第八章 虚拟变量回归

合集下载

第八章 包含虚拟变量的回归模型

第八章 包含虚拟变量的回归模型

第八章 包含虚拟变量的回归模型一、虚拟变量的基本含义通常在回归分析中,因变量不仅受一些定量变量的影响,而且还受一些定性变量的影响,比如性别、种族、婚姻状况等等。

为了在模型中反映这些因素的影响,需要把定性因素进行“量化”。

通常是引进人工变量完成。

通过定性因素的属性类别,构造取值为0或者1的变量,如、 1代表男性, 0代表女性; 1代表某人是大学毕业, 0代表某人不是大学毕业,这类取值为0,1的变量称为虚拟变量(dummy variable )。

虚拟变量与定量变量一样可用于回归分析。

事实上,一个回归模型的解释变量可以仅仅是虚拟变量。

解释变量仅是虚拟变量的模型称为方差分析模型( analysis-of-variance models ) (ANOVA)。

例1:1i i Y D i βα=++ε,其中Y 表示职工工资,。

10i D ⎧=⎨⎩,本科学历,非本科学历这个模型与我们前面讨论过的双变量模型类似,但这里的解释变量是虚拟变量。

1(0)i E Y D β==,1(1)i E Y D βα==+显然,1β表示非大学毕业生的平均初职年薪,1βα+表示具有大学学历职工的平均工资,α代表二者之差。

回归模型中可以有同时有虚拟变量以及定量变量。

例2:考虑是否上过大学和工龄作为职工工资的模型:12i i i Y X D i ββαε=+++Y ,表示职工工资,X表示工龄,D同上。

含虚拟变量的模型只要扰动项符合古典假定,仍用OLS方法估计模型。

注意:虚拟变量系数显著性检验的意义::0H 0α=;:1H 0α≠。

同学们思考:这个检验在上面两个例子中分别具有何实际意义?二、虚拟变量的引入模型的方式 1、加法方式上面考察的例子都是加法方式。

注意虚拟变量模型的几何意义:以上述例2考察。

例3:如果上述职工工资方程(例2)中,学历考虑三个层次:高中以下、高中、大学及以上。

该如何建模?引进两个虚拟变量:,1 1 0 D ⎧=⎨⎩高中其他2 1 0 D ⎧=⎨⎩大学及以上其他121222Y X D D ββαα=++++ε请同学们分析模型的含义。

第八章 带虚拟变量的回归预测技术

第八章 带虚拟变量的回归预测技术

以Y为储蓄,X为收入,可令:
1990年前:Yi=1+2Xi+1i i=1,2…,n1
1990年后:Yi=1+2Xi+2i
i=1,2…,n2
则有可能出现下述四种情况中的一种:
• (1) 1=1 ,且2=2 ,即两个回归相同,称为重 合回归(Coincident Regressions);
• 分离异常因素的影响, 例如分析我国GDP的时间序列,必须 考虑“文革”因素对国民经济的破坏性影响, 剔除不可比 的“文革”因素。 • 检验不同属性类型对因变量的作用, 例如工资模型中的文 化程度、季节对销售额的影响。 • 提高模型的精度, 相当于将不同属性的样本合并, 扩大了样
本容量(增加了误差自由度, 从而降低了误差方差)。
• 前面没有考虑协变量——税后收入,重新 建立模型: • Yi = 1+2Di+3Xi+ui • 利用前例的数据, 分析得到如下结果:
ˆ 1506.244 228.9868D 0.0589 X Y i i i
se (188.0096) (107.0582) (0.0061) t (8.0115) ( 2.1388) (9.6417) p (.000) (.0611) (.000)
• 若在某研究中,需要考虑k个非定 量因素,每个因素有mi种互斥属性, 则在模型中应引入虚拟变量个数为:
(m
i 1
k
i
1)
• 虚拟变量回归模型及参数估计
例1男女个体消费者每年的食品支出(美元)
年龄 女性食品支出 女性税后收入 男性食品出 男性税后收入
<25 25-34
35-44 45-54 55-64 >65

