spss第八章虚拟变量

合集下载

8-3、模型中的特殊解释变量:虚拟变量

8-3、模型中的特殊解释变量:虚拟变量
第8章 模型中的特殊解释变量 ——虚拟变量
2016/3/29
1
8.3、 虚拟变量(Dummy variables)
8.3.1、.虚拟变量的概念
在回归分析中,常常碰到这样一种情况,即因变量 的波动不仅依赖于那种能够很容易按某种尺度定量化的 变量(如收入、产出、价格、身高、体重等),而且依 赖于某些定性的变量(如性别、地区、季节等)。 在经济系统中,许多变动是不能定量的。如政府的更 迭(工党 - 保守党)、经济体制的改革、固定汇率变为 浮动汇率、从战时经济转为和平时期经济等。 这样一些变动都可以用 0-1 变量来表示,用 1 表示具有 某一“品质”或属性,用0表示不具有该“品质”或属 性。这种变量在计量经济学中称为“虚拟变量”。虚拟 变量使得我们可以将那些无法定量化的变量引入回归模 型中。
2016/3/29 2
下面给出几个可以引入虚拟变量的例子。 例1:你在研究学历和收入之间的关系,在你的样 本中,既有女性又有男性,你打算研究在此关系中, 性别是否会导致差别。 例2:你在研究某省家庭收入和支出的关系,采集 的样本中既包括农村家庭,又包括城镇家庭,你打 算研究二者的差别。 例3:你在研究通货膨胀的决定因素,在你的观测 期中,有些年份政府实行了一项收入政策。你想检 验该政策是 否对通货膨胀产生影响。 上述各例都可以用两种方法来解决,一种解决方 法是分别进行两类情况的回归,然后检验参数是否 不同。另一种方法是用全部观测值作单一回归,将 定性因素的影响用虚拟变量引入模型。
女1 0 女2 0 男2 1 女3 0 男3 1 男4 1 女4 0 女5 0
21.2
男5 1
试建立模型研究之。
2016/3/29
9
4、虚拟变量在分段回归中的应用
2016/3/29

【精品】计量经济学实验报告(虚拟变量)

【精品】计量经济学实验报告(虚拟变量)

【精品】计量经济学实验报告(虚拟变量)一、研究背景本次计量经济学实验旨在探讨虚拟变量的运用,针对具体的数据集进行剖析,发掘出数据中存在的变量之间的相关性,进一步了解虚拟变量的性质和应用。

二、研究数据与模型本次实验所使用的数据主要来自于美国地区居民的生活经历与工作情况。

我们采用了线性回归模型来建立数据之间的相关性。

其中,自变量包括:年龄、性别、收入、婚姻状态、教育程度、是否有孩子和是否居住在城市;因变量为每周工作时间。

首先,我们运用SPSS对数据进行了初步的分析。

结果显示,数据存在了年龄、性别、收入、婚姻状态、教育程度、是否有孩子和是否居住在城市等多个变量。

其中,包括了虚拟变量。

我们选取了其中一个虚拟变量进行研究,即“是否有孩子”。

在该变量中,响应值为“是”、“否”,我们将其转换为虚拟变量,即0表示没有孩子,1表示有孩子。

然后,我们建立了回归模型:每周工作时间= β0 + β1年龄+β2性别+ β3收入+ β4婚姻状态+ β5教育程度+ β6是否居住在城市+ β7是否有孩子。

最后,我们选取了样本数据中的500个数据进行模型拟合,其中250条数据表示没有孩子,250条数据表示有孩子。

三、实验结果通过数据分析软件的运算,我们得出了模型拟合的结果。

模型拟合结果如下:从结果中我们可以看出,虚拟变量“是否有孩子”对于每周工作时间的影响显著,其系数为2.01,t值为4.8,显著性水平为0.01,说明儿童数量对于家长的工作时间有显著的影响。

同时,我们还得出了其他变量对于工作时间的影响:年龄、收入、婚姻状态的系数为负数,说明这些因素会减少每周工作时间;性别、教育程度、是否居住在城市的系数为正数,说明这些因素会增加每周工作时间。

四、结论通过本次实验,我们可以得出以下结论:1.虚拟变量是计量经济学中常见的方法之一,在处理定量变量与定性变量时能够有效的将其转换为数值变量。

2.在本次实验中,儿童数量对于家长的工作时间有显著的影响,虚拟变量“是否有孩子”对每周工作时间的影响为正,表明有孩子的家长比没有孩子的家长更倾向于减少每周工作时间。

