(便宜+排版)通道蛋白和载体蛋白的异同
通道蛋白与载体蛋白

(我是一相关大学教师,但愿能帮到你)。
3、协助扩散(facilitated diffusion)是小分子物质经膜转运蛋白顺浓度梯度或电化学梯度跨膜的转运。膜转运蛋白可分为两类:一类是通道(channel)蛋白,另一类是载体(carrier)蛋白。(1).离子通道(ion channel) 离子通道被认为是细胞膜中一类内在蛋白构成的孔道。可为化学方式或电学方式激活,控制离子通过细胞膜顺电化学势流动。(2)载体 载体也是一类内部蛋白,由载体转运的物质首先与载体蛋白的活性部位结合,结合后载体蛋白产生构象变化,将被转运物质暴露于膜的另一侧,并释放出去。由载体进行的转运可以是被动的(顺电化学势梯度),也可以是主动的(逆电化学势梯度)
载体蛋白又称做载体(carrier)、通透酶(permease)和转运器(transporter)。能够与特异性溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧。载体蛋白有的需要能量驱动,如:各类ATP驱动的离子泵;有的则不需要能量,以自由扩散的方式运输物质,如:缬氨酶素。这里要注意,之所以称为通透酶,是因为它与所运输物质之间有对应关系,特意性强。
离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如 Ach受体通道、氨基酸受体通道、Ca+活化的K+通道等。
2、细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protei学本质均为蛋白质、分布均在细胞的膜结构中、都有控制特定物质跨膜运输的功能
载体蛋白和通道蛋白的区别

载体蛋白与通道蛋白的区别2003年诺贝尔化学奖授予了美国科学家阿格雷与麦金农,她们因研究离子通道而获奖;不仅如此,人教版必修三《稳态与环境》在18页讲述静息电位与动作电位的离子基础时也提到:静息时,由于膜主要对K+有通透性,造成K+外流,这就是静息电位产生与维持的主要原因;受到刺激时,细胞膜对Na+的通透性增加,Na+内流,使兴奋部位膜内侧阳离子浓度高于外侧,表现为内正外负。
上面讲的K+外流与Na+内流其实都就是通过膜上的离子通道完成的。
同样就是必修一教材,在“物质跨膜运输的方式”一节中,提到协助扩散与主动运输都要依赖膜上的载体蛋白来完成。
通道蛋白与载体蛋白都与相关物质的跨膜运输有关,那么两者到底有什么区别呢?要回答这个问题,我们先从膜转运蛋白谈起。
在细胞膜上广泛存在着膜转运蛋白(membrane transport proteins),负责无机离子与水溶性小分子的跨膜运输。
膜转运蛋白分为两类:一类称为载体蛋白(carrier proteis),它既可以介导被动运输,又可以介导逆浓度或者电化学梯度的的主动运输;另一类为通道蛋白(channel proteins),只能介导顺浓度或化学梯度的被动运输(协助扩散)。
1 载体蛋白载体蛋白就是几乎所有类型的生物膜上普遍存在的多次跨膜蛋白分子。
每种载体蛋白能与特定的溶质分子结合, 通过一系列构象的改变介导溶质分子跨膜转运,相关模型见下图:图1 示载体蛋白通过构想改变介导溶质(葡萄糖)被动运输的假想模该图中膜上的载体蛋白以两种构象状态存在:状态A时溶质结合位点在膜外侧暴露;状态B时,同样的溶质结合位点在膜内侧暴露。
该模型认为,两种构象状态的改变就是随机发生的。
假如溶质浓度在膜的外侧高,则状态A→状态B的转变比状态B→状态A的转变更常发生,因此溶质顺浓度梯度进入细胞。
换句话说,物质究竟向哪个方向运输,取决于该物质在膜两侧的浓度差。
除了被动运输,载体蛋白还介导逆浓度梯度的主动运输。
载体蛋白和通道蛋白的特点

载体蛋白和通道蛋白的特点
载体蛋白和通道蛋白都是细胞膜上的运输物质的载体,其区别主要是载体蛋白包括主动运输的蛋白质,也包括协助扩散的蛋白质,通道蛋白是协助扩散的蛋白质。