第八章-虚拟变量回归

第八章-虚拟变量回归

1 高中 D2 0 其它
1 博士 D5 0 其它
1 大 学 D3 0 其 它
1 小 学 D6 0 其 它
则总体回归模型:
w 0 1 X 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6+u
17
二、用虚拟变量测量斜率变动
基本思想
引入虚拟变量测量斜率变动,是在所设立的模型中,将虚 拟解释变量与其它解释变量的乘积,作为新的解释变量出 现在模型中,以达到其调整设定模型斜率系数的目的。
可能的情形:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
18
(1)截距不变
模型形式:
意义:若α1显著,表明城市居民的平均人均可支配收入比农村 高α1元。但这种差异可能是由其它因素引起的,并不一定是由 户籍差异引起。
12
(2) 一个两属性定性解释变量和一个定量 解释变量
模型形式 Yi = f(Di,X i )+ μi 例如:Yi = 0 1 Di + X i + μi 1 城市 其中: Y-人均可支配收入;X-工作时间; Di 0 农村
会受到一些定性因素的影响,如性别、国籍、民族、自 然灾害和政治体制等。
问题:我们如何把这些定性想:将这些定性因素进行量化
由于定性变量通常表示某种属性是否存在,如是否男性、 是否经济特区、是否有色人和等。因此若该属性存在, 我们就将变量赋值为1,否则赋值为0,从而将定性因素 定量化。 计量经济学中,将取值为0和1的人工变量称为虚拟变量 (DUMMY)或哑元变量。通常用字母D或DUM表示。
7
一个例子(虚拟变量陷阱)
研究工资收入与学历之间的关系:

计量经济学第八章 虚拟变量回归

计量经济学第八章 虚拟变量回归
计量经济学
第八章
虚拟变量回归
1
第八章 虚拟变量回归
本章主要讨论:
●虚拟变量
●虚拟解释变量的回归
2
本章的教学目标





(1)深刻理解定性因素在计量经济分析中的 背景和含义; (2)明确虚拟变量在建立和估计计量经济模 型中的意义和作用; (3)熟练掌握引入和应用虚拟变量的基本思 想和方法; (4)能够运用虚拟变量模型作相应的经济实 证分析方面的应用; (5)掌握Eviews软件中相关内容的操作方法。
这表明三个时期居民储蓄增加额的回归方程在统计 意义上确实是不相同的。1996年以前收入每增加1 亿元,居民储蓄存款的平均增加0.1445亿元;在 2000年以后,则为0.4133亿元,已发生了很大变化。
20
上述模型与城乡居民储蓄存款与国民总收入之间 的散布图是吻合的,与当时中国的实际经济运行 状况也是相符的。 需要指出的是,在上述建模过程中,主要是从教 学的目的出发运用虚拟变量法则,没有考虑通货 膨胀因素。而在实证分析中,储蓄函数还应当考
单位:亿元
城乡居民 人民币储 蓄存款增 额 (YY) 2121.8 2517.8 3444.1 6315.3 8143.5 8858.5
年 份
城乡居民 国民总收 人民币储 蓄存款年 入 (GNI) 底余额 (Y) 3624.1 4038.2 4517.8 4860.3 5301.8 5957.4 210.6 281 399.5 532.7 675.4 892.5
(1,0) 天气阴 如:(D1 ,D2)= (0,1) 天气雨 (0,0) 其 他
29
虚拟变量数量的设置规则
1.若定性因素具有 m 个 (m 2) 相互排斥属性(或 几个水平),当回归模型有截距项时,只能引入

(完整版)第八章 虚拟变量回归 答案

(完整版)第八章 虚拟变量回归 答案

第八章 虚拟变量回归一、判断题1。

虚拟变量只能作为解释变量.(F)2。

引入虚拟变量后,用普通最小二乘法得到的估计量仍是无偏的。

( T )3.引入虚拟变量的个数与模型有无截距项无关.(F )4。

虚拟变量用来表示某些具有若干属性的变量.(T)5。

引入虚拟变量的个数与样本容量大小有关。

(F )二、单项选择题1.设消费函数011t t t y a a D b x u =+++,其中虚拟变量10D ⎧=⎨⎩东中部西部,如果统计检验表明10a =成立,则东中部的消费函数与西部的消费函数是( D ).A. 相互平行的 B 。

