人教版八年级数学下册全册综合检测题

合集下载

人教版八年级下册数学单元测试卷(全册)

人教版八年级下册数学单元测试卷(全册)
A. 0 B.1 C. 2 D.不确定
10.面积为4的矩形一边为 ,另一边为y,则y与x的变化规律用图象大致表示为( )
11.下列各点中,在函数 的图像上的是( )
A、(2,1) B、(-2,1) C、(2,-2) D、(1,2)
12.反比例函数y=- 的图象大致是( ).
二.填空题
1.已知反比例函数 的图象经过点(2,-3),则k的值是_______,图象在__________象限,当x>0时,y随x的减小而__________.
9..下列关于分式方程增根的说 法正确的 是( )
A.使所有的分母的值都为零的解是增根; B.分式方程的解为零就是增根
C.使分子的值为零的解就是增根; D.使最简公分母的值为零的解是增根
10.解分式方程 ,分以下四步,其中,错误的一步是( )
A.方程两边分 式的最简公分母是(x-1)(x+1)
B.方程两边都乘以(x- 1)(x+1),得整式方程2(x-1)+3(x+1)=6
A、扩大 倍;B、缩小 倍; C、保持不变;D、无法确定;
5.若分式 的值为零,那么x的值为( )
A.x= -1或x=2B.x=0
C.x=2D.x=-1
6.下列各式正确的是( )
A. B.
7.下列分式中,最简分式是( )
A. B. C. D.
8..下列关于x的方程是分式方程的是( )
A. ; B. ; C. ; D.
7.已知力F所做的功是15焦,则力F与物体在力的方向上通过的距离S的图象大致是如图中的( )
8.如图所示,点P是反比例函数y= 图象上一点,过点P分别作x轴、y 轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 ( )

人教版八年级数学下册第二十章-数据的分析综合测评试卷(含答案解析)

人教版八年级数学下册第二十章-数据的分析综合测评试卷(含答案解析)