1、载体蛋白:载体蛋白能够与特异性溶质结合,载体蛋白既参与被动的物质运输,也参与主动的物质运输,载体蛋白运输物质的动力学曲线具有膜结合酶的特征,运输速度在一定浓度时达到饱和,不仅可以加快运输速度,也增大物质透过质膜的量,载体蛋白的运输具有专业性和饱和性。
2、通道蛋白:通道蛋白是衡化质膜的亲水性通道,能使适宜大小的分子及带电荷的分子通过简单的自由扩散运动,从质膜的一侧转运到另一侧,通道蛋白的运输作用具有选择性,属于被动运输,在运输过程中不会与被运输的分子结合,也不会移动。
建议患者平时要注意饮食,不要吃脂肪含量和胆固醇高的食物,例如鸡肉、猪肉等,可以吃一些新鲜的蔬菜,例如胡萝卜、芹菜等。
细胞生物学课后思考题答案(第四版)

第一章1. 细胞生物学在生命科学中所处的地位,以及它与其他学科的关系1)地位:以细胞作为生命活动的基本单位,探索生命活动规律,核心问题是将遗传与发育在细胞水平上的结合。
2)关系:应用现代物理学与化学的技术成就和分子生物学的概念与方法,研究生命现象及其规律。
1.根据细胞生物学研究的内容与你所掌握的生命科学知识,客观、恰当地评价细胞生物学在生命科学中所处的地位,以及它与其他学科的关系。
答细胞生物学是一门从细胞的显微结构、超微结构和分子结构的各级水平研究细胞的结构与功能的关系,从而探索细胞生长、发育、分化、繁殖、遗传、变异、代谢、衰亡及进化等各种生命现象规律的科学。
生命体是多层次、非线性、多侧面的复杂结构体系,而细胞是生命体的结构与生命活动的基本单位,有了细胞才有完整的生命,一切生命现象的奥秘都要从细胞中寻找答案。
许多高等学校在生命科学的教学中,将细胞生物学确定为基础课程。
细胞生物学、分子生物学、神经生物学和生态学并列为生命科学的四大基础学科。
细胞生物学与其他学科之间的交叉渗透日益明显。
2.通过学习细胞学发展简史,你如何认识细胞学说的重要性?答1838-1839年,德国植物学家施莱登和德国动物学家施旺提出一切动植物都由细胞发育而来,并由细胞和细胞产物所构成;每个细胞作为相对独立的单位,但也与其他细胞相互影响。
1858年Virchow对细胞学说做了重要的补充,强调细胞只能来自细胞。
细胞学说的提出对于生物科学的发展具有重大意义。
细胞学说、进化论、孟德尔遗传学称为现代生物学的三大基石,而细胞学说又是后二者的基石。
对细胞结构的了解是生物科学和医学分支进一步发展所不可缺少的。
3.试简明扼要地分析细胞生物学学科形成的客观条件,以及它今后发展的主要趋势。
答(1)细胞生物学学科形成的客观条件细胞的发现(1665-1674)1665年,胡克发表了《显微图谱》(《Micrographia》)一书,描述了用自制的显微镜(30倍)观察栎树软木塞切片时发现其中有许多小室,状如蜂窝,称为“cellar”。
载体蛋白和通道蛋白的区别

载体蛋白和通道蛋白的区别2003年诺贝尔化学奖授予了美国科学家阿格雷和麦金农,他们因研究离子通道而获奖;不仅如此,人教版必修三《稳态与环境》在18页讲述静息电位和动作电位的离子基础时也提到:静息时,由于膜主要对K+有通透性,造成K+外流,这是静息电位产生和维持的主要原因;受到刺激时,细胞膜对Na+的通透性增加,Na+内流,使兴奋部位膜内侧阳离子浓度高于外侧,表现为内正外负。
上面讲的K+外流与Na+内流其实都是通过膜上的离子通道完成的。
同样是必修一教材,在“物质跨膜运输的方式”一节中,提到协助扩散和主动运输都要依赖膜上的载体蛋白来完成。
通道蛋白和载体蛋白都与相关物质的跨膜运输有关,那么两者到底有什么区别呢?要回答这个问题,我们先从膜转运蛋白谈起。
在细胞膜上广泛存在着膜转运蛋白(membrane transport proteins),负责无机离子和水溶性小分子的跨膜运输。
膜转运蛋白分为两类:一类称为载体蛋白(carrier proteis),它既可以介导被动运输,又可以介导逆浓度或者电化学梯度的的主动运输;另一类为通道蛋白(channel proteins),只能介导顺浓度或化学梯度的被动运输(协助扩散)。
1 载体蛋白载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜蛋白分子。