相互垂直的 C. 相互交叉的 D 。

相互重叠的2.虚拟变量( A )A 。

主要来代表质的因素,但在有些情况下可以用来代表数量因素B 。

只能代表质的因素C 。

只能代表数量因素D.只能代表季节影响因素3。

分段线性回归模型的几何图形是( D )A 。

平行线 B. 垂直线 C 。

光滑曲线 D. 折线4.如果一个回归模型中(包含截距项),对一个具有m 个特征的质的因素要引入虚拟变量数目为( B ).A.m B 。

m-1 C 。

m —2 D.m+15.设某商品需求模型为01t t t y b b x u =++,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为( D )。

A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性6.设消费函数为i i i 33i 22i 11o i u bx D D D y +++++=αααα,其中y 为消费,x 为收入,虚拟变量⎩⎨⎧=⎩⎨⎧=⎩⎨⎧=其他季度第三季度,其他季度第二季度,其他季度第一季度 0 0 0 321D 1D 1D 1,该模型中包含了几个定性影响因素?( A )。

A 。

1B 。

2C 。

3D 。

47。

设消费函数为i i i o i u Dx b x b D y ++++=101αα,其中虚拟变量⎩⎨⎧=农村家庭城镇家庭 0 1D ,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为( A ).A 。

计量经济学第八章关于虚拟变量的回归.

计量经济学第八章关于虚拟变量的回归.
年 薪 Y 女教授
类的截距。
2
2:级差截距系数
教龄X
1
0
薪金与性别:估计结果
1,若是男性 Di 0,若是女性
ˆ 17.969 1.371X 3.334D Y i i i se : (0.192) (0.036) (0.155) t : (93.61) (38.45) (21.455) r 2 0.993
一、虚拟变量的性质

例:教授薪金与性别、教龄的关系

男教授平均薪金和女 教授平均薪金水平相 差2,但平均年薪对 教龄的变化率是一样 的
Yi=1+2Di+Xi+I (1) 1,若是男性 D 其中:Yi=教授的薪金, Xi=教龄, Di=性别 0,若是女性 i 女教授平均薪金:E(Yi | X i , Di 0) 1 X i 被赋予0值的 男教授平均薪金:E(Yi | X i , Di 1) (1 2) X i 类别是基底(基 准),1是基底 男教授

比较英国在第二次大战后重建时期和重建后时期的总 储蓄-收入关系是否发生变化。数据如表。 Yt 1 2 Dt 1 X t 2 ( Dt X t ) t
D=1,重建时期
级差截距:区分两 个时期的截距 级差斜率系数:区分 两个时期的斜率 =0,重建后时期
D=1 D=0
E(Yt | Dt 0, X t ) 1 1 X t E(Yt | Dt 1, X t ) (1 2 ) ( 1 2 ) X t
男教授平均薪金水平比 女教授显著高$3.334K (男:21.3,女:17.969)
1,若是女性 Di 0,若是男性
ˆ 21.303 1.371X 3.334D Y i i i se : (0.182) (0.036) (0.155) t : (117.2) (38.45) (21.455)