人教版八年级数学下册第二十章-数据的分析综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数2、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定3、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )A .1个B .2个C .3个D .4个4、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A .平均数、中位数和众数都是3B .极差为4C .方差是53D5、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A .最高分B .中位数C .极差D .平均分6、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为187、在对一组样本数据进行分析时,小华列出了方差的计算公式S 2=22222(5)(4)(4)(3)(3)5x x x x x -+-+-+-+-,下列说法错误的是( ) A .样本容量是5B .样本的中位数是4C .样本的平均数是3.8D .样本的众数是48、有一组数据:1,2,3,3,4.这组数据的众数是( )A .1B .2C .3D .49、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差s 2.根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=1810、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为160.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)2、如果一组数据1a ,2a ,…,n a 的方差是2,那么一组新数据12a ,22a ,…,2n a 的方差是__________.3、某校九年级进行了3次体育中考项目﹣﹣1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093.则甲、乙、丙三位同学中成绩最稳定的是 ___.4、学校“校园之声”广播站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.5、一组数据:2,5,7,3,5的众数是________.三、解答题(5小题,每小题10分,共计50分)1、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)(1)求这10名男同学的达标率是多少?(2)这10名男同学的平均成绩是多少?(3)最快的比最慢的快了多少秒?2、5,16,16,28,32,51,51的众数是什么?3、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(1)这6名选手笔试成绩的众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.4、某单位要买一批直径为60mm的螺丝,现有甲、乙两个螺丝加工厂,它们生产的螺丝的材料相同,价格也相同,该单位分别从甲、乙两厂的产品中抽样调查了20个螺丝,它们的直径(单位:mm)如下:甲厂:60,59,59.8,59.7,60.2,60.3,61,60,60,60.5,59.5,60.3,60.1,60.2,60,59.9,59.7,59.8,60,60;乙厂:60.1,60,60,60.2,59.9,60.1,59.7,59.9,60,60,60,60.1,60.5,60.4,60,59.6,59.5,59.9,60.1,60.你认为该单位应买哪个厂的螺丝?5、某中学为选拔一名选手参加我市“学宪法讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:得分表结合以上信息,回答下列问题:(1)小明在选拔赛中四个项目所得分数的众数是,中位数是;(2)评分时按统计表中各项权数考评.①求出演讲技巧项目对应扇形的圆心角的大小.②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?---------参考答案-----------一、单选题1、A【解析】【分析】根据中位数的意义进行求解即可.【详解】解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.故选:A.【点睛】本题考查了中位数的意义,掌握中位数的意义是解题的关键.2、C【解析】【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.3、C【解析】【分析】直接根据众数、中位数和平均数的定义求解即可得出答案.【详解】数据3出现了6次,次数最多,所以众数是3,故①正确;这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;平均数为22366210411⨯+⨯+⨯+=,故③、④错误;所以不正确的结论有②、③、④,故选:C.【点睛】本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.4、D【解析】【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=16×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=53,C选项不符合题意;S=D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.5、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.6、D【解析】【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()222212312311···10,?··2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎣⎦ ()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴ ()1231323232?··32n x x x x n++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()22221231323232323232?··3232n x x x x n ⎡⎤+-++-++-+++-⎣⎦()()()()22221231910910910?··910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n =⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.7、D【解析】【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为5,4,4,3,3,则样本的容量是5,选项A 正确;样本的中位数是4,选项B 正确; 样本的平均数是54433 3.85++++=,选项C 正确; 样本的众数是3和4,选项D 错误;故选:D .【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.8、C【解析】【分析】找出数据中出现次数最多的数即可.【详解】解:∵3出现了2次,出现的次数最多,∴这组数据的众数为3;故选:C.【点睛】此题考查了众数.众数是这组数据中出现次数最多的数.9、A【解析】【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.10、C【解析】【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.二、填空题1、变大【解析】【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0, ∴这组数据的平均数是()7.867.68.07.88m ⨯++=, ∴这8次跳远成绩的方差是:()()()()()222222127.67.827.87.87.77.828.07.87.97.88S ⎡⎤=⨯-+⨯-+-+⨯-+-⎣⎦ 0.0225= ∵0.0225>160, ∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键. 2、8【解析】【分析】设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',代入方差公式2222121[()()()]n s x x x x x x n =-+-++-,计算即可.【详解】解:设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',∵2222121[()()()]n s a x a x a x n =-+-++-, ∴2222121[(22)(22)(22)]n s a x a x a x n '=-+-++-, 则2222121[4()4()4()]n s a x a x a x n '=-+-++-, ∴2222124[()()()]n s a x a x a x n '=-+-++-,∴224s s '=,2428s '=⨯=.【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据1a ,2a ,…,n a 的方差是2s ,那么另一组数据1ka ,2ka ,⋯,n ka 的方差是22k s .3、乙【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093,∴s 乙2<s 丙2<s 甲2,∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、88【解析】【分析】利用加权平均数按照比例求得小莹的个人总分即可.【详解】解:根据题意得:532⨯⨯⨯(分),92+80+90=885+3+25+3+25+3+2答:小聪的个人总分为88分;故答案为:88.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.5、5【解析】【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.三、解答题1、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒【分析】(1)求这10名男同学的达标人数除以总人数即可求解;(2)根据10名男同学的成绩即可求出平均数;(3)分别求出最快与最慢的时间,故可求解.【详解】解(1)从记录数据可知达标人数是7∴ 达标率=7÷10×100%=70%(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)∴这10名男同学的平均成绩是15.1秒(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)17-13.6=3.4(秒)∴最快的比最慢的快了3.4秒.【点睛】此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.2、16和51【分析】根据众数的定义:在一组数据中出现次数最多的数据,由此可求解.【详解】解:因为5,16,16,28,32,51,51中出现最多的数据为16和51,分别为两次,所以这组数据的众数是16和51.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.3、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号:89.6分,3号:85.2分,4号:90分,5号:81.6分,6号:83分,综合成绩排序前两名人选是4号和2号【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得40%60%x y =⎧⎨=⎩, ∴笔试成绩和面试成绩各占的百分比是40%,60%.(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分).∴综合成绩排序前两名人选是4号和2号.【点睛】本题考查了众数、二元一次方程组的实际应用,加权平均数等知识点,依据题意,正确建立方程求出题(2)中的笔试成绩和面试成绩各占的百分比是解题的关键.4、买乙厂的螺丝【分析】分别求出甲乙两厂螺丝的平均数,极差,方差,然后根据平均数,极差,方差综合选取即可.【详解】 解:60.2+60.3+61+600+60+60.5+59.60+59+59.8+59.70+.1=6205+60.3+60.1+6.2+60+599+59.759.86060x +++⎛⎫⨯= ⎪⎝⎭甲 mm , 60.1+60+60+60.2+59.9+60.1+59.7+59.9+60+60+600+60.1+60.5+60.4+60+59.6+59.5+59.9+60.1+601620x ⎛⎫=⨯= ⎪⎝⎭乙 mm ; 61592mm R =-=甲,60.559.51mm R =-=乙;2222222222222222222(60-60)+(59-60)+(59.8-60)+(59.7-60)+(60.2-60)+(60.3-60)+(61-60)1=+(60-60)+(60-60)+(60.5-60)+(59.5-60)+(60.3-60)+(60.1-60)+(60.2-60)20+(60-60)+(59.9-60)+(59.7-60)+(59.8-60)+(60-60S ⨯甲220.152)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; 2222222222222222222(60.1-60)+(60-60)+(60-60)+(60.2-60)+(59.9-60)+(60.1-60)+(59.7-60)1=?