一次函数与几何综合(一)(讲义及答案).
专题08 一次函数与几何综合的五种考法(解析版)-2024年常考压轴题攻略(8年级上册北师大版)

专题08一次函数与几何综合的五种考法类型一、等腰三角形存在性问题(1)求直线CB的解析式;(2)点E在x轴上,【答案】(1)12y x =+(2)(4,0)、(16,0)-、当10BE AB ==时,1E 点的坐标为(4,0),2E 点的坐标为当AB AE =时,点B 与点E 是关于y 轴对称,E 当EA EB =时,设点E 坐标为(,0)x ,则2228(6)x x +=+,解得:73x =4E 点的坐标为7(,0)3,(1)当点P 在线段BO 上时,①求证:AOP BOQ ≌△△;②若点P 为BO 的中点,求△(2)在点P 的运动过程中,是否存在某一位置,的坐标;若不存在,请说明理由.当点P 在线段OB 上时,若OC OQ =,由于OP OQ =,则有在OCP △中,OPC AOP ∠=∠+OC OP ∴>,即OC OQ =不可能;若CQ OQ =,由于OP OQ =,则有过点C 作CH x ⊥轴于点H ,显然即CQ OQ =不可能,∴当COQ 是等腰三角形时,只有当点P在BO的延长线上时,同理可得:(0,424)P--,综上所述:(0,424)P-或P【点睛】本题考查了一次函数与几何图形综合,图形是解题的关键.【变式训练2】如图,在平面直角坐标系中,一次函数分别交于点B、A,点P为y(1)求点A、B的坐标;(2)当点P在y轴负半轴上,且ABP的面积为6时,求点(3)是否存在点P使得ABP为等腰三角形?若存在,求出点设()()0,0P n n <,则2PA =-所以()22224PA n n n =-=-+所以224416n n n -+=+解得3n =-,所以此时点P 的坐标为(0,3-综上所述,存在点P 使得ABP 例.如图,直线24y x =+与x 轴交于点A ,与y 轴交于点B ,点C 是OB 的中点.(1)求点C 的坐标:(2)在x 轴上找一点D ,使得ACD ABC S S = ,求点D 的坐标;(3)在x 轴上是否存在一点P ,使得ABP 是直角三角形?若存在,请写出点P 的坐标;若不存在,请说明理由.【答案】(1)()0,2C (2)点D 的坐标为()4,0-或()0,0(3)存在,满足条件的P 点的坐标为()0,0或()8,0(1)填空:b =,m =,k =;(2)如图2,点D 为线段BC 上一动点,将ACD 沿直线AD 翻折得到AED △,线段AE 交轴于点F .①求线段AE 的长度;②当点E 落在y 轴上时,求点E 的坐标;③若DEF 为直角三角形,请直接写出满足条件的点D 的坐标.【答案】(1)8,2-,12-(2)①45;②点E 的坐标为()0,4219-;③点D 的坐标为()20,或()254,0-【分析】(1)根据待定系数法求解即可;(2)①过点A 作AH y ⊥轴于点H ,作AG x ⊥轴于点G ,根据勾股定理得到()222262480AE AC ==++=,于是得到结论;②利用勾股定理求出219HE =,可得2194OE =-,即可得答案;③分两种情况讨论,当90EDF ∠=︒时,求出135ADC ∠=︒,得45ADO ∠=︒,得DG AD ==得点D 坐标;当90DFE ∠=︒时,设DF x =,则8DE DC x ==-,由勾股定理得:()()2228454x x -=+-,求出DF ,得点D 坐标.【详解】(1)解:把()40B -,代入2y x b =+,∵()024b =⨯-+,∴8b =,∴直线AB :28y x =+,把()4A m ,代入28y x =+,∴2m =-,∵ACD 翻折得到AED△∴()222262480AE AC ==++=,∴45AE =②当E 点落在y 轴上时,在Rt AHE △中,∵222AE AH HE -=∴222802HE AE AH =-=-=∴2194OE HE OH =-=-,∴点E 的坐标为()04219-,;③如下图,当90EDF ∠=︒时,由翻折得ADC ∠∴1359045ADO ∠︒︒=-=︒,∵4AG =,∴4DG AG ==,∴422OD DG OG =-=-=,∴点D 的坐标为()20,;如下图,当90DFE ∠=︒时,80AE AC ==设DF x =,则8DE DC x ==-,在Rt DEF △中,由勾股定理得:(解得:252x =-,∴254OD DF OF =-=-,∴点D 的坐标为()254,0-,综上,点D 的坐标为()20,或(2【点睛】本题考查了一次函数的综合题,勾股定理,角平分线的性质,直角三角形的性质和判定,翻折的性质,解题的关键是作辅助线.(1)如图1,求出AOP 的面积;(2)如图2,已知点C 是直线85y x =上一点,若APC △是以AP 为直角边的等腰直角三角形,求点C 的坐标.【答案】(1)AOP 的面积为40(2)点C 的坐标为()1016,或162,⎛⎫⎪∵直线l x ∥轴,点B ∴8PH OB ==,∴12AOP S OA PH == 故答案为:40;(2)设点(),8P n (n ≠过点P 作直线FE ,交APC 为等腰直角三角形,则90APE FPC ∴∠+∠=︒,APE FCP ∴∠=∠,90PEA CFP ∠=∠=︒ ,(AAS)PEA CFP ∴ ≌,同理可得:(AAS)AMP ANC ≌AM AM ∴=且MP NC =,8|10|m ∴=-或8105n m -=解得:2565m n =⎧⎪⎨=⎪⎩或181945m n =⎧⎪⎨=⎪⎩(1)求直线l 的解析式;(2)求证:ABC 是等腰直角三角形;(3)将直线l 沿y 轴负方向平移,当平移恰当的距离时,直线与在直线CD 上存在点P ,使得A △的坐标.【答案】(1)142y x =-+∴90DPE A PB ''∠=∠=︒,∴A PD B PE ''∠=∠,∵90A FP CEB ''∠=∠=︒,∴A FP CEB '' ≌,∴4,PE PF A F B E ''===,此时点P 的坐标为()44--,;如图,若以点P 为直角顶点时,过点同理此时点P 的坐标为()44-,;如图,若以点B '为直角顶点时,过点P 作同理A OB B GP ''' ≌,∴44OB PG OF t '====+,B '∴8t =-或0(舍去),∴8B G OA ''==,∴12OG =,∴此时点P 的坐标为()412--,;如图,若以点B '为直角顶点时,过点B '作B M CD '⊥轴于点M ,则4B M OF '==,OB MF '=,同理PB M A B O ''' ≌,∴44B M B O t ''===+,82PM OA t '==+,∴0=t (舍去);如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4482t t --=---,解得:8t =-,∴8PF =,此时点P 的坐标为()48-,;如图,若以点A '为直角顶点时,同理A PF B A O ''' ≌,∴,PF A O B O A F '''==,∴4824t t --=++,解得:163t =-,∴83PF =,∴此时点P 的坐标为84⎛⎫--,;(1)①A 的坐标是_____________②求直线AB 的表达式;(2)点P 是直线y =(3)当ABP 为等腰直角三角形时,请直接写出【答案】(1)①(0,3【分析】(1)把x(3)解:如图1,当点P 为顶点时,过点P 作PE x ⊥轴,过点A 作AF 垂直于PE 的延长线于点F ,∵ABP 是等腰直角三角形,AP PB ∴=,APB ∠=90︒,=90FAP APF +∠︒ ,=90APF BPE ∠+∠︒,=FAP BPE ∴∠∠,在AFP 和PEB △中,F E FAP EPB AP PB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFP PEB AAS ∴≅ ,AF PE ∴=,BE PF =,===90O F E ∠∠∠︒ ,∴四边形AOEF 是矩形,==AF PE OB BE ∴+,===AO FE FP PE BE PE ++,==2AO BE OB BE BE OB +++,()0,3A 、()1,0B ,=3AO ∴,1OB =,21=3BE ∴+,=1BE ∴,==31=2PE AO BE --,==11=2OE OB BE ∴++,∴点P 的坐标为()2,2;如图2,当点B 为顶点时,过点P 作PG x ⊥轴,ABP 是等腰直角三角形,AB BP ∴=,=90ABO OAB ∠+∠︒ ,=90ABO PBG ∠+∠︒,=OAB PBG ∴∠∠,在AOB 和BGP 中,O PGB OAB PBG AB BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOB BGP AAS ∴≅ ,=PG OB ∴,BG AO =,()0,3A 、()1,0B ,=3AO ∴,1OB =,==13=4OG OB BE ∴++,=1PG ,∴点P 的坐标为()4,1;如图3,当点A 为顶点时,过点P 作PM y ⊥轴,PAB △是等腰直角三角形,PA AB ∴=,=90PAB ∠︒,90MAP OAB ∠+∠=︒ ,90MAP MPA ∠+∠=︒,=MPA OAB ∴∠∠,在PMA △和AOB 中,M O MPA OAB AP AB ∠=∠⎧⎪∠=∠⎨⎪=⎩()PMA AOB AAS ∴≅ ,=MP AO ∴,=MA OB ,()0,3A 、()1,0B ,=3AO ∴,1OB =,3MP ∴=,==13=4OM MA AO ++,∴点P 的坐标为()3,4,故答案为:()2,2;()4,1;()3,4.【点睛】本题考查了一次函数的综合运用,等腰直角三角形的性质和矩形的性质及全等三角形的性质的判定,熟练求一次函数的解析式和构造全等三角形是解题的关键.类型四、全等问题(1)点A坐标为________,点B坐标为(2)当BOP△的面积是4时,求点(3)在y轴上是否存在点Q,使得以接写出所有符合条件的点P的坐标,否则请说明理由.【答案】(1)(3,0),(0,4),12 5(2)4(2,)20(2,)125OM OQ ==,12(0,)5Q 或12(0,)5-,6(5P ,12)5或24(5,12)5-;②如图3,图4,当OMP PQO ≌△△时,125PQ OM ∴==,12(5P ∴-,36)5或12(5,4)5;综上所述:P 点坐标为(65,12)5或24(5,12)5-或12(5-,36)5或12(5,4)5.【点睛】本题考查一次函数的图象及性质,判定及性质,分类讨论,数形结合是解题的关键.【变式训练1】如图,一次函数364y x =+的图象与于点C ,点P 在直线AB 上运动,点Q 在(1)求点A ,B 的坐标;(2)求OC 的长;(3)若以O ,P ,Q 为顶点的三角形与【答案】(1)()8,0A -,(B (3)Q 的坐标为120,5⎛⎫ ⎪⎝⎭或0,⎛ ⎝则OC PQ=,∴245PQ =,∴245m=-,∴33241266 4455m⎛⎫+=⨯-+=⎪⎝⎭,∵PQ OC=,∴245 PQ=.