高等数学高等数学综合复习资料

合集下载

高数复习资料

高数复习资料

《高等数学》课程复习资料一、填空题:1.设2)(xx a a x f -+=,则函数的图形关于 对称。

2.若2sin x x y x x <<=+≤<⎧⎨⎩-20102,则=)2(πy .3.极限limsinsin x x x x→=021。

4.已知22lim 222=--++→x x bax x x ,则=a ,=b 。

5.已知0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数a = 6.设)(22y z y z x ϕ=+,其中ϕ可微,则yz∂∂= 。

7.设2e yz u x =,其中),(y x z z =由0=+++xyz z y x 确定的隐函数,则=∂∂)1,0(xu 。

8.设ϕϕ,),()(1f y x y xy f x z ++=具有二阶连续导数,则=∂∂∂yx z 2 。

9.函数y x xy xy y x f 22),(--=的可能极值点为 和 。

10.设||)1(sin ),(22xy x y x y x f -+=则'y f =(1,0) 。

11.=⎰xdx x 2sin 212.[0,]cos ,sin y x y x π==在区间上曲线之间所围图形的面积为 。

13.若21d e 0=⎰∞+-x kx ,则k = 。

14.设D:221x y +≤,则由估值不等式得 ⎰⎰≤++≤Ddxdy y x)14(2215.设D 由22,,,y x y x y y ====212围成(0x ≥),则(),Df x y d σ⎰⎰在直角坐标系下的两种积分次序为 和 。

16.设D 为01,01y x x ≤≤-≤≤,则Dfdxdy ⎰⎰的极坐标形式的二次积分为 。

17.设级数∑∞=+121n pn收敛,则常数p 的最大取值范围是 。

18.=+-+-⎰10 642)!3!2!11(dx x x x x 。

19.方程01122=-+-ydy xdx 的通解为 。

高等数学复习资料

高等数学复习资料

全国教师教育网络联盟专科起点升本科高等数学复习资料目录第一章函数 (1)一、内容提要 (1)二、典型例题 (2)第二章极限与连续 (5)一、内容提要 (5)二、典型例题 (7)第三章导数与微分 (12)一、内容提要 (12)二、典型例题 (14)第四章导数的应用 (18)一、内容提要 (18)二、典型例题 (20)第五章不定积分 (25)一、内容提要 (25)二、典型例题 (26)第六章定积分及其应用 (30)一、内容提要 (30)二、典型例题 (31)第七章多元函数微积分 (34)一、内容提要 (34)二、典型例题 (37)第一章函数一、内容提要1、函数(1)定义:设有两个变量x与y。

当变量x在给定的某一变域中任意取定一值时,另一变量y就按某一确定的法则有一个确定值与x的这个值相对应,那末变量y称为变量x的函数,记作y=f(x)。

(2)定义中两要素:定义域与对应法则。

定义域:自变量x的取值范围。

对应法则:自变量x与因变量y的对应规则。

(3)注意两点:①两个函数只有当它们的定义域和对应法则都相同时,才能说它们是相同的函数。

②在不同区间上用不同数学表达式来表示的函数称为分段函数。

分段函数是一个函数而不是几个函数。

2、反函数(1)定义:设已知y是x的函数y=f(x),如果将y当作自变量,x当函数,则由关系式y=f(x)所确定的函数x=ϕ(y)就叫做函数f(x)的反函数,由于通常总把自变量记作x,函数记作y,因此习惯上称y=ϕ(x)为函数f(x)的反函数,记作f -1(x),而f(x)叫做直接函数。

(2)附注:反函数的定义域与直接函数的值域相同。

3隐函数定义:凡能够由方程F(x,y)=0确定的函数关系,称为隐函数。

4、函数的简单性质有界性,奇偶性,单调性与周期性。

5、复合函数(1)定义:设y是u的函数y=f(u),而u又是x的函数u=ϕ(x),而且当x在某一区间I 取值时相应的u值可使y有定义,则称y是x的一个定义于区间I上的复合函数,记作y=f[ϕ(x)]。