+(59.9-60)+(60-60)+(60-60)+(60-60)+(60.1-60)+(60.5-60)+(60.4-60)20+(60-60)+(59.6-60)+(59.5-60)+(59.9-60)+(60.1-S 乙220.05160)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; ∴从甲、乙两厂抽取的10个螺丝直径的平均数都是60mm ,但甲厂20个螺丝直径的极差为2mm ,方差为0.152;乙厂20个螺丝直径的极差为1mm ,方差为0.051.因此在同等条件下应买乙厂的螺丝.【点睛】本题考查了平均数,极差,方差,以及根据平均数,极差,方差做决策,熟练掌握计算平均数,极差,方差的方法是解本题的关键.5、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛【分析】(1)根据众数和中位数的定义求解即可;(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.【详解】解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是85802+=82.5(分);(2)①1-5%-15%-40%=40%360⨯40%=144°答:演讲技巧项目对应扇形的圆心角为144°;②小明分数为:855%7015%8040%8540%80.75⨯+⨯+⨯+⨯=小华分数为:905%7515%7540%8040%77.75⨯+⨯+⨯+⨯=80.75>77.75∴小明更优秀,应派出小明代表学校参加比赛【点睛】本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)一、判断题:(每小题1分,共5分)1…………………( )222.( )3=2.…( )413…( )5都不是最简二次根式.( ) 二、填空题:(每小题2分,共20分)6.当78.a 9.当101112131415.x 16(A )17.若x<y<0………………………()(A)2x(B)2y(C)-2x(D)-2y18.若0<x<1………………………()(A)2x(B)-2x(C)-2x(D)2x19(a<0)得………………………………………………………………()(A(B(C(D20.当a<0,b<0时,-a+b可变形为………………………………………()(A)2(B)-2(C)2(D)2四、计算题:(每小题6分,共24分)21.;2223)÷)(a≠b).24五、求值:25.已知x26.当x=六、解答题:(共20分)+…).27.(8分)计算(+1)28参考答案(一)判断题:(每小题1分,共5分)1、|-2|=2.【答案】×.2、2).【答案】×.3、=|x -1|,2=x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】13【答案】√.5是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分)6、7、89、x -410、11、12、13、(7-14、【答案】40.0时,x+1=0,y-3=0.15、【提示】∵34,∴_______<8__________.[4,5].由于84与5之间,则其整数部分x=?小数部分y=?[x=4,y=4【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵x<y<0,∴x-y<0,x+y<0.∴|x-y|=y-x.18、19、20、21、【解】原式=2-2=5-3-2=6- 22、【提示】先分别分母有理化,再合并同类二次根式.=431.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a abmnm ·221a b=21b 1mab+22n ma b =21b -1ab +221a b=2221a ab a b -+. 24、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.25、26、∴ x 2=1x.当x=1=-1【点评】本题如果将前两个“分式”分拆成两个“分式”=-1)x1x.六、解答题:(共22分)27、(8分)28、(14分)又∵∴ 原式=x y y x +-y x x y +=2x y 当x =14,y =12时, 原式=21412=2.【点评】解本题的关键是利用二次根式的意义求出x 的值,进而求出y 的值.第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分)1. 已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( ) A .25B .14C .7D .7或252.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为( ) A.10 B.15 C.20 D.303. 如图,已知正方形B 的面积为144,正方形C 的面积为169,那么正方形A 的面积是( ) A.313 B.144 C.169 D.254、下列说法中正确的是( )A.已知c b a ,,是三角形的三边,则222c b a =+ B.在直角三角形中,两边的平方和等于第三边的平方C.在Rt △ABC 中,90C ︒∠=,所以222c b a =+ D.在Rt △ABC 中,90B ︒∠=,所以222c b a =+5.如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( ) A.8 cm B.52cm C.5.5 cm D.1 cm6.在Rt △ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是( )ABC第3题图A.365B.1225 C.94D.3347. 如图,在△ABC 中,∠C=90°,AC=2,点D 在BC 上, ∠ADC=2∠B ,AD=5,则BC 的长为( ) A.3-1 B.3+1 C.5-1 D.5+18. 如图,一圆柱高8 cm ,底面半径为π6cm ,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是( )cm.A.6B.8C.10D.129.三角形三边长分别是6,8,10,则它的最短边上的高为( ) A.6 B.14C.2D.810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE,且D 点落在对角线上D'处.若AB=3,AD=4,则ED 的长为( )A. B.3 C.1 D. 二、填空题(每题4分,共20分) 11. 在△中,cm ,cm ,⊥于点,则_______.12.在△中,若三边长分别为9、12、15,则以两个这样的三角形拼成的长方形的面积为__________.13.如果一梯子底端离建筑物9 m 远,那么15 m 长的梯子可达到建筑物的高度是_______m.14.三角形一边长为10,另两边长是方程x 2-14x+48=0的两实根,则这是一个________三角形,面积为________. 15. 如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(4,3),则这束光从点A 到点B 所经过路径的长为__________.三、解答题(共7题,共70分)16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17.(8分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.18.(8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.19.(10分)如图,折叠长方形的一边,使点落在边上的点处,cm,cm,求:(1)的长;(2)的长.20.(12分)如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD的长和宽分别为a,b,AC的长为c.(1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗?21.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在点B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?22.(14分)如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.参考答案一、1.C2.B3.A4.A5.A6.C7.C8.D9.D10.A二、11.37012.直角;24 分析:解方程得x 1=6,x 2=8.∵2212x x =36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13.43 cm 分析:过点A 作AE ⊥BC 于点E,AF ⊥CD 交CD 的延长线于点F.易得△ABE ≌△ADF,所以AE=AF,进一步证明四边形AECF 是正方形,且正方形AECF 与四边形ABCD 的面积相等,则AE=24=26(cm),所以AC=2AE=2×26=43(cm).14.略15. 分析:如图,设这一束光与x 轴交于点C,作点B 关于x 轴的对称点B',过B'作B'D ⊥y 轴于点D,连接B'C.易知A,C,B'这三点在同一条直线上,再由轴对称的性质知B'C=BC,则AC+CB=AC+CB'=AB'.由题意得AD=5,B'D=4,由勾股定理,得AB'=.所以AC+CB=.三、16.解:如图,过点A作AD⊥BC于点D.在Rt△ABD中,由勾股定理得AD2=AB2-BD2.在Rt△ACD中,由勾股定理得AD2=AC2-CD2.所以AB2-BD2=AC2-CD2.设BD=x,则82-x2=62-(7-x)2,解得x=5.5,即BD=5.5.所以AD==≈5.8.所以S△ABC=·BC·AD≈×7×5.8=20.3≈20.17.解:如图,过B点作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=60°,∴∠ABC=30°,∴AB=2AC=20,∴BC===10 .∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC=5,∴CM===15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.18.解:过点C作CE⊥AD于点E,由题意得AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=∠BCE=30°,即可得AB=BC=30 m,∴BE=15 m.在Rt△BCE中,根据勾股定理可得CE===15(m).答:小丽自家门前小河的宽度为15m.19.略20.解:(1)易知△ABC,△C'A'D'和△ACA'都是直角三角形,所以S△ABC=ab,S△C'A'D'=ab,S直角梯形A'D'BA=(a+b)(a+b)= (a+b)2,S△ACA'=c2.(2)由题意可知S△ACA'=S直角梯形-S△ABC-S△C'A'D'=(a+b)2-ab-ab=(a2+b2),而S△ACA'=c2.所以A'D'BAa2+b2=c2.21.解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB==x m.∵AH+HB=AB=600 m,∴x+x=600.解得x=≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得=(1+25%)×.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.22.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCE=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC===2,则有OE=OC-CE=m-2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-2)2=m2,解得m=3.第十八章达标检测卷(120分120分钟)一、选择题(每题4分,共40分)1.不能判定四边形ABCD为平行四边形的题设是()(A)AB平行且等于CD (B)∠A=∠C,∠B=∠D(C)AB=AD,BC=CD (D)AB=CD,AD=BC2.正方形具有而菱形不一定具有的性质是()(A)四条边相等(B)对角线互相垂直平分(C)对角线平分一组对角(D)对角线相等3、顺次连结任意四边形四边中点所得的四边形一定是()A、平行四边形B、矩形C、菱形D、正方形4.正多边形的一个内角是120°,则这个正多边形的边数为()A.4B.8C.6D.125.如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于( )A.18°B.36°C.72°D.108°6.下列命题中,真命题是()A、有两边相等的平行四边形是菱形B、对角线垂直的四边形是菱形C、四个角相等的菱形是正方形D、两条对角线相等的四边形是矩形7.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是()A.6B.7C.8D.98.菱形的周长是它的高的倍,则菱形中较大的一个角是()A.100°B.120°C.135°D.150°9.如图,菱形ABCD中,AB=5,∠BCD=120°,则对角线AC的长是()A.20B.15C.10D.510.如图,梯形ABCD中,AB∥CD,点E,F,G分别是BD,AC,DC的中点.已知两底之差是6,两腰之和是12,则△EFG 的周长是()A.8B.9C.10D.12二、填空题(每题4分,共24分)11、菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为_________。

