲线y =在点(1,1)M 处的切线方程为:21(1)3y x -=--,即2350x y +-=五、 导数的四则运算、复合函数的导数、微分 复合函数求导的链式法则:d d d (),()[()]:d d d y y u y f u u g x y f g x x u x==⇒==⋅()()().y x f u g x '''=⋅或微分:()dy f x dx '= 例题:1、设y ='y =?解:()()1'2221112y x x -'=+⋅+=2、设2sin y x =,则'y =? 解:()''222cos 2cos y x xx x =⋅=3、设sin 2x y =,则dy =? 解:()''sin sin 2ln 2sin 2cos ln 2xx y x x =⋅=则dy =sin 2cos ln 2x x dx4、设sin x y e =,则dy =? 解:()''cos cos xx xx y e eee =⋅=所以cos x x dy e e dx = 5、设2x y e -=,则dy =?(答案:22x xedx --)六、 运用导数判定单调性、求极值 例题:1、求ln y x x =的单调区间和极值. 解:定义域(0,)x ∈+∞令ln 10y x '=+=,求出驻点1x e -=函数的单调递减区间为1(0,]e -,单调递增区间为1(,)e -+∞极小值为11()y e e =-.2、求x y xe -=的单调区间和极值. 解:定义域(,)x ∈-∞+∞令(1)0x x x y e xe x e --'=-=-=,求出驻点1x =函数的单调递减区间为[1,)+∞,单调递增区间为(,1)-∞,极大值为1(1)y e -=.3、求函数.2()x f x e-=.的单调区间和极值.解:定义域(,)x ∈-∞+∞ 令2()2x f x xe -'=-,得0x =极大值为(0)1f =.4、求函数31()3f x x x =-的极值.答案:极小值为2(1)3y =-,极大值为2(1)3y -=七、 隐函数求导 例题:1、求由方程2sin 0x e y xy +-=所确定的隐函数()y y x =的导数dydx. 解:方程两边关于x 求导,得:2cos (2)0x e y y y xy y ''+⋅-+=即 2cos 2xy e y y xy-'=-2、求由方程cos()y x y =+所确定的隐函数()y y x =的导数dy dx. 解:方程两边同时关于x 求导,得:sin()(1)y x y y ''=-++即sin()1sin()x y y x y -+'=++3、求由方程sin()y x y =+所确定的隐函数()y y x =的导数dydx. 答案: cos()1cos()dy x y dx x y +=-+4、求由方程ln ln 0xy x y ++=所确定的隐函数()y y x =的导数dy dx . 答案: dy y dx x=-八、 洛必达法则求极限,注意结合等价无穷小替换原理 例题:1、求极限011lim 1sin x x e x →⎛⎫- ⎪-⎝⎭ 解:原式0sin (1)lim (1)sin x x x x e e x→--=-20sin (1)lim x x x e x →--=.()0sin ~,1~xx x x e x →- 当时,. 0cos lim 2xx x e x→-=0sin lim 2x x x e →--= 12=-2、求极限3sin limtan x x x x →-00⎛⎫⎪⎝⎭解:原式=3sin limx x xx→-()0tan ~x x x → 当时, 201cos lim 3x xx→-= =22012lim 3x xx → 2101cos ~2x x x ⎛⎫→- ⎪⎝⎭ 当时, 16=3、求201lim x x e x x →--00⎛⎫ ⎪⎝⎭(答案:12)九、 原函数、不定积分的概念及其性质 知识点:设()()F x f x '=,则称()F x 是()f x 的一个原函数,()F x C +是()f x 的全体原函数,且有:()()f x dx F x C =+⎰例题:1、( )是函数33x x +的原函数.A .233x + B .421342x x + C .42x x + D .421142x x +解:因为42313342x x x x '⎛⎫+=+ ⎪⎝⎭所以421342x x +是33x x +的原函数.2、( )是函数2cos x x 的原函数. A .22sin x -B .22sin xC .21sin 2x -D .21sin 2x解:因为22211sin (cos )2cos 22x x x x x '⎛⎫=⋅= ⎪⎝⎭所以21sin 2x 是2cos x x 的原函数.3是( )的原函数A .12xBC .ln xD解:因为'=的原函数.4、( )是函数1x的原函数.A .21xB .21x- C .ln x -D .ln ||x解:因为()1ln ||x x'=所以ln ||x 是1x的原函数.十、 凑微分法求不定积分(或定积分)简单凑微分问题:2x e dx ⎰,sin 4xdx ⎰,cos5xdx ⎰,ln ln xd x ⎰ 一般的凑微分问题:,⎰,sin 1cos x dx x +⎰,ln x dx x ⎰例题: 1、⎰解:注意到2(1)2x x '-=-原式=()2112d x --⎰C ⎛⎫=+ ⎪⎝⎭参考公式 ()1221xC =--+2、⎰解:注意到2(23)6x x '-=-原式21=(23)6x --3223x C ⎛⎫=+ ⎪⎝⎭⎰参考公式=319C -+3、sin 1cos x dx x+⎰解:注意到(1cos )sin x x '+=-原式1=(1cos )1cos d x x -++⎰1ln ||dx x C x ⎛⎫=+ ⎪⎝⎭⎰参考公式=ln |1cos x |C -++ 4、5x e dx +⎰解:原式=5(5)x e d x ++⎰()x x e dx e C =+⎰参考公式=5x e C ++5、cos5xdx ⎰解:原式1cos5(5)5xd x =⎰()cos sin xdx x C =+⎰参考公式 1sin55x C =+6、sin 3xdx ⎰解:原式1sin3(3)3xd x =⎰()sin cos xdx x C =-+⎰参考公式1cos33x C =-+十一、 不定积分的第二类换元法——去根号(或定积分)等 例题: 1、求不定积分t =,则221ln(1)x e t x t =-⇒=- 221tdx dt t =- 原式=22121211t dt dt t t t ⋅=--⎰⎰1111dt dt t t =--+⎰⎰ ln |1|ln |1|t t C =--++ln |1|ln |1|C =--++2、4⎰.t =,则22x t dx tdt =⇒= 当0042x t x t ====时,;当时,原式=2200111221+t 1+tt tdt dt +-⋅=⎰⎰22012()1+tdt dt =-⎰⎰202(2ln |1|)t =-+ 2(2ln 3)=-3、10⎰t =,则21x t =-,2dx tdt =当0x =时,1t =;当1x =时,t =原积分211)2t t tdt =-⋅4212)t t dt =-5311253t t ⎡=-⎢⎣41)15=+十二、 不定积分的分部积分法(或定积分)诸如sin x xdx ⎰,cos x xdx ⎰,x xe dx ⎰,x xe dx -⎰,ln x xdx ⎰,可采用分部积分法分部积分公式:()()()()()()u x dv x u x v x v x du x =-⎰⎰例题:1、求不定积分sin x xdx ⎰. 解 sin (cos )x xdx xd x =-⎰⎰cos (cos )x x x dx =---⎰cos cos x x xdx =-+⎰cos sin x x x C =-++2、求不定积分x xe dx -⎰ 解 x x xe dx xde --=-⎰⎰x x xe e dx --=-+⎰x x xe e C --=--+3、求不定积分ln x xdx ⎰解 21ln ln ()2x xdx xd x =⎰⎰2211ln ln 22x x x d x =-⎰ 211ln 22x x xdx =-⎰ 2211ln 24x x x C =-+十三、 定积分的概念及其性质知识点:定积分的几何意义,奇偶对称性等 例题:1、定积分23ax a x e dx -⎰等于 .解: 因为23x x e 是x 的奇函数,所以原式=0 2、定积分23sin aa x xdx -⎰等于 .解: 因为23sin x x 是x 的奇函数,所以原式=03、定积分22sin 1x xdx x π-π+⎰等于 .解: 因为22sin 1x xx+是x 的奇函数,所以原式=0十四、 变上限积分函数求导43'()(),()x aF x f t dt F x ==⎰则______解33''()()()F x f x x =233()x f x =()C 变上限积分函数的导数公式()[]'()'()()()x af t dt f x x Φ=ΦΦ⎰例题:1、 设函数()f x 在[,]a b 上连续,3()()x aF x f t dt =⎰,则()F x '=( C ).A .()f xB .3()f xC .233()x f xD .23()x f x2、设21()arctan x f x tdt =⎰,则()f x '=22arctan x x .3、设30()sin xf x t dt =⎰,则()f x '=3sin x .十五、 凑微分法求定积分(或不定积分) 思想与不定积分类似 例题:1、10x ⎰解:注意到32(1)3x x '+=原式301(1)3x =+⎰3223x C ⎛⎫=+ ⎪⎝⎭⎰参考公式=1302921)9=-十六、 定积分的第二类换元法——去根号(或不定积分, 思想与不定积分类似 例题: 1、4⎰.t =,则22x t dx tdt =⇒= 当0042x t x t ====时,;当时,原式=2200111221+t 1+tt tdt dt +-⋅=⎰⎰22012()1+tdt dt =-⎰⎰202(2ln |1|)t =-+ 2(2ln 3)=-2、10⎰t =,则21x t =-,2dx tdt =当0x =时,1t =;当1x =时,t =原积分211)2t t tdt =-⋅4212)t t dt =-5311253t t ⎡=-⎢⎣41)15=+ 十七、 定积分的分部积分法(或不定积分) 思想与不定积分类似 例题:1、求定积分20sin x xdx π⎰.解220sin (cos )x xdx xd x ππ=-⎰⎰220cos (cos )x x x dx ππ=---⎰20cos xdx π=⎰ 20sin 1x π==2、求定积分10x xe dx -⎰解11xx xe dx xde --=-⎰⎰11x x xee dx --=-+⎰11(0)x e e --=---121e -=-+十八、 求平面图形面积 知识点:X 型积分区域的面积求法 Y 型积分区域的面积求法通过作辅助线将已知区域化为若干个X 型或Y 型积分区域的面积求法例题:1、求由ln y x =、0x =,ln 2y =及ln 7y =所围成的封闭图形的面积.解:由ln y x =得y x e =面积为ln 7ln 2(0)y S e dy =-⎰7ln 2lm y e ⎡⎤=⎣⎦5=2、计算由曲线y =1y =及0x =所围成的图形的面积.解:由1y y ⎧=⎪⎨=⎪⎩A 为(1,1)面积为1(1S dx =-⎰132023x x ⎡⎤=-⎢⎥⎣⎦13=3、求由曲线1y x=与直线y x =及2x =所围成的平面图形的面积.解:由2y xx =⎧⎨=⎩得交点A 为(2,2)由1y x y x =⎧⎪⎨=⎪⎩得交点B 为(1,1)面积为211()S x dx x =-⎰2211ln ||2x x ⎡⎤=-⎢⎥⎣⎦ 3ln 22=-。

相关文档
最新文档