隧道控制爆破技术与应用

合集下载

隧道爆破技术

隧道爆破技术
交通建设
用于铁路、公路、地铁等交通 线路的建设,穿越山体、河流
等障碍物。
水利工程
在水电站、水库等水利工程中 ,建设引水隧洞或泄洪隧洞。
矿业开采
在矿山开采中,隧道爆破技术 用于开拓矿井和采场。
军事用途
在战争时期,隧道爆破技术可 用于挖掘战壕、破坏敌方设施
等军事目的。
02
隧道爆破技术的基本原 理
炸药爆炸的原理
爆破施工的步骤与注意事项
堵塞
装药
将炸药按照设计的装药结构装入 炮孔,注意不要损坏雷管和导爆 索。
用炮泥将炮孔堵塞严实,防止炸 药爆炸时产生的气体外泄。
起爆网络连接
按照设计的爆破网路连接起爆网 络,确保所有炮孔按照预定的顺 序起爆。
钻孔
使用钻机按照设计的炮孔位置和 深度进行钻孔,确保炮孔的位置、 深度和角度符合设计要求。
数字化
数字化技术为隧道爆破提供了新的手段。通过建 立数字模型、进行数值模拟和远程监控,可以更 好地预测和控制爆破效果,提高施工效率和质量 。
隧道爆破技术的未来展望
高效能炸药和起爆器材
智能化爆破管理系统
环保和安全技术
多学科融合发展
随着新材料和新工艺的发展, 高效能炸药和起爆器材将会更 加安全、可靠和高效,为隧道 爆破施工提供更好的支持。
隧道爆破技术的发展历程
初期阶段
隧道爆破技术起源于19世纪中叶, 最初使用黑火药进行岩石爆破。
发展阶段
随着科技的不断进步,新型炸药和 爆破技术的出现,隧道爆破技术逐 渐成熟。
现代阶段
采用计算机技术、传感器技术和智 能控制技术等手段,实现精准控制 爆破过程,提高作业效率和安全性。
隧道爆破技术的应用场景
01

隧道爆破技术应用与研究

隧道爆破技术应用与研究
值。
1 . 工程 概 况 由中铁二十局集 团第 四工程有 限公 司承建 的张台地方铁路七标前 平1 号隧道 , 全长 6 3 8 m, 隧道里程 为 D K 5 3 + 3 6 2 -D K 5 4 + 0 0 0 。除洞身段
2 0 9 . 3 5 m位于 R = 6 0 0 m的 曲线 上 , 其余 地段均 位于直 线上 , 隧道最 大埋 深约5 9 m。
厚2 ~ 5 m , ⑩, o - 0 = 8 0 0 ~ 8 5 0 K P a ; 以下为⑨ , 。 = 1 0 0 0 K P a 。
1 . 2 地质构造 据区域地质资料 , 区内分布有 台头东断层 : 产状北东东 , 倾 向北 , 倾 角7 8 。 , 性质不 明, 延伸约 l l k m, 该断层 对该隧道影响较小。 1 . 3 水文地质特征 工点范 围内地下水埋 藏较深 , 属 十分缺水地段 , 但节理裂 隙发育 , 赋存 少量 基岩 裂隙水 , 最 大涌水量 为 0 . 0 7 / d - m, 属贫 水 区, 地下 水主 要 由大气降水补给 。地下水质对混凝土不具侵蚀性。 1 . 4 不 良地质及特殊岩土 工点 范围无不 良地 质: 工点范 围内特殊岩土 主要为湿 陷性 黄土, 具 I~Ⅱ级非 自重湿险 陛, 黄土湿险性层厚 5 m。 1 . 5 地震烈度及气象资料 本段 基本地震 动峰值加 速度为 0 . 1 5 g , 相 当于地震基 本烈度 Ⅶ度 。 最冷 月平 均 气温 为一 4 . 7 ℃, 年平 均 降水量 5 4 1 . 1 m m , 最 大冻结 深 度为
序号 保护对象类别
1 水 工 隧道
< 1 o H z』 1 0 H z ~ 5 0 H z 5 l o H z ~ 1 0 0 H z