9第八章 虚拟变量回归模型

9第八章 虚拟变量回归模型
说明 X i 变动一个单位,机会比率对数平均变化 2 个单位,
Logit 模型的估计
区分两类数据:
(1)个体水平数据
购房概率 p 0 0 1 1
收入 X(千美元) 6 8 10 12
如果
pi
0,
Zi
ln
0 1
pi
1,
Zi
ln
1 0
可见,Z 表达式无意义,无法用OLS,需用ML(最大似然法)
冰箱销售量(千台) FRIG 1317 1615 1662 1295 1271 1555 1639 1238 1277 1258 1417 1185 1196 1410 1417 919 943 1175 1269
耐用品支出(10亿美元) DUR 252.6 272.4 270.9 273.9 268.9 262.9 270.9 263.4 260.6 231.9 242.7 248.6 258.7 248.4 255.5 240.4 247.7 249.1 251.8
4 回归分析操作命令: equation eq.ls Frig c Dur D1 D2 D3
提问 根据回归分析结果,发现存在什么问题?如何修改回归模型?
8.4 虚拟被解释变量的回归模型
【例】 研究是否购买住房与收入水平的关系。
设是否购房为被解释变量,用 Y 表示;收入为解释变量, 用 X 表示。
1 变量分析:
将DUR作为解释变量;FRIG作为被解释变量; 引入3个季度虚拟变量D1,D2,D3。 (虚拟变量数 = 属性数 – 1 )
2 季度虚拟变量的赋值规则:
D1=
1 (第1季度) 0 (其他季度)
D3=
1 (第3季度) 0 (其他季度)
D2=

第八章 虚拟变量实验报告

第八章 虚拟变量实验报告

第八章虚拟变量实验报告一、研究目的改革开放以来, 我国经济保持了长期较快发展, 我国对外贸易规模也日益增长。

尤其是2002年中国加入WTO之后, 我国对外贸易迅速扩张。

2012年, 我国进出口总值38667.6亿美元, 与上年同期相比增长6.2%, 我国贸易总额首次超过美国, 成为世界贸易规模最大的国家。

为了考察我国对外贸贸易与国内生产总值的关系是否发生变化, 以国内生产总值代表经济整体发展水平, 以对外贸易总额代表对外贸易发展水平, 分析我国对外贸易发展受国内生产总值的影响程度。

二、模型设定为研究我国对外贸易发展规模受我国总体经济发展程度影响, 引入国内生产总值为自变量。

设定模型为:+β1X t+ U tY t=β参数说明:Yt——对外贸易总额(单位: 亿元)Xt——国内生产总值(单位: 亿元)U t——随机误差项收集到数据如下(见表2-1)1993 11271 35333.92 2007 166740.2 265810.31 1994 20381.9 48197.86 2008 179921.5 314045.43 1995 23499.9 60793.73 2009 150648.1 340902.81 1996 24133.8 71176.59 2010 201722.1 401512.8 1997 26967.2 78973.03 2011 236402 472881.56 1998 26693.823 73617.66322注: 资料来源于《中国统计年鉴》1986-2012。