∴245=m,∴33244866 4455m+=⨯+=,∴48 0,5Q⎛⎫ ⎪⎝⎭;则245 OQ OC==,∴240,5Q⎛⎫ ⎪⎝⎭;综上所述,Q的坐标为12 0,5⎛⎫ ⎪⎝⎭或(1)求点B 的坐标及直线BC 的函数表达式;(2)在坐标系平面内,存在点D ,使以点A ,B ,D 为顶点的三角形与ABC 全等,画出ABD ,并求出点D 的坐标.【答案】(1)点B 的坐标为(0,3),33y x =-+;(2)图见解析,点D 的坐标为(4-,3)或(3-,4)或(0,1)-.【分析】(1)将点点(3A -,0)代入解析式得出3b =,继而得出点B 的坐标为(0,3),根据:3:1OB OC =得出1OC =,即点C 的坐标为(1,0),然后待定系数法求解析式即可求解;(2)分在x 轴上方:BAD ABC ≌和(ABD ABC ≌如图1)和点D 在y 轴上(如图②)两种情况,根据全等三角形的性质即可求解.【详解】(1)解:∵直线AB :y x b =+过点(3A -,0),03b ∴=-+,3b ∴=.当0x =时,3y x b b =+==,∴点B 的坐标为(0,3),即3OB =.OB :3OC =:1,1OC ∴=.点C 在x 轴正半轴,∴点C 的坐标为(1,0).设直线BC 的解析式为()0y kx c k =+≠,将(0B ,3)、(1C ,0)代入y kx c =+,得:30c k c =⎧⎨+=⎩,解得:33k c =-⎧⎨=⎩,∴直线BC 的函数表达式为33y x =-+.(2)分在x 轴上方:BAD ABC ≌和(ABD ABC ≌如图1)和点D 在y 轴上(如图②)两种情况考虑:如图①:①当BAD ABC ≌时,3OA OB == ,45BAC ∴∠=︒.BAD ABC ≌,45ABD BAC ∴∠=∠=︒,4BD AC ==,BD ∴∥AC ,∴点D 的坐标为(4-,3);②当ABD ABC ≌时,45BAD BAC ∠=∠=︒,4AD AC ==,90DAC ∴∠=︒,∴点D 的坐标为(3-,4).如图②当ABD BCA ≌时,4BD AC ==,1OD ∴=,∴点D 的坐标为(0,1)-.综上所述,点D 的坐标为(4-,3)或(3-,4)或(0,1)-.【点睛】本题考查了一次函数与几何图形,坐标与图形,全等三角形的性质与判定,数形结合是解题的关键.【变式训练3】如图①,已知直线24y x =-+与x 轴、y 轴分别交于点A 、C ,以OA OC ,为边在第一象限内作长方形OABC .类型五、角度之间关系过点P 作EF y ⊥轴于点E ,过点H 作∴45POG ∠=︒,∵()3,1P ,∴1,3EP OE ==∵OA OB =,45AOB ∠=︒∴AOB 是等腰直角三角形,∵45APO EOP ∠+∠=︒,PQO APO∠=∠∴45PQO EOP ∠+∠=︒又∵9045EOP GOQ POG ∠+∠=︒-∠=∴GOQ GQO∠=∠∴GQ GO =,即点G 在OG 的垂直平分线上,∵90OEP PFH OPH ∠=∠=∠=︒,∴90OPE FPH PHF ∠=︒-∠=∠,(1)求直线AB的关系式;(2)连接PD,当线段PD AB⊥时,直线AD上有一点动M∴1284,2525S ⎛⎫-- ⎪⎝⎭,∵45,DKR DAO KT RK ∠=∠=︒⊥∴45DKR DKT ∠=︒=∠,∴KT KP =,∴P ,T 关于直线AD 对称,连接TS 交AD 于M ,交x 轴于N 4y x =-+12x =-得y =∵3,4OB OA ==,∴34PH PH AH HW==,设3PH t =,则4AH HW t ==∴5PW t OW ==,∵4OW HW AH OA ++==,∵12POA BAO ∠=∠,∴2POA APO POA ∠+∠=∠∴APO POA ∠=∠,∴4AO AP ==,∵34PF OB AF AF ==,∴165AF =36(1)求直线BC 的函数解析式;(2)设点M 是x 轴上的一个动点,过点M 作y 轴的平行线,交直线于点Q .①若PQB △的面积为83,求点M 的坐标.②连接BM ,如图2,在点M 的运动过程中是否存在点P ,使∠求出点P 坐标,若不存在,请说明理由.则113(3)22PQ m m m =-+-+=,则PQB ∆的面积21122PQ BD m =⋅=故点M 的坐标为43(3,0)或4(-②如图,当点M 在y 轴的左侧时,点C 与点A 关于y 轴对称,AB BC ∴=,BAC BCA ∴∠=∠,BMP BAC ∠=∠ ,BMP BCA ∴∠=∠,90BMP BMC ∠+∠=︒ ,90BMC BCA ∴∠+∠=︒(1)求点A,B的坐标;(2)若直线AC⊥AB交y轴负半轴于点(3)在y轴上是否存在点P,使以求出点P的坐标;若不存在,请说明理由.【答案】(1)A(−1,0);B(0,2)(2)1.25;(3)y轴上存在点P,使以A,当BA=BP时,BP=∴点P1的坐标为(0,当PB=PA时,设OP ∴(2−x)2=1+x2,解得:∴点P3的坐标为(0,当AB=AP时,OP=∴点P4的坐标为(0,综上所述:y轴上存在点标为(0,2+5)或(0(1)填空:=a ______,b =______;(2)在射线CD 上有一动点E ,过点E 作EF 平行于y 轴交直线AB 时,求点E 的坐标;(3)点M 为直线AB 上一点,且45CDM ∠=︒,求点M 的坐标.【答案】(1)1,2-1112132⎛⎫∴90QCP QPC ∠+∠=︒,∵CP CD ⊥,∴90QCP DCL ∠+∠=︒∴QPC DCL ∠=∠,∴QPC LCP ≌△△,∵()1,1C -,()0,2D -,∴CG HK =,GH KD =,∵()1,1C -,()0,2D -,设(,H c d ∴2c =-,1d =-,∴()2,1H --,可得直线DH 的解析式为联立12213y x ⎧=--⎪⎪⎨,解得721x ⎧=-⎪⎪⎨(1)求点C的坐标;∥轴交AB于点(2)如图2,过点C作直线CD x①求线段CD的长;②在坐标平面内,是否存在点M(除点B外),全等?若存在,请直接写出所有符合条件的点M DC≌△BDC时,当△1M和点B关于直线则点1M的坐标为:(-1∴点1M CD≌△BDC时,当△2。
一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义)➢ 课前预习1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为.2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表达式为 .3.如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为.第 3 题图第 4 题图4.如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B .(1) 设点 A 的横坐标为 t ,则点 A 的坐标为,点 B的坐标为 ,线段 AB 的长为;(用含 t的式子表示)(2) 若 AB =4,则点 A 的坐标是.➢ 知识点睛1. 一次函数与几何综合的处理思路:从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题.2. 函数与几何综合问题中常见转化方式:(1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段长,结合几何特征利用线段长列方程;(2) 研究几何特征,考虑线段间关系,通过设线段长进而表达点坐标,将点坐标代入函数表达式列方程.表达线段长:横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.1➢ 精讲精练1.如图,直线 y = - 3x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C4是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为.第 1 题图第 2 题图2.如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 .3.如图,直线l :y = 3x + 6 与 y 轴相交于点 N ,直线l :y = kx -31 42与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为.4.如图,一次函数 y = 1x + 2 的图象与 y 轴交于点 A ,与正比例3函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为.5. 如图,点A,B 的坐标分别为(-8,0),(0,4),点C(a,0)为x轴上一个动点,过点C 作x 轴的垂线,交直线AB 于点D,若CD=5,则a 的值为.6.如图,直线y=kx+6 与x 轴、y 轴分别交于点A,B,点A 的坐标为(6,0),点C 的坐标为(4,0).若点P 是直线y=kx+6 上的一个动点,当点P 的坐标为时,△OPC 的面积为4.7.如图,直线y =-1x +b 与x 轴、y 轴分别交于点A,B,与直2线y=x 交于点M,点M 的横坐标为2,点C 为线段AM 上一点,过点C 作x 轴的垂线,垂足为点D,交直线y=x 于点E.若ED=4CD,则点E 的坐标为.8.如图,直线l1:y=2x+1 与直线l2:y=mx+4 相交于点P(1,b),垂直于x 轴的直线x=a 与直线l1,l2 分别交于点A,B,若线段AB 的长为2,则a 的值为.9.如图,直线AB:y=-x+20 与y 轴交于点A,与直线OB:y =1 x 3交于点B.点C 为线段OB 上一点,过点C 作y 轴的平行线交直线AB 于点D,向y 轴作垂线,垂足为点E.若DC=2CE,则点C 的坐标为.10.如图,在平面直角坐标系中,点A,C 和B,D 分别在直线y=1x+3和x 轴上,若△OAB,△BCD 都是等腰直角三角形,2∠OAB=∠BCD=90°,则点C 的坐标为.11.如图,直线l1:y 3x 与直线l2:y=-x+7 相交于点A.点P 4在x 轴正半轴上,过点P 作x 轴的垂线,与直线l1,l2 分别交于点B,C.设点P 的横坐标为t.(1)当t=1 时,求线段BC 的长;(2)用含t 的式子表达BC 的长;(3)若三个点B,C,P 中恰有一点是其他两点所连线段的中点,则称B,C,P 三点为“共谐点”.请直接写出使得B,C,P 三点成为“共谐点”的t 的值.⎨ 【参考答案】➢ 课前预习1. y = 2x - 52. y = -2x + 63. y = x + 24. (1)(t ,3t ),(t ,t ),2t(2)(2,6)➢ 精讲精练1. y = 1x - 222. 63. y = - 3x - 32 4. - 13 5. 2 或-186. (4,2)或(8,-2)7. (4,4)8. 5 或 13 3 9. (6,2) 10. (30,18) 11. (1) BC =21;4 ⎧- 7t + 7(0 < t ≤ 4) (2) BC = ⎪4 ;7 ⎪ t - 7(t > 4) ⎩ 4(3)当 t 的值为14 ,56或 28 时,B ,C ,P 三点成为“共5 11谐点”⎪。