SPSS课件第8章

SPSS课件第8章

第8章方差分析在前面的第5章,我们讲述了两独立样本参数的t检验,通过t检验可以判断两个总体的均值是不是有显著差异。

那么,我们不禁要问:如果要判断的总体不止两个,而是多个,我们该如何进行均值间的比较呢?对多个总体两两进行独立样本t检验是一种处理方法,但是随着总体数目的增多,这种方法C=4950次两两比较,真是一件繁琐又的弊端会越来越明显,假如我们要检验100个总体,那需要做2100浩大的工程。

有没有一种方法能够不进行两两比较直接从整体上解决多总体的均值的比较呢?SPSS提供方差分析来完成这一工作。

在工业、农业、经济、医学、金融等许多学科领域,方差分析被广泛应用于数量分析研究,发挥了越来越重要的作用。

方差分析这种将数据差异划分为几种原因并进行比较分析找出总体规律的思想,是非常重要的一种统计思想,在很多统计方法中也经常使用,掌握方差分析,不仅让我们掌握了一件分析数据的有力工具,而且有助于我们对统计思想的深入理解,培养统计思维,可谓一举双得。

下面我们就来具体说说方差分析的基本思想和步骤。

8.1 方差分析概述方差分析从实质上来说是两独立样本t检验推广到多独立总体情形的假设检验,是一种参数检验方法,其检验的是多总体的均值是否存在显著差异。

例如,在证券市场中,我们要考察不同行业的股票,在一轮大牛市中上涨的平均幅度是否相同,即股票在牛市中是否存在行业差异。

此时,我们需要在每个行业中选取一些股票作为样本,计算其涨幅,然后再比较这些行业平均涨幅是否相同。

这也仅仅考虑行业对证券的影响,其实证券的影响因素还有很多:地域、概念、宏观政策等,这些因素中哪些对股票有显著的影响,哪些没有显著的影响。

更进一步来说,如果肯定了行业对股票涨幅有影响,那么我们还需要确定究竟是哪个行业的股票的平均涨幅最大,哪个行业的平均涨幅最小,它们之间的差异是不是显著的。

在清楚了这些问题以后,我们就可以针对某个行业的股票制定投资策略了。

上面仅仅是单个因素的考虑影响,当同时考虑多个因素对股票涨幅的影响时,例如:行业、地域因素同时考虑,问题就复杂了,这里面不仅有单个因素本身的影响,还存在两个因素的关联性对股票的影响,需要仔细甄别。

虚拟变量

虚拟变量
D= 0, 非本科学历
一般地,在虚拟变量的设置中:
• 基础类型、肯定类型取值为1;
• 比较类型,否定类型取值为0。
概念:
同时含有一般解释变量与虚拟变量的模型称为虚拟 变量模型。
例1:为了考察企业职工薪金收入(Yi)的情况, 以工龄(Xi)和性别(Di)为影响因素,建立如 下模型:
Yi 0 1 X i 2 Di i
其中: Di=1,若是男性, Di=0,若是女性。
二、虚拟变量的引入
• 虚拟变量做为解释变量引入模型有两种基本方式:加法 方式和乘法方式。
1、加法方式
上述企业职工薪金模型中性别虚拟变量的引入: Yi 0 1 X i 2 Di i
在该模型中,如果仍假定E(i)=0,则 企业女职工的平均薪金为:
表中给出了中国1979~2001年以城乡储蓄存款余 额代表的居民储蓄以及以GNP代表的居民收入的数 据。
90年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
表 5.1.1
储蓄 281 399.5 523.7 675.4 892.5 1214.7 1622.6 2237.6 3073.3 3801.5 5146.9 7034.2
R 2 =0.9836
由2与3的t检验可知:参数显著地不等于0,强 烈示出两个时期的回归是相异的,
储蓄函数分别为:
1990年前: 1990年后:
Yˆi 1649.7 0.4116Xi Yˆi 15452 0.8881Xi
三、虚拟变量的设置原则
虚拟变量的个数须按以下原则确定:
如果某个定性变量有m种相互排斥的类型,则模型中只能 引入m-1个虚拟变量。否则会陷入所谓的“虚拟变量陷阱”, 产生完全共线性。

计量经济学课后习题答案第八章_答案

计量经济学课后习题答案第八章_答案

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

什么是哑变量(虚拟变量),应用中应注意什么问题?

什么是哑变量(虚拟变量),应用中应注意什么问题?

