第八章虚拟变量回归知识讲解

合集下载

虚拟变量

虚拟变量
• 大学及其以上:
E(Yi | X i , D1 0, D2 1) ( 0 3 ) 1 X i
假定3>2,其几何意义:
大学教育 保健 支出 高中教育 低于中学教育
收入
自变量包含虚拟变量的回归模型
o 1999年中国人均GDP的地区差异

(1) GDPi 1513 3154easti p
1 正常年份 Dt 消费模型可建立如下: 0 反常年份
如,设
Ct 0 1 X t 2 Dt X t t
这里,虚拟变量D以与X相乘的方式引入了模型中,从而可 用来考察消费倾向的变化。 假定E(i)= 0,| X t , Dt 1) 0 ( 1 2 ) X t
为了在模型中能够反映这些因素的影响,并提 高模型的精度,需要将它们“量化”。
这种“量化”通常是通过引入“虚拟 变量”来完成的。根据这些因素的属性类 型,构造只取“0”或“1”的人工变量,通 常称为虚拟变量(dummy variables),记 为D。 例如,反映文程度的虚拟变量可取为:
1,
本科学历
虚拟变量
虚拟变量
1. 什么是虚拟变量
二分、多分变量 2. 自变量包含虚拟变量的回归模型 极差截距、极差斜率 3. 应用实例
一、虚拟变量的基本含义
许多经济变量是可以定量度量的,如:商品需
求量、价格、收入、产量等。
但也有一些影响经济变量的因素无法定量度量 ,如:职业、性别对收入的影响,战争、自然 灾害对GDP的影响,季节对某些产品(如冷饮 )销售的影响等等。
由3与4的t检验可知:参数显著地不等于0, R2 强烈示出两个时期的回归是相异的,储蓄函数 分别为:
1990年前: 1990年后:

计量经济学课后习题答案第八章_答案

计量经济学课后习题答案第八章_答案

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

应用统计学-第8章 相关分析与回归分析

应用统计学-第8章 相关分析与回归分析

季营业额 (千元)
x
y
x
y
1
2
58
6 16
137
2
6
105 7 20
157
3
8
88
8 20
169
4
8
118 9 22
149
5
12
117 10 26
202
21
• 相关图也称为分布图或散点图,它是在平面 直角坐标中把相关关系的原始数据用点描绘 出来,通常以直角坐标的横轴代表自变量x, 纵轴代表因变量y。相关图所反映的变量之 间的相关关系的方向和程序比相关表更为清 晰,也更为直观。
2. 相关分析的意义
(1)相关分析可以确定变量之间相关关系的 (2)相关分析可以衡量回归估计的精确程度
26
相关系数分析
相关系数是对变量之间相关关系密切程度的度量
对两个变量之间线性相关程度的度量

称为简单相关系数

若相关系数是根据总体全部数据计算的,

则称为总体相关系数,记为
若相关系数是根据样本数据计算的,
13
相关分析的概念
研究两个或两个以上的变量之间相关关系的形态和程 度的一种统计方法。
相关分析的主要内容与方法
判断变量之间是否存在相关关系(定性分析法) 分析变量间相关关系的形态特征(制作散点图) 分析变量间相关关系的密切程度(计算相关系数) 对总体相关关系进行显著性检验(假设检验法)
简单线性相关关系 ➢ 定性分析 ➢ 相关图分析 ➢ 相关系数分析
22
图8-1学生人数和季营业额相关图
23
24
8.1.3 简单线性相关 1. 相关系数 • 相关系数是描述相关的两个变量之间相关关