一次函数与几何综合解答策略

一次函数与几何综合一般解答思路金山初级中学庄士忠 201508 一、“一次函数与几何综合”解题思路:⑤④③②①几何图形一次函数坐标①_坐标代入可求表达式_;②_由表达式可求坐标或者表达坐标_;③_坐标转线段长;④_线段长转坐标_;⑤_ k、b的几何意义以及直线的位置关系(平行或垂直);二、精讲精练1.如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点,已知四边形ABCD是正方形,则k值为________.总结提升:此题可通过“设份数法”解题。
由于直线y=2x的斜率为2,所以其铅直高度比水平宽度就是2;故而我们设OA=1,则AB=AD=CD=2,OD=3,所以y=kx的斜率就是三分之二;与横轴正半轴夹角是锐角,所以k>0;2.如图,直线l1交x轴,y轴于A,B两点,OA=m,OB=n,将△AOB绕点O逆时针旋转90°得到△COD.CD所在直线l2与直线l1交于点E,则l1l2;若直线l1,l2的斜率分别为k1,k2,则k1·k2=_______.总结提升:此题可先通过构造小山坡法,算出直线l1的斜率,由于其与横轴正半轴的夹角是钝角,所以k<0,斜率前加负号;再根据旋转是一种全等变换,对应边和对应角都相等,计算出直线l2的斜率,夹角为锐角,所以k>0;k1·k2=﹣1;3.如图,已知直线l:y=xx轴交于点A,与y轴交于点B,将△AOB沿直线l折叠,点O落在点C处,则直线CA的表达式为_________.总结提升:1、首先应学会“数形结合”的思想,看到一个直线的表达式,从中读出相应的信息。
比如直线l:y=x首先我们可以从中读出b的信息,它是直线与纵轴交点的纵坐标,所以B点的坐标就是(0;其次我们能从中读出斜率的信息,也就是铅直高度与水平宽度的比,由此判断三角形AOB是一个含有30°角的直角三角形;2、根据折叠的轴对称性质,对应边相等,同时有一个角是60°,则连接OC,就会出现一个等边三角形,过C点做横轴的垂线,就又会出现一个含有30°角的直角三角形,据此可以求出直线AC的斜率,夹角是钝角,所以k为负,前面加负号,再把A点坐标代入表达式求出b即可。
2024年中考数学复习重难点题型训练—一次函数与几何图形综合题一(含答案解析)

2024年中考数学复习重难点题型训练—一次函数与几何图形综合题二(含答案解析)类型一与三角形有关1.(2022·天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x 轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)【答案】D【分析】利用HL证明△ACO≌△BCO,利用勾股定理得到OC=4,即可求解.【详解】解:∵AB⊥x轴,∴∠ACO=∠BCO=90°,∵OA=OB,OC=OC,∴△ACO≌△BCO(HL),∴AC=BC=12AB=3,∵OA=5,∴=4,∴点A的坐标是(4,3),故选:D.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,勾股定理,解题的关键是灵活运用所学知识解决问题.2.(2020·宁夏中考真题)如图,直线542y x =+与x 轴、y 轴分别交于A 、B 两点,把AOB 绕点B 逆时针旋转90°后得到11AO B ,则点1A的坐标是_____.【答案】(4,125)【解析】【分析】首先根据直线AB 来求出点A 和点B 的坐标,A 1的横坐标等于OB ,而纵坐标等于OB-OA ,即可得出答案.【详解】解:在542y x =+中,令x=0得,y=4,令y=0,得5042x =+,解得x=8-5,∴A (8-5,0),B (0,4),由旋转可得△AOB ≌△A 1O 1B ,∠ABA 1=90°,∴∠ABO=∠A 1BO 1,∠BO 1A 1=∠AOB=90°,OA=O 1A 1=85,OB=O 1B=4,∴∠OBO 1=90°,∴O 1B ∥x 轴,∴点A 1的纵坐标为OB-OA 的长,即为48-5=125;横坐标为O 1B=OB=4,故点A 1的坐标是(4,125),故答案为:(4,125).【点睛】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.3.(2021·广西贺州市·中考真题)如图,一次函数4y x =+与坐标轴分别交于A ,B 两点,点P ,C 分别是线段AB ,OB 上的点,且45OPC ∠=︒,PC PO =,则点P 的标为________.【答案】(--【分析】过P 作PD ⊥OC 于D ,先求出A ,B 的坐标,得∠ABO=∠OAB=45°,再证明△PCB ≌△OPA ,从而求出BD =,OD =,进而即可求解.【详解】如图所示,过P 作PD ⊥OC 于D ,∵一次函数4y x =+与坐标轴分别交于A ,B 两点,∴A(-4,0),B(0,4),即:OA=OB ,∴∠ABO=∠OAB=45°,∴△BDP 是等腰直角三角形,∵∠PBC=∠CPO=∠OAP=45°,∴∠PCB+∠BPC=135°=∠OPA+∠BPC,∴∠PCB=∠OPA,又∵PC=OP,∴△PCB≌△OPA(AAS),∴AO=BP=4,∴Rt△BDP中,BD=PD=2=2,∴OD=OB−BD=2,∴P(2,2).故答案是:P(2,2).【点睛】本题主要考查了一次函数图象上点的坐标特征以及等腰三角形的性质,结合等腰三角形的性质,判定全等三角形是解决问题的关键.4.(2022·湖北黄冈)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C 匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.【答案】252+##2+25【分析】根据函数图像可得AB=4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可.【详解】根据函数图像可得AB=4,AB+BC=8,∴BC=AB=4,∵∠B =36°,∴72BCA BAC ∠∠︒==,作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD=BD ,72BCA DAC ∠∠︒==,∴AD=BD=CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△,∴AC DC BC AC =,∴x 4x 4x-=,解得:1225x =-+,225x =--,∴252AD BD CD ===,此时521AB BD t +==(s),故答案为:52.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.5.(2020·四川内江?中考真题)如图,在平面直角坐标系中,点A (-2,0),直线33:33l y x =+与x 轴交于点B ,以AB 为边作等边1ABA ∆,过点1A 作11//A B x 轴,交直线l 于点1B ,以11A B 为边作等边112A B A ∆,过点2A 作22//A B x 轴,交直线l 于点2B ,以22A B 为边作等边223A B A ∆,以此类推……,则点2020A 的纵坐标是______________【答案】20203(21)2-【解析】【分析】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),且与x 轴夹角为30º,则有AB=1,然后根据平行线的性质、等边三角形的性质、含30º的直角三角形的性质,分别求的A 1、A 2、A 3、的纵坐标,进而得到A n 的纵坐标,据此可得A 2020的纵坐标,即可解答.【详解】如图,过A 1作A 1C ⊥AB 与C ,过A 2作A 2C 1⊥A 1B 1于C 1,过A 3作A 3C 2⊥A 2B 2于C 2,先根据直线方程与x 轴交于点B (-1,0),与y 轴交于点D (0,33),∴OB=1,OD=33,∴∠DBO=30º由题意可得:∠A 1B 1B=∠A 2B 2B 1=30º,∠B 1A 1B=∠B 2A 2B 1=60º∴∠A 1BB 1=∠A 2B 1B 2=90º,∴AB=1,A 1B 1=2A 1B=21,A 2B 2=2A 2B 1=22,A 3B 3=2A 3B 2=23,…A n B n =2n∴A 1C=2AB=2×1,A 1纵坐标为32×1=13(21)2-;A 2C 1=32A 1B 1=1322⨯,A2的纵坐标为32×1+1322⨯=013(22)2+=332⨯=23(21)2-;A 3C 2=32A 2B 2=2322⨯,A 3的纵坐标为32×1+1322⨯+2322⨯=0123(222)2++=372⨯=33(21)2-;…由此规律可得:A n C n-1=1322n -⨯,A n 的纵坐标为01213(2222)2n -++++ =3(21)2n -,∴A 2020=20203(21)2-,故答案为:20203(21)2-【点睛】本题是一道点的坐标变化规律探究,涉及一次函数的图象、等边三角形的性质、含30º角的直角三角形的性质,数字型规律等知识,解答的关键是认真审题,观察图象,结合基本图形的有关性质,找到坐标变化规律.6.(2022·陕西)如图,ABC 的顶点坐标分别为(23)(30)(11)A B C ----,,,,,.将ABC 平移后得到A B C '''V ,且点A 的对应点是(23)A ',,点B 、C 的对应点分别是B C '',.(1)点A 、A '之间的距离是__________;(2)请在图中画出A B C '''V .【答案】(1)4(2)见解析【分析】(1)由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4;(2)根据题意找出平移规律,求出103-1B C ''(,),(,),进而画图即可.(1)解:由(23)A -,,(23)A ',得,A 、A '之间的距离是2-(-2)=4.故答案为:4.(2)解:由题意,得103-1B C ''(,),(,),如图,A B C '''V 即为所求.【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.7.(2021·贵州毕节市·中考真题)如图,在平面直角坐标系中,点()11,1N 在直线:l y x =上,过点1N 作11N M l ⊥,交x 轴于点1M ;过点1M 作12M N x ⊥轴,交直线l 于点2N ;过点2N 作22N M l ⊥,交x 轴于点2M ;过点2M 作23M N x ⊥轴,交直线l 于点3N ;…;按此作法进行下去,则点2021M 的坐标为_____________.【答案】(20212,0).【分析】根据题目所给的解析式,求出对应的1M 坐标,然后根据规律求出n M 的坐标,最后根据题目要求求出最后答案即可.