什么是哑变量(虚拟变量),应用中应注意什么问题?虚拟变量(dummy variable)也叫哑变量,翻译不同而已。

因为dummy的含义有假的、虚拟的、哑的等各种含义,所以国内翻译也不一样。

但是他们俩是一回事。

虚拟变量其实算不上一种变量类型(比如连续变量、分类变量等),确切地说,是一种将多分类变量转换为二分变量的一种形式。

Dummy这个词意思是虚拟的、假的,所以dummy variable意思就是假的变量,不是真实的变量。

那它到底虚拟在什么地方呢?我们通过一个例子来详细解释一下。

例:某研究者检测了四种不同类型社区(分别用0、1、2、3表示)的SO2情况。

研究者欲分析社区类型是否与SO2水平有关系,或者说,不同社区类型的SO2水平是否不同。

该例子中,因变量SO2水平是一个定量资料,自变量社区类型是一个分类资料,分析方法可以考虑一般线性模型。

首先要强调一点,不管是一般线性模型还是广义线性模型,它们都是“线性”的,也就是说,只要你采用了这些模型,就已经默认了自变量与因变量之间的关系是线性的。

所以,对于例中的数据,如果用一般线性模型,其结果如下图所示。

图中的意思是,随着社区类型从0到3之间的改变,SO2水平是线性增加的,增加的幅度(斜率)是207.8。

也就是说,社区类型从0变为1,SO2增加207.8;社区类型从1变为2,SO2增加207.8;社区类型从2变为3,SO2增加207.8。

但我们会发现,事实并非如此。

从0到1时,似乎增加的幅度更大;而从1到2时,似乎增加的幅度没有这么大。

也就是说,207.8这个幅度,只是一个平均幅度,是从0到3增加的平均幅度。

如果我们想具体了解从0到1、从1到2、从2到3真实的增加值,就需要用到虚拟变量了。

所谓虚拟变量,就是把原来的一个多分类变量转化为多个二分变量,总的来说就是,如果多分类变量有k个类别,则可以转化为k-1个二分变量。

如变量x为赋值1、2、3、4的四分类变量,就可以转换为3个赋值为0和1的二分类变量。

(完整版)第八章 虚拟变量回归 答案

(完整版)第八章 虚拟变量回归 答案

第八章 虚拟变量回归一、判断题1。

虚拟变量只能作为解释变量.(F)2。

引入虚拟变量后,用普通最小二乘法得到的估计量仍是无偏的。

( T )3.引入虚拟变量的个数与模型有无截距项无关.(F )4。

虚拟变量用来表示某些具有若干属性的变量.(T)5。

引入虚拟变量的个数与样本容量大小有关。

(F )二、单项选择题1.设消费函数011t t t y a a D b x u =+++,其中虚拟变量10D ⎧=⎨⎩东中部西部,如果统计检验表明10a =成立,则东中部的消费函数与西部的消费函数是( D ).A. 相互平行的 B 。

相互垂直的 C. 相互交叉的 D 。

相互重叠的2.虚拟变量( A )A 。

主要来代表质的因素,但在有些情况下可以用来代表数量因素B 。

只能代表质的因素C 。

只能代表数量因素D.只能代表季节影响因素3。

分段线性回归模型的几何图形是( D )A 。

平行线 B. 垂直线 C 。

光滑曲线 D. 折线4.如果一个回归模型中(包含截距项),对一个具有m 个特征的质的因素要引入虚拟变量数目为( B ).A.m B 。

m-1 C 。

m —2 D.m+15.设某商品需求模型为01t t t y b b x u =++,其中Y 是商品的需求量,X 是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为( D )。

A .异方差性B .序列相关C .不完全的多重共线性D .完全的多重共线性6.设消费函数为i i i 33i 22i 11o i u bx D D D y +++++=αααα,其中y 为消费,x 为收入,虚拟变量⎩⎨⎧=⎩⎨⎧=⎩⎨⎧=其他季度第三季度,其他季度第二季度,其他季度第一季度 0 0 0 321D 1D 1D 1,该模型中包含了几个定性影响因素?( A )。

A 。

1B 。

2C 。

3D 。

47。

设消费函数为i i i o i u Dx b x b D y ++++=101αα,其中虚拟变量⎩⎨⎧=农村家庭城镇家庭 0 1D ,当统计检验表明下列哪项成立时,表示城镇家庭与农村家庭有一样的消费行为( A ).A 。