高等数学基础复习资料

高等数学基础复习资料

高等数学基础复习资料一、引言高等数学作为大学数学的重要组成部分,是理工科学生必修的一门课程。

作为一门基础性的学科,高等数学为学生奠定了后续学习的数学基础,并为他们建立了抽象思维和逻辑推理能力奠定了基础。

本文将为大家提供一份高等数学基础复习资料,帮助学生系统回顾相关知识点,提高自己的数学水平。

二、数列与极限1. 数列的概念及表示方法- 数列的定义与本质特征- 数列的表示方法:通项公式、递推公式2. 数列的极限- 数列极限的定义与判定方法- 数列收敛与发散的判断- 数列极限的性质与运算规则3. 无穷级数- 级数的概念与收敛性判断- 常见级数的收敛性判断方法- 级数收敛的性质与运算规则三、函数与极限1. 函数的概念与性质- 函数的定义与分类- 函数的图像与性质2. 函数的极限- 函数极限的定义与性质- 常见函数极限的计算方法- 无穷小量与无穷大量的定义与性质3. 一元函数的连续性与导数- 函数连续性的定义与判断- 函数导数的定义与计算方法- 函数导数的性质与应用四、微分学1. 一元函数的微分学- 函数微分的定义与计算方法- 微分的几何意义与应用- 高阶微分与泰勒公式2. 函数的极值与最值- 函数极值的判定与求解- 条件极值与拉格朗日乘数法3. 函数的凸性与曲线的形状- 函数凸性的定义与判定方法- 曲线的拐点与渐进线五、积分学1. 定积分与不定积分- 定积分的定义与性质- 定积分计算的方法与技巧- 不定积分的定义与计算方法2. 反常积分- 反常积分的概念与判定- 常见反常积分的计算方法3. 微积分基本定理与应用- 微积分基本定理的表述与应用- 曲线下面积的计算- 参数方程与极坐标下的积分六、常微分方程1. 常微分方程的基本概念- 常微分方程的定义与分类- 一阶常微分方程的常见形式2. 一阶常微分方程的解法- 可分离变量方程的求解- 线性方程的求解- 齐次与非齐次方程的解法3. 高阶常微分方程- 二阶常微分方程解的一般性质- 常系数二阶齐次线性微分方程的解法- 特征方程求解与常系数二阶非齐次线性微分方程的解法七、向量代数与空间解析几何1. 向量的概念与性质- 向量的基本运算与性质- 向量的数量积与向量积2. 空间直线与平面- 点、直线与平面的位置关系- 空间直线的方程与相交关系- 空间平面的方程与位置关系3. 空间几何体的体积与曲面积分- 空间几何体的体积计算- 曲面积分的概念与计算方法八、多元函数微分学1. 多元函数的偏导数- 偏导数的定义与计算方法- 偏导数的几何意义与性质2. 多元函数的方向导数与梯度- 方向导数的定义与计算方法- 梯度的定义与性质3. 多元函数的极值与最值- 多元函数的极值点与极值- 约束条件下的极值求解九、多元函数积分学1. 二重积分与三重积分- 二重积分的定义与计算方法- 三重积分的定义与计算方法2. 极坐标与球坐标下的积分计算- 极坐标下的二重积分与三重积分- 球坐标下的三重积分3. 变量替换与重积分- 变量替换的基本思想与方法- 重积分的计算方法与应用十、常微分方程与偏微分方程初步1. 常微分方程初值问题的求解- 常微分方程初值问题的基本概念- 高阶线性常微分方程初值问题的求解2. 偏微分方程的基本概念与分类- 偏微分方程的基本定义与分类- 一阶偏微分方程的求解方法初探3. 偏微分方程边值问题与特解- 偏微分方程边值问题的基本概念- 常见偏微分方程的特解求解方法结语通过对高等数学基础内容的系统复习,我们可以巩固数理基础,提高数学水平,为后续的学习和研究打下坚实的基础。

高等数学复习资料大全

高等数学复习资料大全

高等数学复习第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达)2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

大一高等数学复习资料(二)2024

大一高等数学复习资料(二)2024

大一高等数学复习资料(二)引言概述:大一高等数学是大学数学课程中的基础课程,为了帮助大家更好地复习该门课程,本文提供了一份大一高等数学复习资料(二)。

通过该资料的学习,可以帮助大家复习和巩固高等数学的重要概念和知识点,为接下来的学习打下坚实的基础。

正文:1. 微分学复习:a. 重要概念回顾:导数和微分的定义、基本导数公式;b. 导数的应用:求函数的极值与最值、函数图像的描绘;c. 高阶导数与泰勒展开式:求函数的高阶导数、利用泰勒公式研究函数的性质。

2. 积分学复习:a. 定积分与不定积分:定义及性质、基本积分公式;b. 积分方法与技巧:换元法、分部积分法、三类换元法;c. 积分应用:求函数的面积、曲线长度、曲线包围的面积。

3. 微分方程复习:a. 常微分方程与解法:一阶线性微分方程、可分离变量的微分方程;b. 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程;c. 变量分离和常系数齐次线性微分方程。

4. 空间解析几何复习:a. 点、线、面的方程与性质;b. 点到直线和点到平面的距离计算;c. 平面与直线的位置关系、两平面的位置关系。

5. 矩阵与行列式复习:a. 矩阵的基本概念:矩阵的定义、矩阵的运算;b. 行列式的定义与性质:二阶、三阶行列式的计算;c. 逆矩阵与矩阵的秩:逆矩阵的判定、矩阵秩的计算。