【详解】解:如图,过点N 作NM ⊥x 轴于M将1x =代入直线解析式y x =中得1y =∴1OM MN ==,MON ∠=45°∵1ONM =∠90°∴1ON NM =∵1ON NM ⊥∴11OM MM ==∴1M 的坐标为(2,0)同理可以求出2M 的坐标为(4,0)同理可以求出3M 的坐标为(8,0)同理可以求出n M 的坐标为(2n ,0)∴2021M 的坐标为(20212,0)故答案为:(20212,0).【点睛】本题主要考查了直线与坐标轴之间的关系,解题的关键在于能够发现规律.8.(2020·湖南湘西?中考真题)在平面直角坐标系中,O 为原点,点(6,0)A ,点B 在y 轴的正半轴上,30ABO ∠=︒.矩形CODE 的顶点D ,E ,C 分别在,,OA AB OB 上,2OD =.将矩形CODE 沿x 轴向右平移,当矩形CODE 与ABO 重叠部分的面积为时,则矩形CODE 向右平移的距离为___________.【答案】2【解析】【分析】先求出点B 的坐标(0,3),得到直线AB 的解析式为:33y =+,根据点D 的坐标求出OC 的长度,利用矩形CODE 与ABO 重叠部分的面积为63列出关系式求出3D G '=,再利用一次函数关系式求出OD '=4,即可得到平移的距离.【详解】∵(6,0)A ,∴OA=6,在Rt △AOB 中,30ABO ∠=︒,∴63tan 30OA OB ==∴B (0,63),∴直线AB 的解析式为:33y =+,当x=2时,y=43∴E (2,3,即DE=3∵四边形CODE 是矩形,∴OC=DE=43设矩形CODE 沿x 轴向右平移后得到矩形C O D E '''',D E ''交AB 于点G ,∴D E ''∥OB ,∴△AD G '∽△AOB ,∴∠AGD '=∠AOB=30°,∴∠EGE '=∠AGD '=30°,∴GE ''=,∵平移后的矩形CODE 与ABO 重叠部分的面积为,∴五边形C O D GE '''的面积为∴12O D O C EE GE ''''''⋅-⋅=,∴122EE ''⨯-⨯=,∴2EE '=,∴矩形CODE 向右平移的距离DD '=2EE '=,故答案为:2.【点睛】此题考查了锐角三角函数,求一次函数的解析式,矩形的性质,图形平移的性质,是一道综合多个知识点的综合题型,且较为基础的题型.9.(2021·浙江金华市·中考真题)在平面直角坐标系中,点A 的坐标为(,点B 在直线8:3l y x =上,过点B 作AB 的垂线,过原点O 作直线l 的垂线,两垂线相交于点C .(1)如图,点B ,C 分别在第三、二象限内,BC 与AO 相交于点D .①若BA BO =,求证:CD CO =.②若45CBO ∠=︒,求四边形ABOC 的面积.(2)是否存在点B ,使得以,,A B C 为顶点的三角形与BCO 相似?若存在,求OB 的长;若不存在,请说明理由.【答案】(1)①见解析;②552;(2)存在,44+-4,9,1【分析】(1)①等腰三角形等角对等边,则BAD AOB ∠=∠,根据等角的余角相等和对顶角相等,得到CDO COD ∠=∠,根据等角对等边,即可证明CD CO =;②添加辅助线,过点A 作AH OB ⊥于点H ,根据直线l 的解析式和角的关系,分别求出线段AB 、BC 、OB 、OC 的长,则11+22ABC CBO ABOC S S S AB BC OB OC =+=⨯⨯ 四边形;(2)分多钟情况进行讨论:①当点C 在第二象限内,ACB CBO ∠=∠时;②当点C 在第二象限内,ACB BCO ∠=∠时;③当点C 在第四象限内,ACB CBO ∠=∠时.【详解】解:(1)①证明:如图1,∵BA BO =,∴12∠=∠.∴BA BC ⊥,∴2590∠+∠=︒.而45∠=∠,∴2490∠+∠=︒.∵OB OC ⊥,∴1390∠+∠=︒.∴34∠=∠,∴CD CO =.②如图1,过点A 作AH OB ⊥于点H .由题意可知3tan 18∠=,在Rt AHO 中,3tan 18AH OH ∠==.设3m AH =,8m OH =.∵222AH OH OA +=,∴()()22238m m +=,解得1m =.∴38AH OH ==,.∵4590CBO ABC ∠=︒∠=︒,,∴45ABH ∠=︒,∴3,tan 45sin 45AH AH BH AB ====︒︒∴5OB OH BH =-=.∵45OB OC CBO ⊥∠=︒,,∴tan 455,cos 45OB OC OB BC =⨯︒===︒,∴111522ABC S AB BC =⨯=⨯= ,112555222CBO S OB OC =⨯=⨯⨯= :∴552ABC CBO ABOC S S S =+= 四边形.(2)过点A 作AH OB ⊥于点H ,则有38AH OH ==,.①如图2,当点C 在第二象限内,ACB CBO ∠=∠时,设OB t=∵ACB CBO ∠=∠,∴//AC OB .又∵AH OB OC OB ⊥⊥,,∴3AH OC ==.∵AH OB AB BC ⊥⊥,,∴12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,∴AHB BOC ∽,∴AH HB BO OC=,∴383t t -=,整理得2890t t -+=,解得4t =±∴4OB =±②如图3,当点C 在第二象限内,ACB BCO ∠=∠时,延长AB CO ,交于点G ,则ACB GCB ≌,∴AB GB =.又∵AH OB OC OB ⊥⊥,,∴90AHB GOB ∠=∠=︒,而ABH GBO ∠=∠,∴ABH GBO ≌,∴142OB HB OH ===③当点C 在第四象限内,ACB CBO ∠=∠时,AC 与OB 相交于点E ,则有BE CE =.(a)如图4,点B 在第三象限内.在Rt ABC 中,1290,90ACB CAB ∠+∠=︒∠+∠=︒,∴2CAB∠=∠∴AE BE CE ==,又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒,而AEH CEO∠=∠∴AHE COE ≌,∴142HE OE OH ===∴225AE AH HE =+=,∴5BE =,∴9OB BE OE =+=(b)如图5,点B 在第一象限内.在Rt ABC 中90,90ACB CAB CBO ABE ∠+∠=︒∠+∠=︒∴CAB ABE ∠=∠,∴AE BE CE ==.又∵,AH OB OC OB ⊥⊥,∴90AHE COE ∠=∠=︒而AEH CEO ∠=∠,∴AHE COE≌∴142HE OE OH ===∴5AE ==,∴5BE =,∴1OB BE OE =-=综上所述,OB 的长为44+4,9,1.【点睛】本题涉及到等腰三角形、等角的余角相等、利用切割法求四边形的面积和相似三角形等知识,综合性较强.在题中已知两个三角形相似时,要分情况考虑.10.(2020·河南中考真题)小亮在学习中遇到这样一个问题:如图,点D 是弧BC 上一动点,线段8,BC cm =点A 是线段BC 的中点,过点C 作//CF BD ,交DA 的延长线于点F .当DCF ∆为等腰三角形时,求线段BD 的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:()1根据点D 在弧BC 上的不同位置,画出相应的图形,测量线段,,BD CD FD 的长度,得到下表的几组对应值.操作中发现:①"当点D 为弧BC 的中点时, 5.0BD cm =".则上中a 的值是②"线段CF 的长度无需测量即可得到".请简要说明理由;()2将线段BD 的长度作为自变量x CD ,和FD 的长度都是x 的函数,分别记为CD y 和FD y ,并在平面直角坐标系xOy 中画出了函数FD y 的图象,如图所示.请在同一坐标系中画出函数CD y 的图象;()3继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当DCF ∆为等腰三角形时,线段BD 长度的近似值.(结果保留一位小数).【答案】(1)①5.0;②见解析;(2)图象见解析;(3)图象见解析;3.5cm 或5.0cm 或6.3cm ;【解析】【分析】(1)①点D 为弧BC 的中点时,△ABD ≌△ACD ,即可得到CD=BD ;②由题意得△ACF ≌△ABD ,即可得到CF=BD ;(2)根据表格数据运用描点法即可画出函数图象;(3)画出CF y 的图象,当DCF ∆为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD 的近似值.【详解】解:(1)①点D 为弧BC 的中点时,由圆的性质可得:AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACD ,∴CD=BD=5.0,∴ 5.0a =;②∵//CF BD ,∴BDA CFA ∠=∠,∵BDA CFA BAD CAF AD AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACF ≌△ABD ,∴CF=BD ,∴线段CF 的长度无需测量即可得到;(2)函数CD y的图象如图所示:(3)由(1)知=CF BD x =,画出CF y 的图象,如上图所示,当DCF ∆为等腰三角形时,①CF CD =,BD 为CF y 与CD y 函数图象的交点横坐标,即BD=5.0cm ;②CF DF =,BD 为CF y 与DF y 函数图象的交点横坐标,即BD=6.3cm ;③CD DF =,BD 为CD y 与DF y 函数图象的交点横坐标,即BD=3.5cm ;综上:当DCF ∆为等腰三角形时,线段BD 长度的近似值为3.5cm 或5.0cm 或6.3cm .【点睛】本题考查一次函数结合几何的应用,学会用描点法画出函数图象,熟练掌握一次函数的性质以及三角形全等的判定及性质是解题的关键.11.(2020·河北中考真题)如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN-匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQ B∠=∠.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC∆的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当03x≤≤及39x≤≤时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ∠扫描APQ∆区域(含边界),扫描器随点P从M到B再到N共用时36秒.若94AK=,请直接..写出点K被扫描到的总时长.