(整理)高数复习重点

合集下载

大一高数期末必考知识点

大一高数期末必考知识点

大一高数期末必考知识点在大一学习高等数学期末考试前,理解和掌握一些必考的知识点非常重要。

本文将为大家整理和归纳一些大一高数期末必考的知识点,旨在帮助同学们更好地复习和备考。

一、函数与极限1. 函数的概念和性质:了解函数的定义、自变量、因变量、定义域、值域等概念;掌握常见函数的性质,如奇偶性、单调性、周期性等。

2. 极限的概念和运算:了解函数极限的定义和性质;掌握常见函数的极限运算法则,包括四则运算、复合函数、比值函数等。

3. 无穷大与无穷小:理解无穷大与无穷小的定义与性质;熟悉无穷大与无穷小的比较、运算和基本性质。

二、导数与微分1. 导数的定义:掌握导数的定义及其几何意义;了解导数与函数图像的关系,如切线、法线等。

2. 常见函数的导数:熟悉常见函数的导数公式,如幂函数、指数函数、对数函数、三角函数等;掌握导数的基本运算法则,如四则运算、链式法则和反函数求导等。

3. 高阶导数与隐函数求导:了解高阶导数的定义和求法;掌握隐函数求导的方法和技巧。

4. 微分的概念和应用:理解微分的定义和几何意义;掌握微分的基本运算法则,如四则运算、复合函数等;熟悉微分在近似计算、极值问题和曲线图像的应用。

三、积分与定积分1. 不定积分与原函数:了解不定积分的定义和性质;掌握基本积分表和常用积分公式;熟悉原函数的计算方法和性质。

2. 定积分的概念和性质:理解定积分的定义和几何意义;了解定积分的性质,如线性性、区间可加性等。

3. 计算定积分:掌握定积分的计算方法,如换元积分法、分部积分法等;熟悉定积分在曲线长度、曲线面积和物理应用中的计算。

四、微分方程1. 微分方程的基本概念:了解微分方程的定义和基本术语;熟悉常微分方程和偏微分方程的区别和特点。

2. 常微分方程的解法:掌握常微分方程的求解方法,如可分离变量方程、一阶线性方程、二阶线性齐次方程等。

3. 微分方程的应用:熟悉微分方程在生物学、物理学、经济学等领域中的应用,如人口增长模型、衰变模型、物种竞争模型等。

大一上学期 高数复习要点整理

大一上学期 高数复习要点整理

高数解题技巧。

高数(上册)期末复习要点高数(上册)期末复习要点第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。

(高等数学、考研数学通用)高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。

大一下册高数复习知识点

大一下册高数复习知识点

大一下册高数复习知识点大一下册高等数学是大一学生在学习数学方面的重要课程之一。

本文将为大家总结大一下册高数的复习知识点,供大家参考和学习。

一、极限与连续1. 函数的极限函数的极限是指当自变量无限接近某一特定值时,函数的取值接近于一个常数的性质。

其中包括左极限、右极限和无穷极限。

2. 连续与间断函数在某一点上连续是指函数在该点的极限与函数在该点的值相等,否则函数在该点上间断。

根据间断的性质,可以将间断分为可去间断、跳跃间断和无穷间断。

3. 介值定理与零点存在定理介值定理表明,若函数在区间[a, b]上连续,则函数在该区间上可以取到任意两个介于f(a)和f(b)之间的值。

零点存在定理指出,若函数在区间[a, b]上连续,并且f(a)和f(b)异号,则在该区间上至少存在一个零点。

二、导数与微分1. 导数的定义导数表示函数在某一点上的变化率,可以用极限的概念进行定义。

对于函数f(x),在点x处的导数定义为f'(x) = lim(△x→0)[f(x+△x) - f(x)]/△x。

2. 基本导数公式常见的基本导数公式包括常数函数、幂函数、指数函数、对数函数和三角函数等,应熟练掌握它们的导数表达式和求导法则。

3. 导数的几何意义导数可以表示函数在某一点处的切线斜率,通过导数可以分析函数的单调性、极值和拐点等性质。

三、积分与不定积分1. 定积分的概念定积分表示函数在一个闭区间上的面积值,可以看作是函数在该区间上的累积效应。

2. 不定积分的概念不定积分表示函数在某一点的原函数,也可称为反导函数。

3. 基本积分公式常见的基本积分公式包括常数函数、幂函数、指数函数、对数函数和三角函数等的积分表达式和求积法则。

四、微分方程1. 微分方程的定义微分方程是含有未知函数及其导数的方程,描述了函数与其导数之间的关系。

2. 常微分方程的解法常微分方程包括一阶和二阶微分方程,可以使用分离变量法、齐次方程法、二阶线性常系数齐次方程法等方法求解。

高数考试中的知识点整理与复习

高数考试中的知识点整理与复习

高数考试中的知识点整理与复习在高数考试的前夜,知识点的整理与复习就像一场精心策划的演出,每一个细节都需要精细打磨。

高等数学这位严肃的老师,拥有丰富的知识宝藏,但也因为内容的复杂与深奥,让许多学生感到困惑。

如何有效地整理和复习这些知识点,才能在考试中发挥出最佳水平呢?首先,认识到高数的核心知识点就像识别出演出中的主要角色一样重要。

高等数学通常包括微积分、线性代数、常微分方程等几个主要部分。