为了研究1985-2011年期间我国对外贸易总额随国内生产总值的变化规律是否有显著不同, 考证对外贸易与国内生产总值随时间变化情况, 如下图所示。

图2-1 对外贸易总额(Y)与国内生产总值(X)随时间变化趋势图从图2-1中, 可以看出对外贸易总额明显表现出了阶段特征: 在2002年、2007年和2009年有明显的转折点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yi = ( 0 + 1 ) + X i + μi Yi = 0 + X i + μi
城市 农村
21
Y
X
共同的特征:截距发生改变(?)
22
(3)一个定性解释变量(两种以上 属性)和一个定量解释变量的情形
模型形式 Yi = f ( X i, D1, D2, ...) + μi (如:民族有56种特性;季度有4种特性) 例如: 啤酒售量Y、人均收入X 、季度D; Yi 0 1D1 2 D2 3 D3 X i i 1 一季度 1 其中: D1 D2 0 其 它 0 1 三季度 D3 0 其 它 二季度 其 它
8
“0”和“1”选取原则
虚拟变量取“1”或“0”的原则,应从分析问 题的目的出发予以界定。
从理论上讲,虚拟变量取“0”值通常代表比较 的基础类型;而虚拟变量取“1”值通常代表被 比较的类型。
“0”代表基期(比较的基础,参照物);
“1”代表报告期(被比较的效应)。
9
例如,比较收入时考察性别的作用。当研究男性收入是否 高于女性时,是将女性作为比较的基础(参照物),故有 男性为“1”,女性为“0”。
加法方式引入 = 0 + 1D 乘法方式引入 = 1 + 2 D
实质:加法方式引入虚拟变量改变的是截距;
乘法方式引入虚拟变量改变的是斜率。
17
一、加法类型
以加法方式引入虚拟变量时,主要考虑的问 题是定性因素的属性和引入虚拟变量的个数。
分为四种情形讨论:
(1)解释变量只有一个定性变量而无定量变量, 而且定性变量为两种相互排斥的属性; ( 2 )解释变量分别为一个定性变量(两种属性)
1 反常年份 其中: Y 消费支出;X 收入; Dt 0 正常年份 反常年份 E Yt | X t , Dt 1 0 1 ( 1 2 ) X t 正常年份 E Yt | X t , Dt 0 1 X t 在正常年份基础上比较,截距和斜率系数都改变,为什么?
28
加法方式引入虚拟变量的主要作用为: 1.在有定量解释变量的情形下,主要改变方程
截距;
2.在没有定量解释变量的情形下,主要用于方
差分析。
29
二、乘法类型
基本思想
以乘法方式引入虚拟变量时,是在所设立的模型中,将虚拟 Xi 解释变量与其它解释变量的乘积,作为新的解释变量出现在
模型中,以达到其调整设定模型斜率系数的目的。或者将模 型斜率系数表示为虚拟变量的函数,以达到相同的目的。
6
虚拟变量的定义
计量经济学中,将取值为0和1的人工变量称为虚 拟变量。虚拟变量也称:哑元变量、定性变量等 等。通常用字母D或DUM加以表示(英文中虚拟 或者哑元Dummy的缩写)。 对定性变量的量化可采用虚拟变量的方式实现。
7
二、虚拟变量设置规则
虚拟变量的设置规则涉及三个方面: 1.“0”和“1”选取原则 2.属性(状态、水平)因素与设置虚拟变量 数量的关系 3.虚拟变量在回归分析中的角色以及作用等 方面的问题
例1
(1)
1 男 D= 0 女
1 改革开放以后 (2) D = 0 改革开放以前
1 天气阴 1 天气雨 ( 3) D1 = ( 4) D2 = 0 其 他 0 其 他
问题: 为何只选0、1,选2、3、4行吗?为什么?
பைடு நூலகம்10
属性的状态(水平)数与虚拟变量 数量的关系
定性因素的属性既可能为两种状态,也可能为多种 状态。例如,性别(男、女两种)、季节(4种状 态),地理位置(东、中、西部),行业归属,所 有制,收入的分组等。
3
第八章 虚拟变量回归
本章主要讨论:
●虚拟变量
●虚拟解释变量的回归
●虚拟被解释变量的回归(选讲,不包括)
4
第一节 虚拟变量
本节基本内容:
●基本概念 ●虚拟变量设置规则
5
一、基本概念
定量因素:可直接测度、数值性的因素。 定性因素:属性因素,表征某种属性存在与否的 非数值性的因素。
基本思想:
直接在回归模型中加入定性因素存在诸多的困难 (那些困难?),是否可将这些定性因素进行量 化,以达到定性因素能与定量因素有着相同作用 之目的。
冬季、城市居民 E Yi | X i , D1 0, D2 1 ( 0 2 )+ X i
冬季、农村居民
E Yi | X i , D1 0, D2 0 0 X i
26
D1 1, D2 1
Y