【答案】(1)3;(2)43MP=;(3)当03x≤≤时,24482525d x=+;当39x≤≤时,33355d x=-+;(4)23t s=【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得2APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,根据SS上下=45可得24=9APQABCS APS AB∆∆⎛⎫= ⎪⎝⎭,可得23APAB=,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度=936=14,然后先求出从Q 平移到K 耗时,再求出不能被扫描的时间段即可求出时间.【详解】(1)当点P 在BC 上时,PA ⊥BC 时PA 最小,∵AB=AC ,△ABC 为等腰三角形,∴PA min =tanC·2BC =34×4=3;(2)过A 点向BC 边作垂线,交BC 于点E,S 上=S △APQ ,S 下=S 四边形BPQC ,∵APQ B ∠=∠,∴PQ ∥BC ,∴△APQ ∽△ABC ,∴AP AD PQ AB AC BC==,∴2APQABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,当S S 上下=45时,24=9APQ ABC S AP S AB ∆∆⎛⎫= ⎪⎝⎭,∴23AP AB =,AE=2BC ·tan 3C =,根据勾股定理可得AB=5,∴2253AP MP AB +==,解得MP=43;(3)当0≤x≤3时,P 在BM 上运动,P 到AC 的距离:d=PQ·sinC ,由(2)可知sinC=35,∴d=35PQ ,∵AP=x+2,∴25AP x PQ AB BC+==,∴PQ=285x +⨯,∴d=23855x +⨯⨯=24482525x +,当3≤x≤9时,P 在BN 上运动,BP=x-3,CP=8-(x-3)=11-x ,d=CP·sinC=35(11-x )=-35x+335,综上()()24480325253333955x x d x x ⎧+≤≤⎪⎪=⎨⎪-+≤≤⎪⎩;(4)AM=2<AQ=94,移动的速度=936=14,①从Q 平移到K ,耗时:92414-=1秒,②P 在BC 上时,K 与Q 重合时CQ=CK=5-94=114,∵∠APQ+∠QPC=∠B+∠BAP ,APQ B∠=∠∴∠QPC=∠BAP ,又∵∠B=∠C ,∴△ABP ∽△PCQ ,设BP=y ,CP=8-y ,AB BP PC CQ =,即51184y y =-,整理得y 2-8y=554-,(y-4)2=94,解得y 1=52,y 2=112,52÷14=10秒,112÷14=22秒,∴点K 被扫描到的总时长36-(22-10)-1=23秒.【点睛】本题考查了相似三角形的判定和性质,锐角三角函数,一次函数的应用,结合知识点灵活运用是解题关键.12.(2020·湖南衡阳?中考真题)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.【答案】(1)t=1;(2)存在,143t =,理由见解析;(3)可能,3455t ≤≤或4533t ≤≤或35t ≤≤理由见解析【解析】【分析】(1)用待定系数法求出直线AC 的解析式,根据题意用t 表示出点H 的坐标,代入求解即可;(2)根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,用待定系数法求出直线AB 的解析式,求出点H 落在BC 边上时的t 值,求出此时重叠面积为169﹤9136,进一步求出重叠面积关于t 的表达式,代入解t 的方程即可解得t 值;(3)由已知求得点D (2,1),AC=,结合图形分情况讨论即可得出符合条件的时长.【详解】(1)由题意,A(0,2),B(-4,0),C(4,0),设直线AC 的函数解析式为y=kx+b ,将点A 、C 坐标代入,得:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =-+,当点H 落在AC 边上时,点E(3-t ,0),点H (3-t ,1),将点H 代入122y x =-+,得:11(3)22t =--+,解得:t=1;(2)存在,143t =,使得9136S =.根据已知,当点F 运动到点O 停止运动前,重叠最大面积是边长为1的正方形的面积,即不存在t ,使重叠面积为9136S =,故t ﹥4,设直线AB 的函数解析式为y=mx+n ,将点A 、B 坐标代入,得:402m n n -+=⎧⎨=⎩,解得:122m n ⎧=⎪⎨⎪=⎩,∴直线AC 的函数解析式为122y x =+,当t ﹥4时,点E (3-t ,0)点H (3-t ,t-3),G(0,t-3),当点H 落在AB 边上时,将点H 代入122y x =+,得:13(3)22t t -=-+,解得:133t =;此时重叠的面积为221316(3)(3)39t -=-=,∵169﹤9136,∴133﹤t ﹤5,如图1,设GH 交AB 于S ,EH 交AB 于T,将y=t-3代入122y x =+得:1322t x -=+,解得:x=2t-10,∴点S(2t-10,t-3),将x=3-t 代入122y x =+得:11(3)2(7)22y t t =-+=-,∴点T 1(3,(7))2t t --,∴AG=5-t ,SG=10-2t ,BE=7-t ,ET=1(7)2t -,211(7)24BET S BE ET t ∆==- ,21(5)2ASG S AG SG t ∆==- 所以重叠面积S=AOB BET ASG S S S ∆∆∆--=4-21(7)4t --2(5)t -=2527133424t t -+-,由2527133424t t -+-=9136得:1143t =,29215t =﹥5(舍去),∴143t =;(3)可能,35≤t≤1或t=4.∵点D 为AC 的中点,且OA=2,OC=4,∴点D (2,1),AC=,易知M 点在水平方向以每秒是4个单位的速度运动;当0﹤t ﹤12时,M 在线段OD 上,H 未到达D 点,所以M 与正方形不相遇;当12﹤t ﹤1时,12+12÷(1+4)=35秒,∴t =35时M 与正方形相遇,经过1÷(1+4)=15秒后,M 点不在正方行内部,则3455t ≤≤;当t=1时,由(1)知,点F 运动到原E 点处,M 点到达C 处;当1≤t≤2时,当t=1+1÷(4-1)=43秒时,点M 追上G 点,经过1÷(4-1)=13秒,点M 都在正方形EFGH 内(含边界),4533t ≤≤当t=2时,点M 运动返回到点O 处停止运动,当t=3时,点E 运动返回到点O 处,当t=4时,点F 运动返回到点O 处,当35t ≤≤时,点M 都在正方形EFGH 内(含边界),综上,当3455t ≤≤或4533t ≤≤或35t ≤≤时,点M 可能在正方形EFGH 内(含边界).【点睛】本题考查了一次函数与几何图形的综合,涉及求一次函数的解析式、正方形的性质、直角三角形的性质、不规则图形的面积、解一元二次方程等知识,解答的关键是认真审题,提取相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,进而推理、探究、发现和计算.13.(2020·黑龙江哈尔滨?中考真题)已知,在平面直角坐标系中,点O 为坐标原点,直线AB 与x 轴的正半轴交于点A ,与y 轴的负半轴交于点B ,OA OB =,过点A 作x 轴的垂线与过点O 的直线相交于点C ,直线OC 的解析式为34y x =,过点C 作CM y ⊥轴,垂足为,9M OM =.(1)如图1,求直线AB 的解析式;(2)如图2,点N 在线段MC 上,连接ON ,点P 在线段ON 上,过P 点作PD x ⊥轴,垂足为D ,交OC 于点E ,若NC OM =,求PE OD的值;(3)如图3,在(2)的条件下,点F 为线段AB 上一点,连接OF ,过点F 作OF 的垂线交线段AC 于点Q ,连接BQ ,过点F 作x 轴的平行线交BQ 于点G ,连接PF 交x 轴于点H ,连接EH ,若,DHE DPH GQ FG ∠=∠-=,求点P 的坐标.【答案】(1)12y x =-;(2)94;(3)1236(,)55P .【解析】【分析】(1)根据题意求出A ,B 的坐标即可求出直线AB 的解析式;(2)求出N (3,9),以及ON 的解析式为y=3x ,设P (a ,3a ),表达出PE 及OD 即可解答;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,先证明四边形OSRA 为矩形,再通过边角关系证明△OFS ≌△FQR ,得到SF=QR ,进而证明△BSG ≌△QRG ,得到SG=RG=6,设FR=m ,根据GQ FG -=,以及在Rt △GQR 中利用勾股定理求出m 的值,得到FS=8,AR=4,证明四边形OSFT 为矩形,得到OT=FS=8,根据∠DHE=∠DPH ,利用正切函数的定义得到DE DH DH PD=,从而得到DH=32a ,根据∠PHD=∠FHT ,得到HT=2,再根据OT=OD+DH+HT ,列出关于a 的方程即可求出a 的值,从而得到点P 的坐标.【详解】解:(1)∵CM ⊥y 轴,OM=9,∴当y=9时,394x =,解得:x=12,∴C (12,9),∵CA ⊥x 轴,则A (12,0),∴OB=OA=12,则B (0,-12),设直线AB 的解析式为y=kx+b ,∴12012k b b +=⎧⎨=-⎩,解得:112k b =⎧⎨=-⎩,∴12y x =-;(2)由题意可得,∠CMO=∠OAC=∠MOA=90°,∴四边形MOAC 为矩形,∴MC=OA=12,∵NC=OM ,∴NC=9,则MN=MC-NC=3,∴N (3,9)设直线ON 的解析式为1y k x =,将N (3,9)代入得:193k =,解得:13k =,∴y=3x ,设P (a ,3a )∵PD ⊥x 轴交OC 于点E ,交x 轴于点D ,∴3(,)4E a a ,(a,0)D ,∴PE=39344a a a -=,OD=a ,∴9944a PE OD a ==;(3)如图,设直线GF 交CA 延长线于点R ,交y 轴于点S ,过点F 作FT ⊥x 轴于点T ,∵GF ∥x 轴,∴∠OSR=∠MOA=90°,∠CAO=∠R=90°,∠BOA=∠BSG=90°,∠OAB=∠AFR ,∴∠OSR=∠R=∠AOS=∠BSG=90°,则四边形OSRA为矩形,∴OS=AR,SR=OA=12,∵OA=OB,∴∠OBA=∠OAB=45°,∴∠FAR=90°-∠AFR=45°,∴∠FAR=∠AFR,∴FR=AR=OS,∵QF⊥OF,∴∠OFQ=90°,∴∠OFS+∠QFR=90°,∵∠SOF+∠OFS=90°,∴∠SOF=∠QFR,∴△OFS≌△FQR,∴SF=QR,∵∠SFB=∠AFR=45°,∴∠SBF=∠SFB,∴BS=SF=QR,∵∠SGB=∠RGQ,∴△BSG≌△QRG,∴SG=RG=6,设FR=m,则AR=m,∴QR=SF=12-m,∴=,-=,∵GQ FG∴66m m +-=+,∵QG 2=GR 2+QR 2,即222(6)6(12)m m +=+-,解得:m=4,∴FS=8,AR=4,∵∠OAB=∠FAR ,FT ⊥OA ,FR ⊥AR ,∴FT=FR=AR=4,∠OTF=90°,∴四边形OSFT 为矩形,∴OT=FS=8,∵∠DHE=∠DPH ,∴tan ∠DHE=tan ∠DPH ,∴DE DH DH PD=,由(2)可知,DE=34a ,PD=3a ,∴343a DH DH a=,解得:DH=32a ,∴tan ∠PHD=3232PD a DH a ==,∵∠PHD=∠FHT ,∴tan ∠FHT=2TF HT =,∴HT=2,∵OT=OD+DH+HT ,∴3282a a ++=,∴a=125,∴1236(,)55P 【点睛】本题考查了一次函数与几何综合问题,涉及了一次函数解析式的求法,矩形的判定与性质,全等三角形的判定与性质以及锐角三角函数的定义等知识点,第(3)问难度较大,解题的关键是正确做出辅助线,熟悉几何的基本知识,综合运用全等三角形以及锐角三角函数的概念进行解答.