第二十章 数据的分析综合测试卷 人教版八年级数学下册

第二十章  数据的分析综合测试卷 人教版八年级数学下册

第二十章数据的分析综合测试卷(时间:100分钟满分:100分)一、选择题(本大题共10小題,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.某班有48人,在一次数学测验中,全班平均分为81分,已知不及格人数为6人,他们的平均分为46分,则及格学生的平均分是()A.78分B.86分C.80分D.82分2.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4B92C.5D1123.某学校把学生的纸笔测试,实践能力两项成绩分别按60%,40%的比例计入学期总成绩,小颗实践能力这一项成绩是81分,若想学期总成绩不低于90分,则纸笔测试的成绩至少是()A.96分B.97分C.98分D.99分4.为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:则本次调查中阅读时间的中位数和众数分别是()A.0.7和0.7B.0.9和0.7C.1和0.7D.0.9和1.15.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.46.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大7.下表是某公司员工月收入的资料:能够反映该公司全体员工月收人水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差8.已知一组数据1,2,3,x,5,它们的平均数是3,则这组数据的方差为()A.1B.2C.3D.49.某校举办演讲比赛,李华根据演讲比赛时九位评委所给的分数制作了如下表格:对9位评委所给的分数,去掉一个最高分和一个最低分后,表格中数据一定不发生变化的是()A.平均数B.中位数C.众数D.方差10.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是13,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A.2,13B.2,1 c.4,23D.4,3二、填空题(本大题共4小题,每小题3分,共12分。

2022年人教版八年级数学下册第十八章-平行四边形综合测评试题(含答案解析)

2022年人教版八年级数学下册第十八章-平行四边形综合测评试题(含答案解析)