哑变量在spss中的应用

哑变量在spss中的应用

虚拟变量(Dummy Variable),又称虚设变量、名义变量或哑变量,是量化了的质变量,通常取值为 0或1。

引入哑变量可使线形回归模型变得更复杂,但对问题描述更简明。

名义变量引入回归分析,必须进行数量化。

如,职业有工人、农民、教师,分别赋值0,1,2。

但是0,1,2代表的实际意义又不是由小到大的关系。

所以这在回归分析中直接使用是错误的。

如考虑季节因素时,用 1,2,3,4编码也是不合理的,通常也进行哑变量化。

对于有序变量,如轻、中、重,则要酌情考虑。

如果样本量足够大的话,也进行哑变量化,这样可以得到不同级别的差异。

但是如果样本量不够大是,哑变量化造成变量数目上升,使回归结果变得不可靠,只能适得其反。

哑变量设置的原则在模型中引入多个哑变量时,哑变量的个数应按下列原则确定:如果有 m 种互斥的属性类型,在模型中引入(m-1)个哑变量。

例如,文化程度分小学、初中、高中、大学、研究生5类,引用4个哑变量回归分析在 spss中,logistics 回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..进行”设置即可。

但是对于多元线性回归就没有那么幸运了。

用 computer 或 recode设置一组哑变量。

由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。

因此,将所有哑变量同一般变量一块直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。

解决的方法是:将同一因素下的哑变量进行归组,在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它连续型变量和二分类变量则归为另一组,纳入方法为 STEPWISE。

然后在没有纳入这组哑变量的情况下再做一次 STEPWISE,再来比较是不是应该纳入这组哑变量。

在 sas中,哑变量的设置需要另外写程序,但是在回归程序中,则比较简单。

eg.因变量 y,自变量 x1,x2,哑变量组 x31 x32 x33,proc reg;model y=x1 x2 {x31 x32 x33} /selection=stepwise;run;即,把哑变量组用 {} 括起来就可以了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
模型中引入虚拟变量的作用
1、分离异常因素的影响,例如分析我国 GDP的时间序列,必须考虑“文革”因素 对国民经济的破坏性影响,剔除不可比 的“文革”因素。 2、检验不同属性类型对因变量的作用, 例如工资模型中的文化程度、季节对销 售额的影响。 3、提高模型的精度,相当与将不同属性 的样本合并,扩大了样本容量(增加了 12 误差自由度,从而降低了误差方差)。
虚拟变量在模型中,可以作解释变量,也 可以作因变量。 虚拟变量作解释变量时出现在方程的右端 虚拟变量作因变量(被解释变量)时出现 在方程的左端
9
虚拟变量模型
引入虚拟变量后,回归方程中同时含有一 般解释变量和虚拟变量,称这种结构的模 型为虚拟变量模型或斜方差分析模型。 在第8章(本章)中讨论虚拟自变量模型 在第14章(虚拟因变量)中讨论虚拟因变 量。虚拟变量作因变量又称抉择模型。
虚拟变量设置的原则
在模型中引入多个虚拟变量时,虚拟变量 的个数应按下列原则确定: 如果有 m 种互斥的属性类型,在模型中引 入 m-1 个虚拟变量 例如,性别有2个互斥的属性,引用2-1=1个 虚拟变量 再如,文化程度分小学、初中、高中、大 学、研究生5类,引用4个虚拟变量
13
虚拟变量是一用以反映质的属性的一个人 工变量,通常记为D(Dummy)。 虚拟变量D只取0或1两个值 对基础类型或肯定类型设D=1 对比较类型或否定类型设D=0
7
虚拟变量举例
D= D= 1 0 0 1 本科学历 非本科学历 “文革”时期 非“文革”时期
8
虚拟变量的引入
模型中引入虚拟变量的必要性
现实经济生活错综复杂,往往要求人们按 照经济变量的质或量的不同,分别进行处 理。因此,回归模型中,往往有必要引入 虚拟变量,以表示这些质的区别。例如, 消费函数,对于平时与战时,萧条与繁荣, 乃至性别、教育程度、季节性等等,都会 因质的有不同表现出不同的差异。6虚拟变量的定义
虚拟变量
1
问题的提出
1、计量经济学模型,需要经常考虑属性因 素的影响。例如,职业、战争与和平、繁 荣与萧条、文化程度、灾害、季节 2、属性因素往往很难直接度量它们的大小。 只能给出它们的“Yes—D=1”或”No—D=0”、 或者它们的程度或等级 3、为了反映属性因素和提高模型的精度, 必须将属性因素“量化”。通过构造0-1型 的人工变量来量化属性因素 2
相关文档
最新文档