每一个部分都有其独特的“性格特点”,例如,微积分的核心在于理解函数的变化和极限,线性代数则关注向量空间的结构和变换,而常微分方程则处理函数与其导数之间的关系。

在复习的过程中,了解每个知识点的基本概念、定理和公式就像是熟悉每个角色的背景故事。

要将这些知识点进行系统化整理。

建立一个知识框架图,将各个知识点之间的联系清晰地呈现出来。

这种方式有助于将零散的知识串联起来,使其形成一个完整的知识体系。

比如,在微积分中,可以把极限、导数和积分这三个基本概念用不同的颜色标记,并标出它们的相互关系和应用场景,这样可以更好地理解它们之间的联系和区别。

接下来,将重点放在关键定理和公式的记忆上。

高数的公式往往像是演出中的台词,记住它们不仅要理解其含义,还要知道如何灵活应用。

例如,积分的部分公式如牛顿-莱布尼茨公式,或者线性代数中的矩阵运算公式,都需要通过大量的练习来巩固记忆。

制作公式卡片,将每个公式的应用场景和推导过程简洁地记录在卡片上,可以在复习时反复翻阅,以加深记忆。

实践是检验知识掌握程度的最佳方法。

在高数的学习中,做大量的习题就像是演员反复排练演出一样,能够帮助学生真正掌握和应用所学的知识。

针对每一类题型,分门别类地进行练习,比如对微分方程问题,可以先从简单的线性微分方程入手,逐步过渡到更复杂的非线性微分方程,通过逐步攻克不同难度的问题,建立起解决类似问题的思路和方法。

此外,复习过程中,不要忽视对错题的分析。

错题就像是演出中的失误,找到失误的原因并加以改正,才能提升整体的演出水平。

高数重要知识点汇总

高数重要知识点汇总

高数重要学问点汇总高数重要学问点汇总高等数学在考研数学中占有举足轻重的地位,数一、数三中占据56%的比重,数二中占据78%的比重,必需须要专心复习。

但一些学生反映,教材看了好几遍,习题做了好几本,做题依旧无从下手。

类似状况的缘由是重点把握不到位,做题的方法和技巧驾驭不坚固。

下面给出高等数学的重要学问点总结,希望考生在复习中有所侧重。

1.函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的探讨、间断点类型的推断、无穷小阶的比较、探讨连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。

2.一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的'求法。

3.一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。

4.向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。

5.多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。

另外,数一还要求驾驭方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

6.多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。

此外,数一还要求驾驭三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。

7.无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数肯定收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的绽开问题。

[整理版]高数一复习笔记

[整理版]高数一复习笔记

定理设,则(1)(2)(3)推论1如果lim f(x)存在,而c为常数,则常数因子可以提到极限记号外面。

推论2如果lim f(x)存在,而n是正整数,则三、无穷小与无穷大的关系1.定理在同一过程中,无穷大的倒数为无穷小;恒不为零的无穷小的倒数为无穷大。

2.意义:关于无穷大的讨论,都可归结为关于无穷小的讨论。

例1.求。

【答疑编号11020301】解:商的法则不能用又由无穷小与无穷大的关系,得小结:当,m和n为非负整数时有无穷小分出法:以分子、分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限。

7、求【答疑编号11020410】解例1、求【答疑编号11020501】解:小结:第一类重要极限:第二类重要极限:2.5.4 无穷小的比较例如,当x→0时,都是无穷小。

观察各极限,x2比3x要快得多;,sinx与x大致相同;不存在,不可比。

极限不同,反映了趋向于零的“快慢”程度不同。

定义:设α,β是同一过程中的两个无穷小,且α≠0.(1)如果,就说β是比α高阶的无穷小,记作β=o(α);(2)如果,就说β与α是同阶的无穷小;特殊地如果,则称β与α是等价的无穷小;记作α~β;二、反函数的导数1.定理:如果函数在某区间内单调、可导且,那么它的反函数在对应区间内也可导,且有即反函数的导数等于直接函数导数的倒数.(5)【答疑编号11030407】例:求【答疑编号11050410】解:。