类型二与平行四边形有关14.(2022·山东泰安)如图,四边形ABCD 为平行四边形,则点B 的坐标为________.【答案】()2,1--【分析】根据平行四边形的性质以及点的平移即可得出结论.【详解】解: 四边形ABCD 为平行四边形,∴DA CB ∥,即将D 点平移到A 的过程与将C 点平移到B 的过程保持一致,将D 点平移到A 的过程是::134x --=-(向左平移4各单位长度);:220y -=(上下无平移);∴将C 点平移到B 的过程按照上述一致过程进行得到()24,1B --,即()2,1B --,故答案为:()2,1--.【点睛】本题考查平行四边形的性质及点的平移,掌握点的平移的代数表示是解决问题的关键.15.(2022·甘肃武威)如图1,在菱形ABCD 中,60A ∠=︒,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为()AB .C .D .【答案】B【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A=60°,∴△ABD 为等边三角形,设AB=a ,由图2可知,△ABD 的面积为∴△ABD 的面积24a ==解得:a=故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.16.(2020·黑龙江牡丹江?中考真题)如图,已知直线AB 与x 轴交于点A ,与y 轴交于点B ,线段OA 的长是方程27180x x --=的一个根,12OB OA =.请解答下列问题:(1)求点A ,B 的坐标;(2)直线EF 交x 轴负半轴于点E ,交y 轴正半轴于点F ,交直线AB 于点C .若C 是EF 的中点,6OE =,反比例函数k y x=图象的一支经过点C ,求k 的值;(3)在(2)的条件下,过点C 作CD OE ⊥,垂足为D ,点M 在直线AB 上,点N 在直线CD 上.坐标平面内是否存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形?若存在,请写出点P 的个数,并直接写出其中两个点P 的坐标;若不存在,请说明理由.【答案】(1)A (9,0),B (0,92);(2)-18;(3)存在5个,(9,12)或(9,-12)或(1,0)或(-7,4)或(-15,0).【解析】【分析】(1)解一元二次方程,得到点A 的坐标,再根据12OB OA =可得点B 坐标;(2)利用待定系数法求出直线AB 的表达式,根据点C 是EF 的中点,得到点C 横坐标,代入可得点C 坐标,根据点C 在反比例函数图像上求出k 值;(3)画出图形,可得点P 共有5个位置,分别求解即可.【详解】解:(1)∵线段OA 的长是方程27180x x --=的一个根,解得:x=9或-2(舍),而点A 在x 轴正半轴,∴A (9,0),∵12OB OA =,∴B (0,92);(2)∵6OE =,∴E (-6,0),设直线AB 的表达式为y=kx+b ,将A 和B 代入,得:0992k b b =+⎧⎪⎨=⎪⎩,解得:1292k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴AB 的表达式为:1922y x =-+,∵点C 是EF 的中点,∴点C 的横坐标为-3,代入AB 中,y=6,则C (-3,6),∵反比例函数k y x=经过点C ,则k=-3×6=-18;(3)存在点P ,使以D ,M ,N ,P 为顶点的四边形是正方形,如图,共有5种情况,在四边形DM 1P 1N 1中,M 1和点A 重合,∴M 1(9,0),此时P 1(9,12);在四边形DP 3BN 3中,点B 和M 重合,可知M 在直线y=x+3上,联立:31922y x y x =+⎧⎪⎨=-+⎪⎩,解得:14x y =⎧⎨=⎩,∴M (1,4),∴P 3(1,0),同理可得:P 2(9,-12),P 4(-7,4),P 5(-15,0).故存在点P 使以D ,M ,N ,P 为顶点的四边形是正方形,点P 的坐标为P 1(9,12),P 2(9,-12),P 3(1,0),P 4(-7,4),P 5(-15,0).【点睛】本题考查了解一元二次方程,一次函数表达式,正方形的性质,反比例函数表达式,难度较大,解题的关键是根据图像画出符合条件的正方形.类型三最值问题17.(2020·江苏宿迁?中考真题)如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为()A.455B C.523D.655【答案】B【解析】【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【详解】解:作QM⊥x轴于点M,Q′N⊥x轴于N,设Q(m,122m-+),则PM=1m﹣,QM=122m-+,∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N ,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN(AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣,∴ON=1+PN=132m -,∴Q′(132m -,1m ﹣),∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5,当m=2时,OQ′2有最小值为5,∴OQ′故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键18.(2020·湖南永州?中考真题)已知点()00,P x y 和直线y kx b =+,求点P 到直线y kx b =+的距离d可用公式d =C 的圆心C 的坐标为()1,1,半径为1,直线l 的表达式为26y x =-+,P 是直线l 上的动点,Q 是C 上的动点,则PQ 的最小值是()A .355B .3515-C .6515-D .2【答案】B 【解析】【分析】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,利用公式计算即可.【详解】过点C 作直线l 的垂线,交C 于点Q ,交直线l 于点P ,此时PQ 的值最小,如图,∵点C 到直线l 的距离()00222116355112kx y b d k -+-⨯-+==++-,C 半径为1,∴PQ 的最小值是3515-,故选:B.【点睛】此题考查公式的运用,垂线段最短的性质,正确理解公式中的各字母的含义,确定点P与点Q最小时的位置是解题的关键.A B-,在x19.(2020·辽宁鞍山?中考真题)如图,在平面直角坐标系中,已知(3,6),(2,2)CD=,线段CD在x轴上平移,当轴上取两点C,D(点C在点D左侧),且始终保持1+的值最小时,点C的坐标为________.AD BC【答案】(-1,0)【解析】【分析】作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,得到此时AD+BC的值最小,求出直线AB″,得到点D坐标,从而可得点C坐标.【详解】解:如图,作点B关于x轴的对称点B′,将B′向右平移1个单位得到B″,连接AB″,与x轴交于点D,过点B′作AB″的平行线,与x轴交于点C,可知四边形B′B″DC为平行四边形,则B′C=B″D,由对称性质可得:BC=B′C,∴AD+BC=AD+B′C=AD+B″D=AB″,则此时AB″最小,即AD+BC最小,∵A(3,6),B(-2,2),∴B′(-2,-2),∴B″(-1,-2),设直线AB″的表达式为:y=kx+b,则632k bk b=+⎧⎨-=-+⎩,解得:2kb=⎧⎨=⎩,∴直线AB″的表达式为:y=2x,令y=0,解得:x=0,即点D坐标为(0,0),∴点C坐标为(-1,0),故答案为:(-1,0).【点睛】本题考查了轴对称的性质,最短路径问题,一次函数表达式,解题的关键是找到AD+BC最小时的情形20.(2020•连云港)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=34x﹣3与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.【解析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD =4,OE =3,∴DE =32+42=5,∵∠MDN =∠ODE ,∠MND =∠DOE ,∴△DNM ∽△DOE ,∴MN OE=DM DE,∴MN 3=35,∴MN =95,当点C 与C′重合时,△C′DE 的面积最小,最小值=12×5×(95−1)=2,故答案为2.21.(2020·江苏连云港?中考真题)如图,在平面直角坐标系xOy 中,半径为2的O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D 、E ,则CDE △面积的最小值为________.【答案】2【解析】【分析】如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN ⊥DE 于N .首先证明点C 的运动轨迹是以M 为圆心,1为半径的⊙M ,设⊙M 交MN 于C′.求出MN ,当点C 与C′重合时,△C′DE的面积最小.【详解】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=12OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=34x-3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,-3),∴OD=4,OE=3,∴5 DE===,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴MN DM OE DE=,∴3 35 MN=,∴95 MN=,当点C 与C′重合时,△C′DE 的面积最小,△C′DE 的面积最小值1951225⎛⎫=⨯⨯-= ⎪⎝⎭,故答案为2.【点睛】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.22.(2020·北京中考真题)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB=1.给出如下定义:平移线段AB ,得到⊙O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦12PP 和34P P ,则这两条弦的位置关系是;在点1234,,,P P P P 中,连接点A 与点的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =+上,记线段AB 到⊙O 的“平移距离”为1d ,求1d 的最小值;(3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到⊙O 的“平移距离”为2d ,直接写出2d 的取值范围.【答案】(1)平行,P 3;(2)32;(3)233922d ≤≤。