每种载体蛋白能与特定的溶质分子结合,通过一系列构象的改变介导溶质分子跨膜转运,相关模型见下图:图1 示载体蛋白通过构想改变介导溶质(葡萄糖)被动运输的假想模该图中膜上的载体蛋白以两种构象状态存在:状态A时溶质结合位点在膜外侧暴露;状态B时,同样的溶质结合位点在膜内侧暴露。
该模型认为,两种构象状态的改变是随机发生的。
假如溶质浓度在膜的外侧高,则状态A→状态B的转变比状态B→状态A的转变更常发生,因此溶质顺浓度梯度进入细胞。
换句话说,物质究竟向哪个方向运输,取决于该物质在膜两侧的浓度差。
除了被动运输,载体蛋白还介导逆浓度梯度的主动运输。
载体蛋白和通道蛋白的区别

载体蛋白和通道蛋白的区别2003年诺贝尔化学奖授予了美国科学家阿格雷和麦金农,他们因研究离子通道而获奖;不仅如此,人教版必修三《稳态与环境》在18页讲述静息电位和动作电位的离子基础时也提到:静息时,由于膜主要对K+有通透性,造成K+外流,这是静息电位产生和维持的主要原因;受到刺激时,细胞膜对Na+的通透性增加,Na+内流,使兴奋部位膜内侧阳离子浓度高于外侧,表现为内正外负。
上面讲的K+外流与Na+内流其实都是通过膜上的离子通道完成的。
同样是必修一教材,在“物质跨膜运输的方式”一节中,提到协助扩散和主动运输都要依赖膜上的载体蛋白来完成。
通道蛋白和载体蛋白都与相关物质的跨膜运输有关,那么两者到底有什么区别呢?要回答这个问题,我们先从膜转运蛋白谈起。
在细胞膜上广泛存在着膜转运蛋白(membrane transport proteins),负责无机离子和水溶性小分子的跨膜运输。
膜转运蛋白分为两类:一类称为载体蛋白(carrier proteis),它既可以介导被动运输,又可以介导逆浓度或者电化学梯度的的主动运输;另一类为通道蛋白(channel proteins),只能介导顺浓度或化学梯度的被动运输(协助扩散)。
1 载体蛋白载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜蛋白分子。
每种载体蛋白能与特定的溶质分子结合,通过一系列构象的改变介导溶质分子跨膜转运,相关模型见下图:图1 示载体蛋白通过构想改变介导溶质(葡萄糖)被动运输的假想模该图中膜上的载体蛋白以两种构象状态存在:状态A时溶质结合位点在膜外侧暴露;状态B时,同样的溶质结合位点在膜内侧暴露。
该模型认为,两种构象状态的改变是随机发生的。
假如溶质浓度在膜的外侧高,则状态A→状态B的转变比状态B→状态A的转变更常发生,因此溶质顺浓度梯度进入细胞。
换句话说,物质究竟向哪个方向运输,取决于该物质在膜两侧的浓度差。
除了被动运输,载体蛋白还介导逆浓度梯度的主动运输。
离子通道蛋白和载体蛋白(离子泵)的异同

离子通道蛋白和载体蛋白(离子泵)的异同相同点:化学本质均为蛋白质、分布均在细胞的膜结构中、都有控制特定物质跨膜运输的功能不同点:1.通道蛋白参与的只是被动运输,在运输过程中并不与被运输的分子结合,也不会移动,并且是从高浓度向低浓度运输,所以运输时不消耗能量。
2.载体蛋白参与的有主动运输和协助扩散,在运输过程中与相应的分子结合,并且会移动。
在主动运输过程中由低浓度侧向高浓度运动,且消耗代谢能量;在协助扩散过程中,由高浓度侧向低浓度侧运动,不消耗代谢能。
(注;协助扩散也属于被动运输)相关资料:1、被动运输的通路称离子通道,主动运输的离子载体称为离子泵。
生物膜对离子的通透性与多种生命活动过程密切相关。
例如,感受器电位的发生,神经兴奋与传导和中枢神经系统的调控功能,心脏搏动,平滑肌蠕动,骨骼肌收缩,激素分泌,光合作用和氧化磷酸化过程中跨膜质子梯度的形成等。
离子通道依据其活化的方式不同,可分两类:一类是电压活化的通道,即通道的开放受膜电位的控制,如Na+、Ca+、Cl-和一些类型的K+通道;另一类是化学物活化的通道,即靠化学物与膜上受体相互作用而活化的通道,如Ach受体通道、氨基酸受体通道、Ca+活化的K+通道等。