第五章虚拟变量-第八章虚拟变量

第五章虚拟变量-第八章虚拟变量
D1 D2 D3 D4 1,
说明虚拟解释变量 D1,D2,D3,D4 存在完全的多重共线性 从而无法用普通最小二乘法进行估计。 反映季节因素的商品需求模型为:
Yt 0 1 X 1t 2 X 2t 3 D1t 4 D2t 5 D3t t
例3、由经济实际得知,出口消费品数量Y 主要取决于国民支出X,我国革新开放前 后出口消费品的数量发作清楚变化,以 1979年为转机期,树立出口消费品需求 模型,并反映这种变化。
Yt 0 1 X i i
式中,Y 是职工工资收入;X 是工龄 考虑职工收入受教育程度的影响而引入合适的虚拟 变量,对上述模型加以改进。
解:教育程度一般分为:高中以下,高中,大学及以上(包括大专) 这样教育程度有三个特征,故引入两个虚拟变量,并设教育程度的 改变,只影响截距的变动。
D1=
1, 0,
Yt 0 1 X t t
1979 年以后,Dt 为 1, 模型为
Yt
0
2X
* t
1 2 X t t
第5章习题
一、单项选择题 1、假设一个回归模型中不包括截距项,对一个
具有m个特征的质的要素需求引入的虚拟变量 的个数为: A、m B、m-1 C、m-2 D、m+1
2、设团体消费函数Yi=c0+c1Xi+ui中,消费支出Y不只 与支出X有关,而且与消费者的性别、年龄构成有关, 年龄构成可分为青年、中年和老年三个层次,假定边 沿消费倾向不变,那么思索上述要素的影响,该函数 引入虚拟变量的个数为:
的需求模型为: Yt 0 1 X 1t 2 X 2t t
式中,Y 是商品的需求量,X1 是价格,X2 时收入, 为了反映四个季节对商品需求量的影响,假定引入四个虚拟变量:

第八章 虚拟变量模型

第八章  虚拟变量模型
Y 改革开放以后 改革开放以前
假定 1 0且 2 0, 则其几何图形如图8-4所示。
X 图8-4 改革开放前后储蓄函数示意图
3.临界指标的虚拟变量的引入
在经济发生转折时,可通过建立临界指标的虚拟变量模型来反映。
例如:
进口消费品数量Y主要取决于国民收入X的多少,中国在改革开放前后, Y对X的回归关系明显不同。 这时,可以t*=1979为转折期,以1979年的国民收入Xt*为临界值, 设如下虚拟变量: Dt= 1 0 t≥t* t< t*
二、虚拟变量模型
同时含有一般解释变量与虚拟变量的模型称为虚拟变量模型。
在模型中,虚拟变量可作为解释变量,也可作为被解释变量,但主要
是用作解释变量。
例如:一个以性别为虚拟变量来考察职工薪金的模型如下:
Y X D i 0 1 i 2 i i
其中 ——为职工的薪金;
i
(8-1)
譬如年龄因素虽然可以用数字计量,但如果将年龄作为资料分组的特 征,则可将年龄选作虚拟变量。
例如:
家庭教育经费支出不仅取决于其收入,而且与年龄因素有关。 按年龄划分为三个年龄组:6—18岁年龄组(中小学教育);19—22岁 年龄组(大学教育);其它年龄组。于是设定虚拟变量 1 0 6-18岁年龄组 其它 1 0 19-22年龄组 其它
为描述虚拟变量交互作用对被解释变量的效应,在(8-9)式中以加法形式引入 两个虚拟解释变量的乘积,即
Yi=α0+α1D1i+α2D2i+α3(D1iD2i)+βXi +μi
(8-10)
(1)基础类型:不发展油菜籽生产,也不发展养蜂生产时农副产品生产平均总收益
E(Yi|Xi,D1=0,D2=0)= α0+βXi

stata虚拟变量的回归命令

stata虚拟变量的回归命令

stata虚拟变量的回归命令虚拟变量是用来表示分类变量的一种方法,它可以将分类变量转换为一系列二进制变量,每个二进制变量表示分类变量的一个类别。

这样,就可以使用回归模型来分析分类变量对因变量的影响。

stata中有多个回归命令可以用于分析虚拟变量,包括:•regress:这是最基本的回归命令,可以用于分析连续因变量和分类自变量之间的关系。

•logit:这是一个非线性回归命令,可以用于分析二分类因变量和分类自变量之间的关系。

•probit:这是一个非线性回归命令,可以用于分析二分类因变量和分类自变量之间的关系。

•poisson:这是一个非线性回归命令,可以用于分析计数因变量和分类自变量之间的关系。

在stata中使用虚拟变量回归命令时,需要特别注意以下几点:•虚拟变量的个数:分类变量的类别数决定了虚拟变量的个数。

例如,一个有3个类别的分类变量需要创建2个虚拟变量。

•虚拟变量的取值:虚拟变量的取值为0或1,其中0表示分类变量不属于该类别,1表示分类变量属于该类别。

•虚拟变量的解释:虚拟变量的系数表示分类变量的每个类别对因变量的影响。

例如,一个虚拟变量的系数为正,表示该类别对因变量有正向影响;一个虚拟变量的系数为负,表示该类别对因变量有负向影响。

下面是一个stata虚拟变量回归命令的例子:regress y x1 x2 x3logistic y x1 x2 x3poisson y x1 x2 x3在这个例子中,y是因变量,x1、x2和x3是分类自变量。