总结:通过学习本文提供的大一高等数学复习资料(二),我们可以更好地复习和巩固高等数学的重要概念和知识点,为接下来的学习打下坚实的基础。

希望这份资料对于大家的学习有所帮助,祝愿大家在学习中取得优异的成绩!。

(完整版)高等数学复习资料大全

(完整版)高等数学复习资料大全

《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

公共课《高等数学》复习资料

公共课《高等数学》复习资料

公共课《高等数学》复习资料1一、选择题1、下列曲线中经过原点的为A 1y x =+B 2y x x =- C cos y x = D 221x y +=2、函数()f x =1(2)(3)x x x +-- 的所有间断点为A x =-1B x =2C x =3D x =2, x =33、函数sin xy x=的微分dy A 2cos sin x x x x - B 2sin cos x x x x - C 2cos sin x x x x -dx D 2sin cos x x x x -dx4、已知cos x 是()f x 的一个原函数,则不定积分()f x dx ⎰=A sin x C +B cos xC + C sin x C -+D cos x C +5、设函数(,)f x y =()h x ()g y 在点(,00x y )的某领域内有定义,且存在一阶偏导数,则y f (,00x y )=A (,)(,)lim 00000x f x t y f x y t →+-B (,)(,)lim 00000x f x t y t f x y t →++-C ()()lim ()0000x g y t g y h x t →+-D ()()lim 000x g y t g y t→+- 二、填空题1、点P (3,2,0)到平面3270x y -++=的距离为 。

2、已知函数(,)f x y =x y x y -+,则(,)11f y x= 。

3、微分方程''3xy y e --=的特解*y = 。

4、齐次方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩只有零解,则λ应满足 。

5、ln()limln 1n n n→∞+= 。

三、计算题 1、求曲线211y x =+在点(1,12)处的切线方程。

2、求极限21lim 2xx x x →∞++。

高等数学复习资料大全

高等数学复习资料大全

高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。

2、函数极限的性质:(1)唯一性:若极限存在,则唯一。

(2)局部有界性:在极限附近的函数值有界。

(3)局部保号性:在极限附近,函数值的符号保持不变。

(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。

3、极限的四则运算:设、存在,则、也存在,且、、、。

4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。

5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。

(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。

6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。

二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。

2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。

3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。

4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。

5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。

三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。

2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(2)综合复习资料
1.坐标面xoy 的方程是___________________________.
2.平行于向量{}3,2,6-=→
a 的单位向量是______ __.
3.设..10,11:≤≤≤≤-y x D 则
()
_________3=+⎰⎰dxdy y y x D 4. 若向量→→→c b a ,,两两互相垂直,且3,2,1===→→→
c b a 和,则____=++→→→c b a
5. 已知两点),3,2,7(),1,2,3(--B A 则_____=→AB
6.设,ln
22y x z +=则._______________=x z 7.直线3
7423z y x =-+=-+与平面3224=--z y x 的关系是( ) (A)平行,但直线不在平面上;; (B)直线在平面上;
(C)垂直相交; (D)相交但不垂直;
8.点)1,2,1(M 到平面01022=-++z y x 的距离是 ( )
1)(A ; 1)(±B ; 1)(-C ;3
1)(D ; 9.设D 是矩形域11,40:≤≤-≤≤y x π
,则=⎰⎰D
xydxdy x 2cos ( )
;0)(A ;21)(-B ;21)(C 4
1)(D 10.设⎪⎭
⎫ ⎝⎛
+=4arctan πxy z ,则=x z ( ) ;41)(⎪⎭⎫ ⎝⎛++πxy xy
A ;411)(2⎪⎭⎫ ⎝⎛+++πxy x B
;414sec )(22⎪⎭⎫ ⎝
⎛++⎪⎭⎫ ⎝⎛+ππxy xy xy C 241)(⎪⎭⎫ ⎝⎛++πxy y D ; 11.曲面z y x =-2
2在xoz 平面上的截线方程是( )
;0)(;00)(;0)(;)(22222
⎩⎨⎧==⎩⎨⎧==-⎩⎨⎧=-==y z x D z y x C x z y B z x A
12.曲面6242
22=+-z y x 上点)3,2,2(处的法线为( ) 3461)(z y x A =--=- 3
34212)(-=--=--z y x B 21461)(-=--=-z y x C 3
34212)(-=-=-z y x D 13.求函数x y xy x y x f 3),(22++-=的极值。

14.求曲面82
222=+y x 上)1,2,2(处的切平面和法线方程。

15.设()xy y x z 23sin +=求x z ∂∂、y
z ∂∂ 16. 设,222z y x u ++=求.,z
u y u x u ∂∂∂∂∂∂, 17. 确定级数∑∞=1n n n
x 的收敛域. 18. 求微分方程
()()0sin 1122=+-++dx x x xy dy x 的通解. 19.设 {}{},.1,2.0,10,1-==→→b a 求→→b a ,的数量积。

20.求微分方程0)( '9)( '' =+x y x y 求微分方程的通解。

21.设3,),sin(23
+==++=s y s t x y x e z xy ,求函数z 对于变量t s ,的全微分.dz 22证明:()()dy y xy x dx y xy x 222222+--+-是某二元函数),(y x u u =的全微分。

并 求).,(y x u u =
23
)()()()( ')()( '' 21x Q x y x p x y x p x y =++(1)的特解,(其中Q p p ,,21为已知函数),且≠--3
221y y y y 常数,证明:()()32212111y c y c c y c y --++=(其中21,c c 为常数)为方程(1)的通解。

相关文档
最新文档