D1 1, D2 0
D1 0, D2 1
13
Yi = 0 + 1 X i + 1D1 + ui
(2)
若对两个相互排斥的属性 “居民属性” ,仍然 引入 m 2 个虚拟变量,则有
1 城镇居民 D1i = 0 农村居民
1 农村居民 D2i = 0 城镇居民
则模型(1)为 Yi 0 1 X i 1D1 2 D2 ui (3) 则对任一家庭都有: D1 + D2 = 1 D1 + D2 - 1 = 0 , 即产生完全共线,陷入了“虚拟变量陷阱”。 “虚拟变量陷阱”的实质是:完全多重共线性。
1 其中:Di= 0 城市 农村 (比较的基础:农村)
那么: E Yi | Di = 1 = ( 0 + 1)
Yi ( 0 1) i Yi 0 i
E Yi | Di = 0 = 0
城市
农村
20
(2) 一个定性解释变量(两种属性) 和一个定量解释变量的情形
模型形式 Yi = f(Di,X i )+ μi 0 1Di 例如:Yi = 0 1Di + X i + μi 1 城市 其中: Y-支出;X -收入; Di 0 农村
E Yi | X i , Di 1 ( 0 1) Xi E Yi | X i , Di 0 ( 0) Xi
乘法引入方式:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
30
(1)截距不变的情形
模型形式: Yt = f X t , Dt X t ut , 1 2 D 例:研究消费支出 Y 受收入 X 、年份状况 D 的影响 Yt 1 X t 2 ( Dt X t ) t
14
虚拟变量在回归模型中的角色
虚拟变量既可作为被解释变量,也可作为解释 虚拟被解释变量的研究是当前计量经济学研究的
变量,分别称其为虚拟被解释变量和虚拟解释变量。 前沿领域,如MacFadden、Heckmen等人的微观计
本课程只是讨论虚拟解释变量的问题
量经济学研究,大量涉及到虚拟被解释变量的分析。
1 反常年份 其中: Y 消费支出;X 收入; Dt 0 正常年份 反常年份 E Yt | X t , Dt 1 ( 1 2 ) X t 正常年份 E Yt | X t , Dt 0 1 X t 在正常年份的基础上进行比较,(只有斜率系数发生改变)。
和一个定量解释变量;
18
(3)解释变量分别为一个定性变量(两种以上属 性)和一个定量解释变量; (4)解释变量分别为两个定性变量(各自分别是 两种属性)和一个定量解释变量;
思考:
四种加法方式引入虚拟变量会产生什么效应?
19
(1)一个两种属性定性解释变量而 无定量变量的情形
模型形式:Yi f ( Di ) i 0 1Di 例如:Yi 0 1Di i
生的消费支出结构差异,应当如何建立模型?
面临的问题:如何把男女生这样的非数量变量引
入方程?
2
问题的一般性描述
在实际建模中,一些定性变量具有不可忽视的重要
影响。例如,研究某个企业的销售水平,产业属性
(制造业、零售业)、所有制(私营、非私营)、
地理位置(东、中、西部)、管理者的素质、不同
的收入水平等是值得考虑的重要影响因素,但这些 因素共同的特征是定性描述的。 如何对非定量因素进行回归分析? 采用“虚拟变量”对定性变量进行量化一种思路。
(1,0) 天气阴 如:(D1 ,D2)= (0,1) 天气雨 (0,0) 其 他
11
虚拟变量数量的设置规则
1.若定性因素具有 m 个 (m 2) 相互排斥属性(或 几个水平),当回归模型有截距项时,只能引入
m -1个虚拟变量;
2.当回归模型无截距项时,则可引入 m 个虚拟变 量;否则,就会陷入“虚拟变量陷阱”。(为什 么?)
31
(2)截距和斜率均发生变化
模型形式:
Yi f X t , Dt , Dt X t 0 1D, 1 2 D
例,同样研究消费支出 Y 、收入 X 、年份状况 D 间的影 响关系。 Yt 0 1 X t 1Dt 2 ( Dt X t ) t
基准:四季度
24
(4)两个定性解释变量(均为两种 属性)和一个定量解释变量的情形
25
夏季、城市居民
夏季、农村居民
E Yi | X i , D1 1, D2 1 ( 0 1 2) Xi
E Yi | X i ,D1 = 1, D2 = 0 = ( 0 + 1) + Xi
23
一季度:E Yi | X1, D1 1, D2 D3 0 ( 0 1) X i 二季度:E Yi | X1, D2 1, D1 D3 0 ( 0 2 ) X i 三季度:E Yi | X1, D3 1, D1 D2 0 ( 0 3 ) X i 四季度:E Yi | X1, D1 D2 D3 0 0 X i
相关文档
最新文档