一次函数与几何综合(一)(讲义及答案)-最新教学文档

一次函数与几何综合(一)(讲义及答案)-最新教学文档一次函数与几何综合(一)(讲义)课前预习1. 小明认为,在一次函数y=kx+b 中,x 每增加 1,kx+b 就增加了k,y 也就增加了k.因此要想求出一次函数表达式中的k,只需要知道x 每增加1 个单位长度,y 增加的单位长度即可.例如:在如图所示的一次函数图象中,x 从1 变到 2 时,y 的值由3 变到 5,即x 每增加 1 个单位长度,y 就增加 2 个单位长度,因此k 的值就是 2.再结合b 为函数图象与y 轴交点纵坐标,可得b=1.故容易求出一次函数表达式为y=2x+1.请你用待定系数法验证小明的说法.请根据小明的思路,直接写出下图中一次函数的表达式.知识点睛1. 一次函数表达式:y=kx+b(k,b 为常数,k≠0)①k 是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM 即为,BM 即为,则k = AM.BM②b 是截距,表示直线与y 轴交点的纵坐标.2. 设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k2≠0.①若k1=k2,且b1≠b2,则直线l1l2;②若k1·k2= ,则直线l1l2.3. 一次函数与几何综合解题思路坐标一次函数几何图形①要求坐标,;②要求函数表达式,;③要研究几何图形,.3 = 3精讲精练1. 如图,点 B ,C 分别在直线 y =2x 和 y =kx 上,A ,D 是 x 轴上的两点,若四边形 A BCD 是正方形,则 k 的值为.第 1 题图第 2 题图2. 如图,点 A ,B 分别在直线 y =kx 和 y =-4x 上,C ,D 是 x 轴上的两点,若四边形 A BCD 是长方形,且 A B :AD =3:2,则 k 的值为.3. 如图,已知直线 l : y = - 3 x + 与 x 轴交于点 A ,与 y 轴 3交于点 B ,将△AOB 沿直线 l 折叠,点 O 落在点 C 处,则直线 A C 的表达式为.第 3 题图第 4 题图4.已知点 A 的坐标为(5,0),直线 y =x +b (b >0)与 y 轴交于点B ,连接 A B ,∠α=75°,则 b 的值为.5.如图,△OA B 是边长为2 的等边三角形,过点A 的直线y=-x+m与x轴交于点C,则点C的坐标为.6.在平面直角坐标系中,已知点P 的坐标为( -,0),直线P Q 的斜率为,则将直线P Q 绕点P逆时针旋转90°所得直线的表达式为.7.如图,直线l1 与x 轴、y 轴分别交于点A,B,OA=m,OB=n,将△AOB 绕点O 逆时针旋转90°得到△COD,CD 所在直线l2 与直线l1 交于点E,则l1l2;若直线l1,l2 的斜率分别为k1,k2,则k1·k2= .第7题图第8题图8.如图,直线y =-4 x + 8 与x 轴、y 轴分别交于点A,B,线段3AB 的垂直平分线交x 轴于点C,交AB 于点D,则直线CD 的表达式为.9.如图,在平面直角坐标系xOy 中放入一张长方形纸片ABCO,点D 在AB 边上,将纸片沿CD 翻折后,点B 恰好落在x 轴上的点B′处.若OC=9,OC=3,则折痕CD 所在直线的解CB 5析式为.第9题图第10 题图10.如图,直线y =-3x +2 3 与x 轴,y 轴分别交于点A 和点B,D 是y 轴上的一点,若将△DAB 沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处,则直线CD 的解析式为11.如图,在平面直角坐标系中,函数y=x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A' 的坐标为;猜想:若坐标平面内任一点P 的坐标为(m,n),则它关于直线l 的对称点P′的坐标为;应用:若已知两点B(-2,-5),C(-1,-3),试在直线l 上确定一点Q,使点Q到B,C 两点的距离之和最小,则此时点Q的坐标为.12. 如图,已知直线 l 1: y = 2 x + 8 与直线 l 2:y =-2x +16 相交于点 3 3C ,直线 l 1,l 2 与 x 轴分别交于点 A ,B ,长方形D EFG 的顶点 D ,E 分别在 l 1,l 2 上,顶点F ,G 都在 x 轴上,且点 G 与点 B 重合,则 S 长方形DEFG : S △ A BC = .【参考答案】课前预习1. 小明的说法正确,验证过程略y = 3x - 2 ,y=-2x + 2知识点睛1. 竖直高度,水平宽度2. ①∥;②-1,⊥3. ①利用函数表达式或线段长转坐标②待定系数法或k,b 的几何意义③坐标转线段长或k,b 的几何意义精讲精练1.232.453. y =-4.3x + 35. (1+ ,0)6. y = 3x+137. ⊥,-18. y =3x +7 4 49. y =-1x + 9 310. y = 3x - 2311. (1,3);(n,m);( -13 ,13) 5 512. 8:9。
一次函数与几何图形综合题(含答案)

一次函数与几何图形综合专题讲座思想方法小结 : (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 :(1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交; 当b =0时,即-kb=0时,直线经过原点; 当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0)当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系.①k 1≠k 2⇔y 1与y 2相交; ②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行;④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.例题精讲:1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB(1) 求AC(2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系,并证明你的结论。
一次函数与几何综合

一次函数与几何综合例1:如图,在平面直角坐标系xOy 中,已知矩形纸片ABCO 的顶点AC 分别在x 轴、y 轴的正半轴上,且BC =15.将纸片沿过点C 的直线折叠后,点B 恰好落在x 轴上的点B ′处,折痕交AB 于点D .若34OC OB'=则直线CD 的表达式为____________. 【思路分析】1. 由折叠性质得,△BCD ≌△B′CD ,则B′C =BC =OA =15,=2. 设AD =t ,则B′D =BD =9-t ,在Rt △B′AD 中利用勾股定理可求出t =4,故D (15,4);3. 由C (0,9),D (15,4),可通过k ,b 的几何意义得到直线CD 的表达式:193y x =-+.例2:如图,点A 的坐标为(-2,0),点B 在直线122y x =-+上运动,则当线段AB 最短时,点B 的坐标为_____________.【思路分析】1. 如图,当AB ⊥l 时,线段AB 最短;2. 因为AB ⊥l ,所以1()12AB k ⋅-=-,故k AB =2,设l AB :y =2x +b ,把A (-2,0)代入,得b =4; 3. 联立可求得点B 的坐标为(-一、知识点睛1. 一次函数表达式:y =kx +b (k ,b 为常数,k ≠0)①k 是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释.坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为____________,BM 即为____________,则=AM k BM.②b 是截距,表示直线与y 轴交点的纵坐标.MAB2. 设直线l 1:y 1=k 1x +b 1,直线l 2:y 2=k 2x +b 2,其中k 1,k 2≠0.①若k 1=k 2,且b 1≠b 2,则直线l 1_____l 2; ②若k 1·k 2=_________,则直线l 1_____l 2.3. 一次函数与几何综合解题思路①要求坐标,______________________________________; ②要求函数表达式,________________________________; ③要研究几何图形,________________________________.二、精讲精练1. 如图,点B ,C 分别在直线y =2x 和y =kx 上,A ,D 是x轴上的两点,若四边形ABCD 是正方形,则k 的值为________.第1题图 第2题图 第3题图2. 如图,已知直线l:y x =x 轴交于点A ,与y 轴交于点B ,将△AOB 沿直线l 折叠,点O 落在点C 处,则直线AC 的表达式为__________________.3. 如图,在平面直角坐标系xOy 中放入一张长方形纸片ABCO ,点D 在AB 边上,将纸片沿CD4. 如图,直线l 1交x 轴、y 轴于A ,B 两点,OA =m ,OB =n ,将△AOB 绕点O 逆时针旋转90°得到△COD .CD 所在直线l 2与直线l 1交于点E ,则l 1____l 2;若直线l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=_______.5. 如图,直线483y x =-+分别交x 轴、y 轴于A ,B 两点,线段AB的垂直平分线交x 轴于点C ,交AB 于点D ,则点C 的坐标为____________.坐标几何图形一次函数6. 