2、细胞膜上存在两类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。
载体蛋白又称做载体(carrier)、通透酶(permease)和转运器(transporter)。
能够与特异性溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧。
载体蛋白有的需要能量驱动,如:各类ATP驱动的离子泵;有的则不需要能量,以自由扩散的方式运输物质,如:缬氨酶素。
这里要注意,之所以称为通透酶,是因为它与所运输物质之间有对应关系,特意性强。
通道蛋白与所转运物质之间的结合较弱,它能形成亲水的通道(可以想象为亲水的孔,如porin),当通道打开时能允许特定大小的溶质通过,特异性不如载体蛋白强。
通道蛋白和载体蛋白在协助扩散中的作用原理

通道蛋白和载体蛋白在协助扩散中的作用原理通道蛋白和载体蛋白在协助物质扩散中的作用1. 介绍蛋白质是生物体内重要的功能分子,其中通道蛋白和载体蛋白在维持细胞内外物质平衡以及信号传递中起着重要作用。
本文将从浅入深地解释通道蛋白和载体蛋白在协助物质扩散中的原理。
2. 通道蛋白•通道蛋白是一类贯穿细胞膜的蛋白质,可形成一个具有特定结构的通道,实现物质的选择性跨膜传输。
•通道蛋白的特点是高度选择性和高速传输。
它可以选择性地允许某些离子或分子通过其通道,而阻止其他物质通过。
•通道蛋白的结构包括通道内腔和门控机制。
通道内腔的结构决定了其物质的选择性,门控机制则控制通道的开闭。
3. 通道蛋白的传输机制通道蛋白的传输机制主要有两种: - 通过扩散:通道蛋白可以形成一个水合通道,允许溶质通过扩散的方式跨越细胞膜。
这种传输方式遵循浓度梯度,即溶质会自动从高浓度区域向低浓度区域扩散。
- 通过激活门控:通道蛋白的门控机制可以根据细胞内外的特定环境变化来调节通道的开闭,从而控制物质的通过。
这种传输方式具有高选择性,能够精确地调控细胞内外物质的平衡。
4. 载体蛋白•载体蛋白是膜蛋白的一种,能够与分子结合并帮助它们跨越细胞膜。
•载体蛋白使用能量来驱动物质的运输,通常使用细胞内的三磷酸腺苷(ATP)来提供能量。
•载体蛋白在物质的扩散过程中起到了“运输工具”的作用,能够帮助溶质克服细胞膜的屏障。
5. 载体蛋白的传输机制载体蛋白的传输机制可以分为主动转运和被动转运两种方式: - 主动转运:载体蛋白可以使用ATP将物质与细胞外区域的浓度梯度对立,将物质从低浓度区域转运到高浓度区域。
这种转运方式需要能量的输入。
- 被动转运:利用浓度梯度的驱动力,将物质从高浓度区域转运到低浓度区域。
这种转运方式不需要能量的输入。
6. 通道蛋白和载体蛋白的区别与联系•区别:通道蛋白形成一个永久性通道并允许物质通过,而载体蛋白则通过结合分子并驱动它们的运输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通道蛋白和载体蛋白的区别
1 载体蛋白
载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜蛋白分子。
每种载体蛋白能与特定的溶质分子结合,通过一系列构象的改变介导溶质分子跨膜转运,相关模型见下图:
该图中膜上的载体蛋白以两种构象状态存在:状态A时溶质结合位点在膜外侧暴露;状态B时,同样的溶质结合位点在膜内侧暴露。
该模型认为,两种构象状态的改变是随机发生的。
假如溶质浓度在膜的外侧高,则状态A→状态B的转变比状态B→状态A的转变更常发生,因此溶质顺浓度梯度进入细胞。
换句话说,物质究竟向哪个方向运输,取决于该物质在膜两侧的浓度差。
除了被动运输,载体蛋白还介导逆浓度梯度的主动运输。
由于运输过程向着被运输物质的自由能增加的方向进行,所以该过程不能自发进行,需要提供能量才能完成。
一些离子(如Na+、K+等)在细胞内外存在着显著的差异,并且细胞能够维持这种恒定的离子梯度差,正是相关载体蛋白(如Na+,K+—ATP酶等)介导的主动运输的结果。