人教版八年级数学下册第十八章-平行四边形综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC,垂足为点E,则AE的长是()A.B.C.485D.2452、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为()A.5 B.4 C.3 D.23、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE4、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是()A B.C.1cm D.2cm5、下列测量方案中,能确定四边形门框为矩形的是()A.测量对角线是否互相平分B.测量两组对边是否分别相等C.测量对角线是否相等D.测量对角线交点到四个顶点的距离是否都相等6、ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm7、如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为()A.1 B C..2 D.8、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3)B.(8,2)C.(3,7)D.(5,3)9、如图,菱形ABCD的对角线AC、BD的长分别为6和8,O为AC、BD的交点,H为AB上的中点,则OH的长度为()A.3 B.4 C.2.5 D.510、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是()A.2.5 B.6 C.6.5 D.13第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE翻折至△AFE,连接CF,则CF 的长为___.2、如图,在矩形ABCD中,AB=2,AD=E为BC边上一动点,F、G为AD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.3、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.4、已知如图,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,若6BE =,8DF =,则EF =_________.5、如图,将矩形ABCD 折叠,使点C 与点A 重合,折痕为EF .若AF =5,BF =3,则AC 的长为 _____.三、解答题(5小题,每小题10分,共计50分)1、在△ABC 中,AB =AC =x ,BC =12,点D ,E 分别为BC ,AC 的中点,线段BE 的垂直平分线交边BC 于点F ,(1)当x =10时,求线段AD 的长.(2)x取何值时,点F与点D重合.(3)当DF=1时,求x2的值.2、如图,▱ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DE=BF.求证:AE∥CF.3、如图,四边形ABCD是平行四边形,∠BAC=90°.(1)尺规作图:在BC上截取CE,使CE=CD,连接DE与AC交于点F,过点F作线段AD的垂线交AD 于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论.4、如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,过点A作射线l∥BC,若点P从点A出发,以每秒2cm的速度沿射线l运动,设运动时间为t秒(t>0),作∠PCB的平分线交射线l于点D,记点D 关于射线CP的对称点是点E,连接AE、PE、BP.(1)求证:PC=PD;(2)当△PBC是等腰三角形时,求t的值;(3)是否存在点P,使得△PAE是直角三角形,如果存在,请直接写出t的值,如果不存在,请说明理由.5、如图,∠ACB=90°,CD⊥AB于点D,AF平分∠CAB交CD于点E,交BC于点F,作EG∥AB交CB于点G.(1)求证:△CEF是等腰三角形;(2)求证:CF=BG;(3)若F是CG的中点,EF=1,求AB的长.---------参考答案-----------一、单选题1、D【解析】【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】解:∵四边形ABCD是菱形,∴CO=12AC=3,BO=12BD=4,AO⊥BO,∴BC,∴S菱形ABCD=16824 22BD AC⋅=⨯⨯=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=24245 BC=,故选:D.【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.2、A【解析】【分析】利用直角三角形斜边的中线的性质可得答案.【详解】解:∵∠C=90°,若D为斜边AB上的中点,AB,∴CD=12∵AB的长为10,∴DC=5,故选:A.【点睛】此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.3、B【解析】【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE为矩形,故本选项不符合题意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE为矩形,故本选项不符合题意.故选:B.【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.4、B【解析】【分析】由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB cm),即可求解.【详解】解:∵菱形ABCD的周长为8cm,∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=2cm,∴OA=1(cm),在Rt△AOB中,由勾股定理得:OB cm),∴BD=2OB=cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.5、D【解析】【分析】由平行四边形的判定与性质、矩形的判定分别对各个选项进行判断即可.【详解】解:A、∵对角线互相平分的四边形是平行四边形,∴对角线互相平分且相等的四边形才是矩形,∴选项A不符合题意;B、∵两组对边分别相等是平行四边形,∴选项B不符合题意;C 、∵对角线互相平分且相等的四边形才是矩形,∴对角线相等的四边形不是矩形,∴选项C 不符合题意;D 、∵对角线交点到四个顶点的距离都相等,∴对角线互相平分且相等,∵对角线互相平分且相等的四边形是矩形,∴选项D 符合题意;故选:D .【点睛】本题考查了矩形的判定、平行四边形的判定与性质、解题的关键是熟记矩形的判定定理.6、C【解析】【分析】根据平行四边形的性质,可得AB =CD ,BC =AD ,然后设3cm,5cm AB x BC x == ,可得到()23532x x += ,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,BC =AD ,∵AB :BC =3:5,∴可设3cm,5cm AB x BC x == ,∵ABCD 的周长为32cm ,∴()232AB BC += ,即()23532x x += ,解得:2x = ,∴6cm,10cm AB BC == .故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键.7、C【解析】【分析】根据题意连接BD ,过点E 作EF ⊥AC 于点F ,根据菱形的性质可以证明三角形ABD 是等边三角形,根据平移的性质可得AD ∥A ′E ,可得A E CA AD AC ''=,6A E 'A ′E ,再利用30度角所对直角边等于斜边的一半即可得出结论.【详解】解:如图,连接BD ,过点E 作EF ⊥AC 于点F ,∵四边形ABCD 是菱形,∴AD =AB ,BD ⊥AC ,∵∠BAD =60°,∴三角形ABD 是等边三角形,∵菱形ABCD 的边长为6cm ,∴AD =AB =BD =6cm ,∴AG =GC cm ),∴AC cm ),∵AA cm ),∴A ′C cm ),∵AD ∥A ′E , ∴A E CA AD AC''=,∴6A E '= ∴A ′E =4(cm ),∵∠EA ′F =∠DAC =12∠DAB =30°,∴EF =12A ′E =2(cm ).故选:C .【点睛】本题考查菱形的性质以及等边三角形的判定与性质和平移的性质,解决本题的关键是掌握菱形的性质.8、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D 点和C 点的纵坐标相等,再求出CD =AB =5,得到C 点横坐标,最后得到C 点的坐标.【详解】解:四边形ABCD为平行四边形。

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)