如图,在平面直角坐标系中,函数y =x 的图象l 是第一、三象限的角平分线.探索:若点A 的坐标为(3,1),则它关于直线l 的对称点A'的坐标为____________;猜想:若坐标平面内任一点P 的坐标为(m ,n ),则它关于直线l 的对称点P ′的坐标为____________;应用:若已知两点B (-2,-5),C (-1,-3),试在直线l 上确定一点Q ,使点Q 到B ,C 两点的距离之和最小,则此时点Q 的坐标为____________.7. 如图,已知直线l 1:2833y x =+与直线l 2:y =-2x +16相交于点C ,直线l 1,l 2分别交x 轴于A ,B 两点,矩形DEFG 的顶点DE 分别在l 1,l 2上,顶点F ,G 都在x 轴上,且点G 与点B 重合,那么S 矩形DEFG :S △ABC =_________.8. 如图,已知点A 的坐标为(2,0),点B 在直线y =-x 上运动,当线段AB 最短时,点B 的坐标为( ) A .(-1,1)B . ,C .(1,-1)D .( 9. 如图,在平面直角坐标系中,点A ,B 的坐标分别为A (4,0)B (0,-4),P 为y 轴上B 点下方的一点,且PB =m (m >0),以点P 为直角顶点,AP 为腰在第四象限内作等腰Rt △APM . (1)求直线AB 的解析式;(2)用含m 的代数式表示点M 的坐标;(3)若直线MB 与x 轴交于点Q ,求点Q 的坐标.1. 点B ,C 分别在直线y =2x 和直线y =kx 上,A ,D 是x 轴上的两点.若四边形ABCD 是长方形,且AB :AD =1:2,则k 的值为____________.2. 如图,一次函数y =-2x +4的图象与坐标轴分别交于A ,B 两点,把线段AB绕着点A 沿逆时针方向旋转90°,点B 落在点B ′处,则直线AB ′的表达式为______________________.3. 如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点A 的坐标是(4,0),P 为AB 边上一点,沿CP 折叠正方形,折叠后的点B 落在平面_____________,直线CP 的表达式为___________________.第3题图 第4题图4. 如图,点A 的坐标是(-2,0),点B 的坐标是(6,0),点C 在第一象限内,且△OBC 为等边三角形,直线BC 交y 轴于点D ,过点A 作直线AE ⊥BD ,垂足为点E ,交OC 于点F ,则点C 的坐标为_______,直线AE 的表达式为______________.5. 如图,在平面直角坐标系中,函数y =-x 的图象l 是第二、四象限的角平分线.实验与探究:由图观察易知A (0,2)关于直线l 的对称点A ′的坐标为(-2,0),请在图中分别标出B (-5,-3),C (-2,5)关于直线l 的对称点B ′,C ′的位置,并写出它们的坐标:B ′_________,C ′_________. 归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (m ,n )关于第二、四象限的角平分线l 的对称点P ′的坐标为______________. 运用与拓广:已知两点D (0,-3),E (1,-4),试在直线l 上确定一点Q ,使点Q 到D ,E 两点的距离之和最小,并求出点Q 的坐标.。
一次函数与几何图形综合题(含答案)

一次函数与几何图形综合题(含答案)近日,举行了一次关于一次函数与几何图形综合的专题讲座。
在思想方法方面,介绍了函数方法和数形结合法。
函数方法是通过观察运动和变化来分析数量关系,并将其抽象升华为函数模型,从而解决问题的方法。
数形结合法则是将数与形结合起来,分析研究并解决问题的一种思想方法,对于与函数有关的问题,使用数形结合法能够事半功倍。
在知识规律方面,讲座介绍了常数k和b对直线y=kx+b(k≠0)位置的影响。
当b大于0时,直线与y轴的正半轴相交;当b等于0时,直线经过原点;当b小于0时,直线与y轴的负半轴相交。
当k和b异号时,即b大于0时,直线与x轴正半轴相交;当k和b同号时,即k和b的乘积小于0时,直线与x轴负半轴相交。
当k大于0且b大于0时,图象经过第一、二、三象限;当k大于0且b等于0时,图象经过第一、三象限;当b大于0且b小于0时,图象经过第一、三、四象限;当k小于0且b大于0时,图象经过第一、二、四象限;当k小于0且b等于0时,图象经过第二、四象限;当b小于0且b小于0时,图象经过第二、三、四象限。
讲座还介绍了直线y=kx+b(k≠0)与直线y=kx(k≠0)的位置关系。
当b大于0时,将直线y=kx向上平移b个单位,即可得到直线y=kx+b;当b小于0时,将直线y=kx向下平移|b|个单位,即可得到直线y=kx+b。
另外,当k1不等于k2时,y1与y2相交;当k1等于k2且b1不等于b2时,y1与y2平行但不重合;当k1等于k2且b1等于b2时,y1与y2重合。
最后,讲座还通过一个例题对知识规律进行了精讲。
题目是直线y=-2x+2与x轴、y轴交于A、B两点,C在y轴的负半轴上,且OC=OB。
要求求出AC的解析式。
的性质,需要灵活运用几何知识和代数知识。
在解答过程中,要注意清晰的逻辑思路和准确的计算,避免出现错误。
2) 在OA的延长线上任取一点P,作PQ⊥BP,交直线AC于Q。
我们来探究一下BP与PQ的数量关系,并证明结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数与几何综合(一)(讲义)
课前预习
1.
若一次函数经过点A (2,-1)和点B (4,3),则该一次函数的表达式为____________.2.如图,一次函数的图象经过点A ,且与正比例函数y =-x 的图
象交于点B ,则该一次函数的表达式为____________.
第2题图
第3题图3.如图,直线334y x =-
+与x 轴、y 轴交于A ,B 两点,点C 是y 轴负半轴上一点,若BA =BC ,则直线AC 的表达式为__________.
4.如图,点A 在直线l 1:y =3x 上,且点A 在第一象限,过点A
作y 轴的平行线交直线l 2:y =x 于点B .
(1)设点A 的横坐标为t ,则点A 的坐标为_________,点B 的坐标为_________,线段AB 的长为__________;(用含t 的式子表示)
(2)若AB =4,则点A 的坐标是__________.
知识点睛
1.一次函数与几何综合的处理思路:
从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题.2.函数与几何综合问题中常见转化方式:
(1)借助表达式设出点坐标,将点坐标转化为横平竖直线段长,结合几何特征利用线段长列方程;
(2)研究几何特征,考虑线段间关系,通过设线段长进而表达点坐标,将点坐标代入函数表达式列方程. 精讲精练
1.如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象交于点C ,点C 的横坐标为1,则△OBC 的面积为_______
.
第1题图
第2题图2.如图,直线l 1:364
y x =+与y 轴相交于点N ,直线l 2:y =kx -3与直线l 1相交于点P ,与y 轴相交于点M ,若△PMN 的面积
为18,则直线l 2的表达式为______________.3.如图,一次函数123
y x =+的图象与y 轴交于点A ,与正比例函数y =kx 的图象交于第二象限内的点B ,若AB =OB ,则k 的值为__________
.
表达线段长:横平线段长,横坐标相减,右减左;竖直线段长,纵坐标相减,上减下.
4.如图,点A ,B 的坐标分别为(-8,0),(0,4),点C (a ,0)为
x 轴上一个动点,过点C 作x 轴的垂线,交直线AB 于点D ,若CD =5,则a 的值为_________.
第4题图
第5题图5.如图,直线y =kx +6与x 轴、y 轴分别交于点A ,B ,点A 的坐
标为(6,0),点C 的坐标为(4,0).若点P 是直线y =kx +6上的一个动点,当点P 的坐标为______________时,△OPC 的面积为4.
6.如图,在平面直角坐标系中,直线y =x +1与334
y x =-+相交于点A ,两直线与x 轴分别交于点B 和点C ,D 是直线AB 上的一个动点.当△BDC 的面积是△ABC 面积的2倍时,点D 的坐标为______________.
第6题图
第7题图7.如图,直线12
y x b =-+与x 轴、y 轴分别交于点A ,B ,与直线y =x 交于点M ,点M 的横坐标为2,点C 为线段AM 上一点,过点C 作x 轴的垂线,垂足为点D ,交直线y =x 于点E .若ED =4CD ,则点E 的坐标为________.
8.如图,直线AB :y =-x +20与y 轴交于点A ,与直线OB :13
y x =交于点B .点C 为线段OB 上一点,过点C 作y 轴的平行线交直线AB 于点D ,向y 轴作垂线,垂足为点E .若DC =2CE ,则点C 的坐标为__________.
9.如图,在平面直角坐标系中,点A ,C 和B ,D 分别在直线
132
y x =+和x 轴上,若△OAB ,△BCD 都是等腰直角三角形,∠OAB =∠BCD=90°,则点C 的坐标为___________.
10.如图,P ,Q 是直线122
y x =+上的两点,OP =OQ ,OP ⊥OQ ,则点Q 的坐标为__________.
11.如图,直线l 1:y =2x +1与直线l 2:y =mx +4相交于点P (1,b ),
垂直于x 轴的直线x =a 与直线l 1,l 2分别交于点A ,B ,若线段AB 的长为2,则a 的值为__________.
12.如图,直线l 1:34
y x 与直线l 2:y =-x +7相交于点A .点P 在x 轴正半轴上,过点P 作x 轴的垂线,与直线l 1,l 2分别交于点B ,C .设点P 的横坐标为t .
(1)当t =1时,求线段BC 的长;
(2)用含t 的式子表达BC 的长;
(3)若三个点B ,C ,P 中恰有一点是其他两点所连线段的中点,则称B ,C ,P 三点为“共谐点”.请直接写出使得B ,C ,P 三点成为“共谐点”的t 的值.
【参考答案】 课前预习
1.25
y x =-2.
2y x =+3.
122y x =
-4.(1)(t ,3t ),(t ,t ),2t (2)(2,6)
精讲精练
1.6
2.
332y x =--3.
13-4.
2或-185.
(4,2)或(8,-2)6.(237,307)或(377-,307-)7.(4,4)8.
(6,2)9.(30,18)
10.(45,125
)11.53或13
12.(1)214
BC =;(2)77(04)477(4)4
t t BC t t ⎧-+<⎪⎪=⎨⎪->⎪⎩≤;(3)当t 的值为145,5611
或28时,B ,C ,P 三点成为“共谐点”。