regress命令用于分析y和x1、x2、x3之间的线性关系,logistic命令用于分析y和x1、x2、x3之间的非线性关系,poisson命令用于分析y和x1、x2、x3之间的非线性关系。

虚拟变量回归命令是stata中非常重要的一个工具,它可以用于分析分类变量对因变量的影响。

在使用虚拟变量回归命令时,需要特别注意虚拟变量的个数、虚拟变量的取值和虚拟变量的解释。

虚拟变量(dummy variable)

虚拟变量(dummy variable)
19
0
0
1
2000:4
2.7280
20
0
0
0
数据来源:《中国统计年鉴》1998-2001
2.斜率变化
以上只考虑定性变量影响截距,未考虑影响斜率,即回归系数的变化。当需要考虑时,可建立如下模型:
yt=0+1xt+2D+3xtD+ut,
其中xt为定量变量;D为定性变量。当D= 0或1时,上述模型可表达为,
若不采用虚拟变量,得回归结果如下,
GDP = 1.5427 + 0.0405 T
(11.0) (3.5) R2= 0.3991, DW = 2.6,s.e.=0.3
定义
1(1季度)1(2季度)1(3季度)
D1=D2=D3=
0(2, 3,4季度)0(1,3, 4季度)0(1,2, 4季度)
第4季度为基础类别。
15
0
0
1982
7.713
384
16
0
0
1983
8.601
34
1
34
1966
1.271
17
0
0
1984
12.010
35
1
35
1967
1.122
18
0
0
以时间T=time为解释变量,进出口贸易总额用trade表示,估计结果如下:
trade= 0.37 + 0.066time- 33.96D+ 1.20timeD
虚拟变量(dummy variable)
在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。例如需要考虑性别、民族、不同历史时期、季节差异、企业所有制性质不同等因素的影响。这些因素也应该包括在模型中。

虚拟变量

虚拟变量

加法+乘法类型:反映相异回归
• 以乘法形式引入虚拟解释变量,是在设定的计量经济模 型中,将 虚拟解释变量与其他解释变量相乘作为解释变 量,以表示模型中斜率系数的差异。 • 以乘法形式引入虚拟解释变量的主要作用是:
第一:分析因素间的交互影响;
第二:分段线性回归,提高模型对现实经济现象的 描述精度 。
分段回归的实际应用
公司是如何酬劳其销售代表的? 其支付佣金的方式取决于销售量的一个目标或
临界水平X *
销售佣金在临界值X *之前随销售量线性增加, 在这个临界值之后仍线性增加,只是斜率更大。 于是得到由两段构成的分段线性回归
销售佣金是在临界值处改变斜率的。
类似的例子 税金的缴纳,产出与成本之间的关系
* * *
R 2 0.882 R 2 0.866 F 54.78
用虚拟变量表示不同斜率的回归 ---乘法类型:分段线性回归
根据以上分析,可以推导出两个时期的
储蓄-收入回归方程:
平均储蓄函数:1970-1981年 ˆ 1.02 0.0803 X Y
t
平均储蓄函数:1982-1995年 ˆ Y ( 1.02 152.48) (0.0803 0.0655)X
用虚拟变量表示不同斜率的回归 ---乘法类型:分段线性回归
储蓄—收入的回归方程:
Yt 1 2 Dt 1 Xt 2 Dt Xt ut
Y—个人储蓄, X—个人可支配收入
1, 观察值从1982年开始 Dt 0, 其他(观察值到1982年)
Y 1 1 X 2 X X D ut
回归的类型
虚拟变量模型的性质
根据加入的途径,可以将虚拟变量模型分成两种类型:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档