人教版八年级数学下册单元测试题全套(含答案)(含期中期末试题,共7套)第十六章达标检测卷(100分 90分钟)、判断题:(每小题1分,共5分)1. .............................................................. . (-2)2ab = - 2 ab (… )2. - 3 — 2的倒数是 3 + 2.( )3. , (x -1)2 = ( . x 一厅.…( )4. ab 、1a¥、-2 a是同类二次根式.••-()3x 壯5. 78x ,电,j 9+x 2都不是最简二次根式.()、填空题:(每小题2分,共20分) 16 .当x _________ 时,式子 一有意义.寸x _37 .化简一15. 210十—电= _____________________ .8 V 27 Y 12a 8. a - J a 2 _1的有理化因式是 ______________ .9 .当 1v x v 4 时,|x — 4| + J x 2 _2x+1 = ___________________ . 10 .方程曇(x - 1) = x + 1的解是 _________________13. ________________________________________________ 化简:(7 - 5 - 2 )2018 (- 7 - 5・2)2017 = ______________________________________________14 .若.x 1 + ■ ^3 = 0,则(x - 1)2+ (y + 3)2= __________________ 15. x ,y 分别为8 - 11的整数部分和小数部分,则2xy - y 2= ____________三、选择题:(每小题3分,共15分)11.已知a 、b 、c 为正数,d 为负数,化简ab -c 2d 2 .ab 、•c 2d 212.比较大小:-1 2,71 4-316. ............................................................................... 已知x3 3x2=- x • x—3,则… )(A) x W0(B) x<- 3 (D)— 30W0—3化简.—(a v 0)得a(A) •. Ta( B )— . a(C )- •.二(D ) •. a20.当a v 0, b v 0时,一a + 2 ab — b 可变形为 ........................... ………) (A ) ( a .了(B )— ( a -(C ) ( -a. -b/(D ) (. -a -.商四、计算(每小题6分,共24分)21. ( 5 - 32) ( .5 -3 2);18. (A) 2x(B ) 2y(C )— 2x(D )— 2y若 O v x v 1, (A) 2x则{(x —£)2 +4 - J (X V )2—4 等于(B )— 2x(C )— 2x(D ) 2x(…)19. 22.5 4—114 11 — -72—b - ab a .24.( &a + ) F(—+ —J a (ab +b #ab —a a_b) (a M b). .ab五、求值:(每小题7分,共14分)25.已知x= 2, y= ^2,求■j3-y/273+72x3 2—xyx4y 2x3y2 x2y3的值.r+宀的值.26.当x= 1- 2时,求x2d-xL + —六、解答题:(共20 分)3 、.4 .99 、10027. (8 分)计算(2 .5 + 1)(1 +•••+_ 1—).28 . (12 分)若x, y 为实数,且y = 1-4x + 4x-12 V y x参考答案(一) 判断题:(每小题1分,共5 分) 1、 【提示】.,口产=| - 2| = 2•【答案】X.2、 【提示】—〔―=3 2=-(3 + 2) .【答案】X拓—23 _43、 【提示】.(x 一 1)2 = |x - 1| ,(.d)2= x - 1(x 》).两式相等,必须x 》1但等式左边x 可取任何数.【答案】X4、 【提示】-a ^b 、-2 a化成最简二次根式后再判断.【答案】“3 x 壯 5、 9 x 2是最简二次根式.【答案】X (二) 填空题:(每小题2分,共20分)6、 【提示】.x 何时有意义? x >0分式何时有意义?分母不等于零. 【答案】x >0且 x ^97、 【答案】—2a ^.[点评】注意除法法则和积的算术平方根性质的运用. &【提示】(a — >/a ____________ ~) ( )= a—(7a —1) . a + 驚a —1 .【答案】a +~—1 .9、 【提示】x 2- 2x + 1=( ) 2, x - 1 .当1 v x v 4时,x - 4, x - 1是正数还是负数?x - 4是负数,x - 1是正数.【答案】3 .10、 【提示】把方程整理成 ax = b 的形式后,a 、b 分别是多少? 2 -1 , 2 1.【答案】x = 3+ 2・2.11、【提示】 c 2d 2 = |cd| =- cd .【答案】 掐b + cd .【点评】T ab = (Vab)2(ab > 0),二 ab - c 2d 2=(V Ob + cd ) (J b).12、【提示】2 7 = ■■ 28 , 4 3 = - 48 .的大小. 13、【提示】(—7 - 50)2001 = (- 7 - 5 逅严0( _______________ ) [ - 7-5© .](7 - 5 ■ 2 ) •(-7-5,2 )=? [1 .]【答案】—7- 5 2 . 【点评】注意在化简过程中运用幕的运算法则和平方差公式.【答案】 V.【点评】先比较 28 , 48的大小,再比较14、【答案】40.【点评】>0 >Q 当7^1 +7^3 = 0 时,x+ 1= 0, y —3 = 0.15、【提示】T 3< 尿V 4 ,••• ___________ V 8 —7T? V _________ .[4 , 5].由于8 —浙1介于4与5之间,则其整数部分x=?小数部分y=? [x= 4, y= 4 —. iT]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算•在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.(三)选择题:(每小题3分,共15分)16、【答案】D.【点评】本题考查积的算术平方根性质成立的条件,(A)、(C)不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】T x V y v 0,「. x—y V 0, x+ y V 0..x2-2xy y2= . (x _y)2= | x—y| = y—x.x22xy y2= (x y)2= | x + y| = —x—y.【答案】C.【点评】本题考查二次根式的性质 .孑=|a| .18、【提示】(x—1)2+ 4 = (x+ 丄)2, (x+ 丄)2—4= (x—1 )2.又T 0 V X V 1,x x x x1 1•x+ 1> 0, x—1V 0.【答案】D.x x【点评】本题考查完全平方公式和二次根式的性质. (A)不正确是因为用性质时没有注意当0 V X V 1时,x—1V 0.x19、【提示】.-a =、. -a a = V a • a = | a| . -a = —a . -a .【答案】C.20、【提示】T a V 0, b v0,•—a>0, —b>0.并且—a =(二)2, —b= C^b)2, ab = . (-a)(-b).【答案】C.【点评】本题考查逆向运用公式(需)2= a (a>0和完全平方公式.注意(A)、(B)不正确是因为a V 0, b V0时,. b都没有意义.(四)计算题:(每小题6分,共24分)21、【提示】将.^ 3看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=(.5 _ .3)2—( 2)2= 5 —2 15 + 3-2 = 6-2 .15 .【提示】先分别分母有理化,再合并同类二次根式.4(冇7)—2(3 - 7)= 4 +. 11—11 —. 7 — 3 +11—7 9—7【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式=a十JOb +b —俪亠a苗(苗―Jb)—b T b&a十応)—(a+b)(a—b)八掐十a b .a2 -a、一ab -b ab -b2 - a2 b2a .b 一ab( . a . b)( a -、b)ab( a - b)(、a b)-^/5F(a +b)【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7分,共14 分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.23、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.)丄7 2 2 a bn mm ma2b2 nn•从而使求值的过2 、a —x).22、【解】原式=54 n)16—1124、【解】x=-^4 = ( 3 迁)2= 5+ 2 ,6 ,1 1------ — ------------ )—( 2 2 2 -x , x a=(2 5 + 1) [ ( .2 -1 ) + (、3 - . 2 ) + ( . 4 —「3 )+•••+( .100 - 99 )] =(2 .5 + 1) ( . 0 1 -) =9 (2 ■ 5 + 1).本题第二个括号内有 99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化 从而使每一项转化成两数之差,然后逐项相消•这种方法也叫做裂项相消法.【解】 原式=_==^= --------- — ---- L ---------- +J x 1 2 +a 2(J x 2 +a 2 -x) x(J x 2 +a 2 -x)1 •.x^x 2 _ ,x 2 亠a 2(2x - x 2 亠a 2)亠x(、x 2 亠a 2x)x , x 2 a 2 ( x 2 a 2「x)x 2 -2x x 2 亠a 2 亠(_x 2 亠a 2)2 亠X 、x 2 亠a 2 -x 2 ( ,x 2 亠a 2)2 -x j x 2 +a 2 = J x 2 +a 2 (J x 2 +a 2 一 x) x L x 2 a 2 ( x 2 a 2_ x)x 、x 2 a 2 (. x 2 a 2 _x)—.当x = 1 —、. 2时,原式=x1_ =— 1— 2 .【点评】本题如果将前两个 分式”分拆成两个 分式”--2之差,那么化简会更简便•即原式=--222x j 、:x a x 2 a 2( . x 2a 2「x) x( . x 2荷—x) +占六、 解答题: (共 22 分)27、 (8 分) 【提示】先将每个部分分母有理化后,再计算.【解】原式=(2 5 + 1)(—・+3- 2+ 4- 3 +…+ 2—13—24—3.而-99 ) 100—9928、 (14 分) 【提示】要使y 有意义,必须满足什么条件?1 _ 4x _0[2 ]你能求出x , y 的值吗? [g4x -1 _0. f1x 二一 4] yw又•••【解】要使时,=(.x 2a【点评】 为整数,6.在 Rt A ABC 中,/ C=90°,AC=9,BC=12则点 C 到 AB 的距离是()第十七章达标检测卷(120分 120分钟)一、选择题(每小题3分,共30分) 1. 已知一个直角三角形的两边长分别为 3和4,则第三边长的平方是( )A. 25B. 14C. 7D . 7 或 2512. 直角三角形的一条直角边长是另一条直角边长的 -,斜边长为10,则它的面积为()3D.30144,正方形C 的面积为169,那么正方形 C.169 D.254、 下列说法中正确的是( )2 2 2A.已知a,b,c 是三角形的三边,则 a b ^c B •在直角三角形中,两边的平方和等于第三边的平方'■222C. 在 Rt A ABC 中, C =90,所以 a b =C°oooD. 在 Rt A ABC 中, B =90,所以 a b C5. 如果将长为6 cm,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是 ( )原式=2【点评】解本题的关键是利用二次根式的意义求出 x 的值,进而求出y 的值.A 的面积是(A.10B.15C.20A. 8 cmB.5、、2cmC.5.5 cmD.1 cm6.在Rt A ABC 中,/ C=90°,AC=9,BC=12则点C 到AB 的距离是()68. 如图,一圆柱高8 cm ,底面半径为 一cm ,n36 A.—5 12 B.—— 259C.— 4 7.如图,在△ ABC 中,/ C=90° AC=2,点 D 在BC 上,/ ADC=2/ B , AD=・ 5,贝U BC 的长为( A. .3-1 B. ,3+1 C. ,5-1 D. 5+1的最短路程是( )cm. A.6 B.8 C.10D.129.三角形三边长分别是 6,8,10,则它的最短边上的高为()A.6B." 2C.RD.8ABCD 折叠,使边DC 落在对角线 AC 上,折痕为CE 且D 点落在对角线上D'处若10.如图,将长方形纸片 )B.3C.14D.—2二、填空题(每题4分,共20分)11.在△贮佻佻『卫讹V T点『则仏 中,若三边长分别为 9、12、15,则以两个这样的三角形拼成的长方形的面积为 12.在厶 13.如果一梯子底端离建筑物 9 m 远,那么15 m 长的梯子可达到建筑物的高度是 m. 14.三角形一边长为10,另两边长是方程X 2-14X +48=0的两实根,则这是 三角形,面积为 15.如图,从点A (0,2)发出的一束光,经X 轴反射,过点B (4,3),则这束光从点 A 到点B 所经过路径的长为要爬行吃食, 一只蚂蚁从点;爬到点:•处16. (6分)如图,台风过后,一希望小学的旗杆在某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?17. (8分)一副直角三角板如图放置,点C在FD的延长线上,AB// CF/F=/ ACB=90°, / E=45: /A=60:AC=10, 试求CD的长.F D C18. (8分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C测得/ CAD=30°;小丽沿河岸向前走30 m选取点B,并测得/ CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.20. (12分)如图,将竖直放置的长方形砖块 ABCD 推倒至长方形 A'BCD'的位置,长方形ABCD 的长和宽分别 为a,b,AC 的长为c.(1)你能用只含a,b 的代数式表示S\ABC ,S A C 'A 'D 和S直角梯形ADBA吗?能用只含c的代数式表示S ^ACA '吗?C(L) ”21.( 12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知点C 周围200 m 范围内为原始森林保护区,在 MN 上的点A 处测得C 在A 的北偏东45方向上,从 A 向东走600 m 到达B 处,测得C 在点BN(2)若修路工程顺利进行,要使修路工程比原计划提前 5天完成,需将原定的工作效率提高 25%,则原计划完成 这项工程需要多少天?19. (10分)如图,折叠长方形的一边(2)■I 的长•J(1)MN 是否穿过原始森林保护区 ⑵利用⑴的结论,你能验证勾股定理吗? rA DB 的北偏西60。