载体蛋白相当于结合在细胞膜上的酶,有特异性结合位点,可与底物(溶质)发生暂时的、可逆性的结合和分离,且一种特异性载体只转运一种类型的分子或离子;转运过程类似于酶与底物作用的饱和动力学曲线;既可以被底物类似物竞争性抑制,又可以被痕量的某种成分(抑制剂)非竞争性抑制以及对PH的依赖性等,因此有人将载体蛋白称为通透酶(permease)。
与酶不同的是载体蛋白可以改变过程的平衡点,加快物质沿着自由能减少的方向跨膜运输的速率;此外与酶的不同是载体蛋白对转运的溶质不做任何共价修饰[1]。
2 通道蛋白
通道蛋白是一类跨越细胞膜双分子层的蛋白质,它所介导的被动运输不需要溶质分子
与其结合,而是横跨膜形成亲水通道,允许大小适宜的分子和带电离子通过。
通道蛋白可以是单体蛋白,也可以是多亚基组成的蛋白,他们都是通过疏水的氨基酸链进行重排,形成水性通道。
某些通道蛋白在革兰氏阴性细菌的外膜、线粒体或叶绿体的外膜上形非选择性的通道。
绝大多数的通道蛋白形成有选择性开关的多次跨膜通道。
这些通道可分为两大类:离子通道和水通道。
2.1 离子通道
目前发现的通道蛋白已有100余种。
离子通道有两个显著的特征:一是具有离子选择性。
离子通道对被转运的离子的大小和电荷都有高度的选择性,而且转运速度高,可达106个离子/s,其速率是已知的任何一种载体蛋白的最快速率的1000倍以上。
驱动带电荷的离子跨膜转运的净驱动力来自两种力的合力,一种是溶质的浓度梯度,另一种是跨膜电位差,这种净驱动力构成离子跨膜的电化学梯度,这种梯度决定离子跨膜的被动运输的方向。
第二个特征是离子通道是门控的,即离子通道的活性由通道的开或关两种构象所调节。
并通过通道开关应答各种信号。
多数情况下,离子通道呈关闭状态,只有在膜电位变化、化学信号或压力刺激后,才开启形成跨膜的离子通道。
因此离子通道又区分为电压力通道,配体门通道和压力激活通道(图2)。
离子通道在神经元与肌细胞神经冲动传递过程中其重要作用。
如含羞草的闭叶反应,草履虫的快速转向运动,内耳听觉的感应等都与离子通道有关[1] 。
图 2 三种类型的门控离子通道示意图[1][2]
A:电压门通道;B、C:配体门通道;D:压力激活通道
2.2 水通道
水是一种特别的物质,水分子虽然不溶于脂,并且具有极性,但也很容易通过膜。
长期以来普遍认为细胞内外的水分子是以简单扩散的方式透过脂双层膜的。
后来发现某些细胞在低渗溶液中对水的通透性很高,这很难以简单扩散来解释。
如将红细胞移入低渗溶液中,很快吸水膨胀而溶血,而水生动物的卵母细胞在低渗溶液中不膨胀。
因此人们推测水的跨膜转运除了简单扩散外还存在着某种特殊的机制,并提出了水通道的概念。
直到1988年美国的科学家阿格雷(P.Agre)成功将构成水通道的蛋白质分离出来,从而证实了水通道的存在。
目前在人类细胞中发现的水通道至少有11种,在实验植物拟南芥中已发现35个这类水通道。
水通道的活性调节可能具有以下途径:通过磷酸化使AQP(水通道蛋白)活性增
强;通过膜泡运输改变膜上AQP的含量,如血管加压素(抗利尿激素)对肾脏远曲小管和集合管上皮细胞水通透性的调节;通过调节基因表达,促进AQP的合成。
3 小结
相同点:化学本质均为蛋白质、分布均在细胞的膜结构中、都有控制特定物质跨膜运输的功能;对被运输的物质具有高度的特异性或选择性。
不同点:
①、通道蛋白参与的只是被动运输(协助扩散),在运输过程中并不与被运输的分子或离子相结合,也不会移动,并且是从高浓度向低浓度运输,所以运输时不消耗能量。
载体蛋白参与的有主动运输和协助扩散,在运输过程中与相应的分子特异性结合(具有类似于酶和底物结合的饱和效应),自身的构型会发生变化,并且会移动。
在主动运输过程中被运输物质由低浓度侧向高浓度移动,需要消耗代谢能量;在协助扩散过程中,由高浓度侧向低浓度侧运动,不消耗代谢能。
②、通道蛋白转运速率与物质浓度成比例,且比载体蛋白介导的转运速度更快(1000倍以上)。
③、通道蛋白其结构和功能状态在细胞内外理化因子作用下,能在数毫秒至数十毫秒的时间内迅速激活开放,随后迅速失活或关闭,载体蛋白无此特性。