大一高数期中复习知识点

大一高数期中复习知识点

大一高数期中复习知识点在大一的高等数学学习中,我们接触到了许多重要的知识点。

期中考试即将到来,为了更好地复习和准备考试,我们需要回顾并深入理解这些知识点。

本文将整理大一高数期中复习的重要知识点,帮助同学们更好地进行复习备考。

1. 函数与极限1.1 函数函数是高数学习的基础,学好函数概念对于后续的学习至关重要。

一元函数的定义域、值域以及基本性质是需要牢记的知识点。

此外,梯度和导数的概念也是大一高数的基础知识。

1.2 极限极限是研究函数性质和变化的重要工具,学习了极限概念后,我们可以更好地理解函数在某一点的趋势以及变化情况。

极限的运算法则、无穷小量以及单侧极限等都是需要重点掌握的内容。

2. 导数与微分2.1 导数的定义与性质导数作为函数变化率的度量,是高等数学中的重点与难点,需要我们仔细理解和熟练掌握。

导数的定义、求导法则以及高阶导数的计算方法都是我们需要重点关注的内容。

2.2 微分的概念和性质微分是导数的重要应用,它描述了函数在某一点附近的近似变化情况。

掌握微分的计算方法与性质,对于进一步理解函数的曲线走势和求极值等问题有着重要作用。

3. 积分与数列3.1 定积分定积分是函数面积与曲线下面积的重要计算工具。

研究了定积分的定义、性质以及求解方法后,可以更好地解决函数面积问题和曲线下面积的计算。

3.2 不定积分不定积分是定积分的逆运算,也称为原函数运算。

它描述了函数在某一点的变化情况。

学习了不定积分的概念、性质以及基本积分公式后,我们可以更好地解决曲线的绘制以及函数的反求问题。

3.3 数列与级数数列与级数是数学中重要的概念,它们在实际问题中的应用广泛。

了解数列的概念、性质以及收敛与发散的判定方法,能够帮助我们更好地解决实际应用问题。

4. 二元函数与多元函数4.1 二元函数与偏导数学习了二元函数的概念以及二元函数的极限、连续性、可微性等性质后,我们可以更好地理解两个变量之间的关系。

偏导数的概念以及计算方法是我们要关注的重点。

高数下册总复习知识点.pptx

高数下册总复习知识点.pptx

F ( x, G( x,
y, z) y, z)
0 ,
0
(取 x为参数)
i jk
取T Fx Fy Fz
切线方程为
Gx Gy Gz M
x x0 y y0 z z0 ,
Fy Fz
Fz Fx
Fx Fy
Gy Gz M Gz Gx M Gx Gy M
法平面方程为
Fy Gy
Fz Gz
M
(x
x0 )
它们距离为
M1M2 x2 x1 2 y2 y1 2 z2 z1 2
2、数量积 (点积、内积)
a
b
|
a
||
b
|
cos
其中
为a
与b
的夹角
数量积的坐标表达式 a b axbx a yby azbz
两向量夹角余弦的坐标表示式
cos
ab
axbx a yby azbz
ax2
函数连续
函数可导
有极限
函数可微 偏导数连续
4、多元复合函数求导法则
中间变量均为一元函数的情形
定理1 若函数
在点t处可导,z f (u, v)
在点 处偏导连续, 则复合函数 z f ( (t), (t))
在点 t 可导, 且有链式法则
dz z du z dv dt u dt v dt
z
u v
1
旋 转 椭 球 面
z
o
y
x
(1)球面 (2)圆锥面 (3)旋转双曲面
x2 y2 z2 1
x2 y2 z2
( x x0 )2 ( y y0 )2 (z z0 )2 R2
x2 a2
y2 a2
z2 c2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

万变不离其宗!短短一个月后,就要考试了,面对复习不能手足无措,要有目的地复习。

主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。

掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。

复习自然离不开大量的练习,熟悉公式然后才能熟练任用。

结合课后习题要清楚每一道题用了哪些公式。

没有用到公式的要死抓定义定理!
一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分五.定积分六定积分的应用浏览目录了解真正不熟悉的章节然后有针对的复习。

一函数与极限
熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理
本章公式:
两个重要极限:
常用的8个等价无穷小公式:当x→0时,
sinx~x
tanx~x
arcsinx~x
arctanx~x
1-cosx~1/2*(x^2)
(e^x)-1~x
ln(1+x)~x
[(1+x)^1/n]-1~(1/n)*x
二.导数与微分
熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数
三.微分中值定理与导数的应用:
洛必达法则:
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:
① 在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在
时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 .
② 洛必达法则可连续多次使用,直到求出极限为止.
③ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等.
曲线的凹凸性与拐点:
注意:首先看定义域然后判断函数的单调区间
求极值和最值
利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号)四.不定积分:(要求:将例题重新做一遍)
对原函数的理解
原函数与不定积分
1 基本积分表基本积分表(共24个基本积分公式)
不定积分的性质
2 第一类换元法(凑微分法)
2 第二类换元法(三角代换无理代换倒代换)
3 分部积分法
f(x)中含有
可考虑用代换。

相关文档
最新文档