2022-2023学年人教版八年级下册数学期末复习综合测试题

2022-2023学年人教版八年级下册数学期末复习综合测试题

2022-2023学年人教版八年级下学期数学期末复习综合测试题一、选择题(每小题3分,共30分)1.若二次根式√x−1有意义,则x的取值范围是()A.x≥1B.x≤1C.x>1D.x≠12.以下列长度的线段为边,能组成直角三角形的是()A.1,2,3B.32,42,52C.√3,√4,√5D.5,12,13 3.下列说法中正确的个数为()①对角线互相平分且垂直的四边形是菱形;②对角线相等且垂直的四边形是正方形;③对角线相等的菱形是正方形;④经过平行四边形对角线交点的直线平分该平行四边形的面积.A.0个B.1个C.2个D.3个4.某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.150B.200m2C.250m2D.300m25.在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A .60B .50C .40D .156.下列计算正确的是( )A .√2+√3=√5B .√9=±3C .2√2−√2=√2D .√18=2√37.若一次函数y =kx +b 的图象经过第一、二、三象限,则k 、b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b <0D .k <0,b >08.两张全等的矩形纸片ABCD 、AECF 按如图方式交叉叠放在一起.若AB =AF =2,AE =BC =6,则图中重叠(阴影)部分的面积为( )A .163B .203C .4√3D .89.如图,在四边形ABCD 中,E ,F 分别是AD ,BC 的中点,G ,H 分别是BD ,AC 的中点,AB =CD ,∠ABD =20°,∠BDC =70°,则∠GEF 的大小是( )A .25°B .30°C .45°D .35°10.如图,在平面直角坐标系中,点A 1,A 2,A 3,…和B 1,B 2,B 3,…分别在直线y =12x +b和x 轴上,四边形OB 1A 1C 1、B 1B 2A 2C 2、B 2B 3A 3C 3、…都是正方形.如果点A 1(1,1),那么点A 2022的纵坐标是( )A.无法确定B.22021C.22022D.22023二、填空题(每小题3分,共18分)11.化简(√3)2=;√(−5)2=;√27=.12.本学期小伟同学报名参加了学校书法社团用活动班,他的7次考评成绩分别为90,85,85,95,85,100,90,那么小伟同学考评成绩的众数为.13.已知一次函数的图象经过(1,0)且与直线y=﹣4x+3平行,则该一次函数解析式是.14.(3分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,E为AD边中点,菱形ABCD 的面积为4√5,则OE的长为.15.如图,已知直线y=mx+n交x轴于点A(4,0),直线y=ax+b交x轴于点B(﹣3,0),且两直线交于点C(﹣2,3),则不等式0<mx+n<ax+b的解集为.16.如图,在矩形ABCD中点E为AD上一点,将△CDE沿CE翻折至△CFE,EF交AB 于G点,且GA=GF,若CD=10,BC=6,则AE的值是.三、解答题(共8小题,共72分)17.(8分)(1)计算:√18+√12−2√6×√34÷5√2;(2)已知一次函数的图象经过点(2,6)和(﹣4,﹣9),求这个函数的解析式.18.(8分)如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.19.(8分)如图,已知四边形ABCD的对角线AC、BD交于点O,AO=OC,OB=OD且∠1=∠2.(1)求证:四边形ABCD是菱形;(2)E为AO上一点,连接BE,若AE=4,AB=6,EB=2√3,求AO的长.20.(8分)为落实“双减”政策,加强“五项管理”,某校建立了作业时长调控制度,以及时采取措施调控作业量,保证初中生每天作业时长控制在90分钟之内.该校就“每天完成作业时长”的情况随机调查了本校部分初中学生,并根据调查结果制成了如下不完整的统计图,其中分组情况是:A组:t≤0.5h,B组:0.5h<t≤1h,C组:1h<t≤1.5h,D 组:t>1.5h.请根据以上信息解答下列问题:(1)这次共抽取了名学生进行调查统计;(2)请补全条形统计图;(3)扇形统计图中C组所在扇形的圆心角的大小是;(4)若该约有2000名初中学生,请估计每天完成作业时长在90分钟之内的初中生人数.21.(10分)如图,是由边长为1的小正方形构成6×6的网格,每个小正方形的顶点叫格点,A、B、D是格点,E是AD与网格线的交点,仅用无刻度直尺在给定的网格中画图,画图过程用虚线,画图结果用实线表示.(1)直接写出图中AE的长=;(2)在图①中画出等腰Rt△EBG,使∠EBG=90°;(3)在图②中先平移线段AB至DC(A对应D,B对应C),再在线段DC上画一点H;使得EH=AE+CH.22.(10分)如图,直线y=x+9与直线y=﹣2x﹣3交于点C,它们与y轴分别交于A、B 两点.(1)求A、B、C三点的坐标;(2)点F在x轴上,使S△BFC=10,求点F的坐标;(3)点P在x轴上,使∠PBO+∠P AO=90°,直接写出点P的坐标.23.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.24.(10分)正方形ABCD的边长为4.(1)如图1,点E在AB上,连接DE,作AF⊥DE于点F,CG⊥DE于点G.①求证:DF=CG;②如图2,对角线AC,BD交于点O,连接OF,若AE=3,求OF的长;(2)如图3,点K在CB的延长线上,BK=2,点N在BC的延长线上,CN=4,点P在BC上,连接AP,在AP的右侧作PQ⊥AP,PQ=AP,连接KQ.点P从点B沿BN方向运动,当点P运动到BC中点时,设KQ的中点为M1,当点P运动到N点时,设KQ的中点为M2,直接写出M1M2的长为.。

2022-2023学年人教版数学八年级下册2023年期末综合检测卷

2022-2023学年人教版数学八年级下册2023年期末综合检测卷

2022-2023学年人教版数学八年级下册 期末综合检测卷一、单选题1.某中学九(1)班参加了“勿忘12.9---激昂青春我拥有”的合唱比赛,共有7位评委打分,求得其平均数、中位数、众数、方差.若去掉最高分与最低分后,一定不会发生改变的是( ) A .中位数 B .平均数 C .众数 D .方差 2.下列叙述正确的是( )A =﹣2B .1214 的算术平方根是 72C =±4D .(﹣π)2的平方根是π 3.以下列长度的三条线段为边,能组成直角三角形的是( )A .2,3,4B ,3,5C .6,8,10D .5,12,124.某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m .如图所示,设矩形一边长为xm ,另一边长为ym ,当x 在一定范围内变化时,y 随x 的变化而变化,则y 与x 满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系5.某老师对班上甲、乙两位同学五次数学成绩进行统计,两人平均成绩均为115分,甲同学成绩的方差为15,乙同学成绩的方差为10,则下列说法正确的是( ) A .甲同学的成绩更稳定 B .乙同学的成绩更稳定C .甲、乙两位同学的成绩一样稳定D .不能确定两位同学的成绩稳定性6. )A B C .D7.若整数 a 使得关于 x 的不等式组 3(1)32(1)x ax x >⎧⎨-+>+⎩ 的解集为 2x > ,且一次函数31y x a =++ 的图象不经过第四象限,则符合条件的所有整数 a 的和为( )A .3B .2C .1D .08.如图,平行四边形 ABCD 中,对角线 AC ,BD 交于点 O ,点 E 是 CD 边中点,若 OE =3,则AD 的长为( )A .3B .6C .9D .129.已知一次函数y kx k =-的图象过点()14-,,则下列结论正确的是( ) A .2k =B .y 随x 增大而增大C .图象不经过第一象限D .函数的图象一定经过点()10, 10.研究表明,当每公顷钾肥和磷肥的施用量一定时,氮肥施用量与土豆的产量有如表所示的关系:A .氮肥施用量是自变量,土豆产量是因变量B .当氮肥的施用量是101千克/公顷时,土豆的产量是32.29吨/公顷C .如果不施氮肥,土豆的产量是15.18吨/公顷D .氮肥施用量404千克/公顷比氮肥施用量336千克/公顷时的土豆的产量更高 11.在给定的条件中,能作出平行四边形的是( ) A .以60cm 为对角线,20cm 、34cm 为两条邻边 B .以20cm 、36cm 为对角线,22cm 为一条边 C .以6cm 为一条对角线,3cm 、10cm 为两条邻边 D .以6cm 、10cm 为对角线,8cm 为一条边 12.在平面直角坐标系中,点A (-2,4),点B (4,2),在x 轴上取一点P ,使点P 到点A 和点B 的距离之和最小,则点P 的坐标是( )A .(-2,0)B .(2,0)C .(4,0)D .(0,0) 二、填空题13计算平均成绩,则张明的平均成绩为 .14.已知 m 是实数,且 m +和 1m-都是整数,那么 m 的值是 .15.设点()m - 和点 ()n - 是直线 ()1(01)y k x b k =-+<<, 上的两个点,则m , n 的大小关系为 .16.如图,已知AG CF ,AB ⊥CF ,垂足为 B ,AB=BC=3 ,点 P 是射线AG 上的动点 (点 P不与点 A 重合),点 Q 是线段 CB 上的动点,点 D 是线段 AB 的中点,连接 PD 并延长交BF于点 E ,连接PQ ,设AP=2t ,CQ=t ,当△PQE 是以 PE 为腰的等腰三角形时,t 的值为 .17.如图,已知正方形ABCD 的边长为8,M 在AB 边,上,BM=6,N 是BD 上一动点,则AN+NM 的最小值是三、解答题18.已知一次函数 ()221y m x m =-++ 中,y 随x 的增大而减小,且其图象与y 轴交点在x 轴上方.求m 的取值范围.19.直角三角形的三边的长分别为a ,b ,c ,其中c 为斜边长,若43a b c a c ++=+,直角三角形的面积为32,求它的各边长.20.已知:a 、b 、c 是△ABC 的三边长,化简-+.21.为庆祝中国共产党建党100周年,某校举行了“红色华诞,党旗飘扬”党史知识竞赛.为了解竞赛成绩,抽样调查了七,八年级部分学生的分数,过程如下:( 1 )收集数据从该校七.八年级学生中各随机抽取20名学生的分数,其中八年级的分数如下:81 83 84 85 86 87 87 88 89 90 92 92 93 95 95 95 99 99 100 100根据以上提供的信息,解答下列问题:①填空: a = , b = , c = ;②样本数据中,七年级甲同学和八年级乙同学的分数都为90分,同学的分数在本年级抽取的分数中从高到低排序更靠前(填“甲”或“乙”):③从样本数据分析来看,分数较整齐的是年级(填“七”或“八”);④如果七年级共有400人参赛,则该年级约有人的分数不低于95分.22.如图,直线x-2y=-5和x+y=1分别与x轴交于A、B两点,这两条线的交点为P.(1)求点P的坐标.(2)求△APB的面积.23.(1)基础探究:如图①,在正方形ABCD中,点E为AD上一点,DF⊥CE交AB于F,垂足为点O.求证:CE=DF.(2)应用拓展:如图②,在正方形ABCD中,点E为AD上一点,FG⊥CE分别交AB、CD于F、G,垂足为点O.若正方形ABCD的边长为12,DE=5,则四边形EFCG的面积为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册期末综合检测(时间:120分钟 满分:150分)一、选择题(每小题3分,共36分)1.若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠12 2.下列计算正确的是(B) -3= 2 B .3 5×2 3=6 15C .(2 2)2=16 =1】3.由线段a ,b ,c 组成的三角形不是直角三角形的是(D) A .a =7,b =24,c =25 B .a =41,b =4,c =5C .a =54,b =1,c =34D .a =13,b =14,c =154.已知甲、乙、丙三个旅行团的游客人数都相等,且每个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是s 2甲=17,s 2乙=,s 2丙=19,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择(B)A .甲团B .乙团C .丙团D .采取抽签方式,随便选一个5.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,下列图象中能正确反映y 与x 之间函数关系的图象是(D)>6.为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:户外活动的时间/小时1 2 3 6 学生人数/人:2 2 4 2 则关于“户外活动时间”这组数据的众数、中位数、平均数分别是(A) A .3,3,3 B .6,2,3 C .3,3,2 D .3,2,37.下列说法:①四边相等的四边形一定是菱形;②顺次连接矩形各边中点形成的四边形一定是正方形;③对角线相等的四边形一定是矩形;④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有(C)A .4个B .3个C .2个D .1个 ; 8.已知一次函数y =kx -m -2x 的图象与y 轴的负半轴相交,且函数值y 随自变量x 的增大而减小,则下列结论正确的是(A)A .k<2,m>0B .k<2,m<0C .k>2,m>0D .k<0,m<09.平行四边形ABCD的对角线AC,BD相交于点O,下列结论正确的是(A)A.S▱ABCD=4S△AOB B.AC =BDC.AC⊥BD D. ▱ABCD是轴对称图形10.如图,△ABC中,AB=AC,D为BC的中点,DE⊥AC于点E,已知AB=5,AD=3,则DE的长为(C)A.B.2 C.D.,第10题图),第11题图),第12题图)%11.如图,在矩形ABCD中,AD=2AB,点M,N分别在边AD,BC上,连接BM,DN,若四边形MBND是菱形,则AMMD等于(C)12.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息,已知甲先出发2秒,在跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是(A)A.①②③B.①②C.①③D.②③二、填空题(每小题4分,共24分)13.函数y=5-x中,自变量x的取值范围是__x≤5__.14.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为__4__.15.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是或5或.[16.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是__x<2__.,第16题图),第17题图),第18题图)17.如图,长方形纸片ABCD中,AB=6 cm,BC=8 cm,点E是BC边上一点,连接AE,并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为__3或6__cm.18.如图所示,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P是CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是__22__.三、解答题(共90分) 19.(6分)计算:(1)27-12+45;解:原式=3+3 5. "(2)27×13-(5+3)(5-3).解:原式=1.20.(8分)如图,四边形ABCD 是平行四边形,E ,F 是对角线BD 上的点,∠1=∠2.求证:(1)BE =DF ; (2)AF ∥CE.,证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF.∵∠1=∠2,∴∠AEB =∠CFD ,∴△ABE ≌△CDF ,∴BE =DF.(2)由(1)得△ABE ≌△CDF ,∴AE =CF.∵∠1=∠2,∴AE ∥CF ,∴四边形AECF 是平行四边形,∴AF ∥CE.21.(8分)在直角坐标系中,一条直线经过A(-1,5),P(-2,a),B(3,-3)三点. (1)求a 的值;(2)设这条直线与y 轴相交于点D ,求△OPD 的面积.解:(1)由点A ,B 的坐标求得直线的解析式为y =-2x +3,把P(-2,a)代入y =-2x +3中,得a =7. {(2)由(1)得点P(-2,7).y =-2x +3中,当x =0时,y =3,∴D(0,3),∴S △OPD =12×3×2=3.22.(10分)如图是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m 的半圆,其边缘AB =CD =20 m ,点E 在CD 上,CE =4 m ,一滑行爱好者从A 点滑到E 点,则他滑行的最短距离是多少(边缘部分的厚度可以忽略不计,π取3)解:展开图如图,作EF ⊥AB ,由于平铺,∴四边形ABCD 是矩形,∴∠C =∠B =90°.∵EF ⊥AB ,∴∠EFA =∠EFB =90°,∴四边形CBFE 是矩形,∴EF =BC =4×2×3×12=12(m ),FB =CE =4 m ,∴AF =20-4=16(m ),∴AE =122+162=20(m ),即他滑行的最短距离为20 m .23.(10分)甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示. ( 根据图中信息,回答下列问题:(1)甲的平均数是__8__,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定解:s 2甲=,s 2乙=,∵s 2甲>s 2乙,∴乙运动员的射击成绩更稳定.~24.(10分)在甲村至乙村的公路旁有一块山地正在开发,现有一C 处需要爆破,已知点C 与公路上的停靠站A 的距离为300米,与公路上另一停靠站B 的距离为400米,且CA ⊥CB ,如图.为了安全起见,爆破点C 周围半径250米范围内不得进入,问在进行爆破时,公路AB 段是否有危险,是否需要暂时封锁请通过计算进行说明.解:过点C 作CD ⊥AB 于点D ,∵BC =400米,AC =300米,∠ACB =90°,∴根据勾股定理,得AB =500米.∵12AB·CD =12BC·AC ,∴CD =240米.∵240米<250米,∴公路AB 段有危险,需要暂时封锁.25.(12分)已知:如图,四边形ABCD 中,AD ∥BC, AD =CD, E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE ∶∠BCE =2∶3,求证:四边形ABCD 是正方形.)证明:(1)∵在△ADE 与△CDE中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE ,∴∠ADE =∠CDE.∵AD ∥BC ,∴∠ADE =∠CBD ,∴∠CDE =∠CBD ,∴BC =CD.∵AD =CD ,∴BC =AD ,∴四边形ABCD 为平行四边形.∵AD =CD ,∴四边形ABCD 是菱形.(2)∵BE =BC ,∴∠BCE =∠BEC.∵∠CBE ∶∠BCE =2∶3,∴∠CBE =180°×22+3+3=45°.∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.26.(12分)小强与小刚都住在安康小区,在同一所学校读书,某天早上,小强7:30从安康小区站乘坐校车去学校,途中需停靠两个站点才能到达学校站点,且每个站点停留2分钟,校车行驶途中始终保持匀速.当天早上,小刚7:39从安康小区站乘坐出租车沿相同路线出发,出租车匀速行驶,比小强乘坐的校车早1分钟到学校站点,他们乘坐的车辆从安康小区站出发所行驶路程y(千米)与行驶时间x(分钟)之间的函数图象如图所示.(1)求点A 的纵坐标m 的值;(2)小刚乘坐出租车出发后经过多少分钟追到小强所乘坐的校车并求此时他们距学校站点的路程.—解:(1)校车的速度为3÷4=(千米/分钟),点A 的纵坐标m 的值为3+×(8-6)=.∴点A 的纵坐标m 的值为.(2)校车到达学校站点所需时间为9÷+4=16(分钟),出租车到达学校站点所需时间为16-9-1=6(分钟),出租车的速度为9÷6=(千米/分钟),两车相遇时出租车出发时间为×(9-4)÷-=5(分钟),相遇地点离学校站点的路程为9-×5=(千米).∴小刚乘坐出租车出发后经过5分钟追到小强所乘坐的校车,此时他们距学校站点的路程为千米.27.(14分)某数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD 中,AB =6,将三角板放在正方形ABCD 上,使三角板的直角顶点与D 点重合,三角板的一边交AB 于点P ,另一边交BC 的延长线于点Q.(1)求证:DP =DQ ;(2)如图②,小明在图①的基础上作∠PDQ 的平分线DE 交BC 于点E ,连接PE ,他发现PE 和QE 存在一定的数量关系,请猜测他的结论并予以证明;(3)如图③,固定三角板直角顶点在D 点不动,转动三角板,使三角板的一边交AB 的延长线于点P ,另一边交BC 的延长线于点Q ,仍作∠PDQ 的平分线DE 交BC 的延长线于点E ,连接PE ,若AB ∶AP =3∶4,请帮小明算出△DEP 的面积.解:(1)证明:∵四边形ABCD 是正方形,∴∠ADC =∠DCQ =90°,AD =DC.∵∠PDQ =90°=∠ADC ,∴∠ADP =∠CDQ ,∴△ADP ≌△CDQ ,∴DP =DQ.(2)猜测:PE =QE.证明:由(1)可知DP =DQ ,又∵∠PDE =∠QDE =45°,DE =DE ,∴△DEP ≌△DEQ ,∴ PE =QE.(3)∵AB ∶AP =3∶4,AB =6,∴AP =8,BP =2,同(1)可证△ADP ≌△CDQ ,∴CQ =AP =8.同(2)可证△DEP ≌△DEQ ,∴PE =QE.设QE =PE =x ,则BE =BC +CQ -QE =14-x.在Rt △BPE 中,由勾股定理得BP 2+BE 2=PE 2,即22+(14-x)2=x 2,解得x =507,即QE =507,∴S△DEQ=12QE·CD =1507.∵△DEP ≌△DEQ ,∴S △DEP =S △DEQ =1507.。

相关文档
最新文档