隧道控制爆破技术讲座

隧道控制爆破技术讲座
在爆破作业过程中,应对周边环境进行实时监测,发现异常情况应及时采取措施处 理。
应急救援预案与演练
制定完善的应急救援预案,明确应急 组织、救援流程、通讯联络等事项。
定期组织应急演练,检验应急预案的 可行性和有效性,提高应对突发事件 的能力。
对应急救援人员进行专业培训,提高 其应急处置能力。
05
隧道控制爆破技术的应用案例
填塞质量保证
确保炮孔填塞紧密,防止 炮孔内爆炸气体过早泄出, 影响爆破效果。
爆破网路设计与起爆方式
爆破网路设计
根据炮孔布置和炸药性能, 设计合理的爆破网路,确 保所有炮孔按预定顺序起 爆。
起爆方式选择
根据工程需要,选择合适 的起爆方式,如电雷管起 爆、导爆索起爆或导爆管 起爆等。
安全起爆控制
采取有效措施,确保起爆 网络的安全可靠,防止误 爆或拒爆事故的发生。
护眼镜、耳塞等。
在高风险区域进行爆破作业时, 应设置警戒线,安排专人负责警 戒,防止闲杂人员进入作业区域。
定期对爆破作业人员进行体检, 确保其身体健康状况符合要求。
周边环境安全防护措施
在爆破作业前应对周边环境进行详细勘察,评估对周边环境的影响,并采取相应的 防护措施。
对爆破作业可能影响的建筑物、道路、管线等设施,应采取加固、保护等措施,防 止因爆破作业造成损坏。
详细描述
隧道控制爆破技术的发展历程可以分为几个阶段。最初的传统爆破技术主要依靠经验进行施工,精度和安全性较 低。随着科技的发展,人们开始探索更加精确的爆破技术,逐渐形成了现代隧道控制爆破技术。该技术不断进行 改进和完善,提高了施工精度和安全性,成为隧道工程建设中的重要工程技术。
02
隧道控制爆破技术的基本原理
炮孔钻孔与清孔

隧道爆破施工新技术

隧道爆破施工新技术

隧道爆破施工新技术
隧道爆破施工是一项复杂的工程,涉及到安全、效率和环保等方面。

近年来,随着科技的不断进步,隧道爆破施工也在不断创新和改进。

以下是一些新技术在隧道爆破施工中的应用:
1. 高精度定位技术,利用全球卫星定位系统(GNSS)和惯性导航系统(INS)等技术,实现对爆破孔的精准定位,提高了爆破的精度和安全性。

2. 高性能爆破药剂,新型的爆破药剂具有更高的爆破能力和更低的环境影响,能够更有效地进行隧道爆破作业。

3. 非爆破施工技术,随着无爆破施工技术的发展,一些隧道采用了液压劈裂、液压冲击、液压割岩等非爆破施工技术,减少了对周围环境的影响,降低了施工噪音和振动。

4. 智能监测与控制系统,引入智能监测与控制系统,通过传感器实时监测隧道爆破过程中的振动、声音、颗粒运动等参数,实现对施工过程的实时监控和调节,提高了施工的安全性和效率。

5. 三维爆破设计技术,利用三维建模和仿真技术,对隧道爆破进行精确的设计和模拟,优化了爆破参数的选择,提高了爆破效果和施工质量。

总的来说,隧道爆破施工新技术的应用,不仅提高了施工效率和质量,同时也更加注重环境保护和安全生产,为隧道工程的建设带来了新的发展机遇。

隧道光面爆破及超欠挖现象分析与控制技术措施

隧道光面爆破及超欠挖现象分析与控制技术措施

隧道光面爆破及超欠挖现象分析与控制技术
措施
隧道挖掘是一种复杂的地质工程技术,它涉及对复杂地质条件和
强烈的地质环境作用下的隧道施工施工现场管理。

随着地质条件复杂化,工程技术复杂化,隧道爆破及超欠挖现象日益严重。

在此情况下,如何合理分析及控制超欠挖现象就变得格外重要。

为此,本文将对隧
道爆破及超欠挖现象进行深入的分析,提出有效的防治控制技术措施,以实现高效、安全的隧道施工。

首先,本文将对隧道爆破及超欠挖现象进行深入分析,分析超欠
挖现象的起因,主要是由于爆破技术的局限性,以及施工公司在隧道
施工中缺乏认真熟悉地质条件及隧道爆破方面的专业技术准备造成的。

此外,地质条件复杂和施工熟悉度不足也是造成超欠挖现象的重要原因。

其次,为了防止和控制超欠挖现象,本文提出了一些有效的技术
措施。

包括:1)在爆破前结合参与施工的单位熟悉地质条件,选择合
适的采矿方法;2)在爆破过程中,加强施工现场管理,科学精确施工;3)在监测过程中,定期进行爆破前位移点监测,把握爆破效果;4)
使用正确的支护方法,减小支护结构变形,防止坚固体爆破效果不理想。

以上技术措施可以有效地防止和控制超欠挖现象,有助于营造安全、可靠的施工环境。

复杂环境下隧道爆破施工控制技术

复杂环境下隧道爆破施工控制技术

复杂环境下隧道爆破施工控制技术隧道爆破是隧道工程中常见的一种施工方法,它能够提高施工效率、降低成本,并且适用于各种地质条件。

在复杂环境下进行隧道爆破施工却是一项挑战,因为这种环境中存在着更多的安全隐患和技术难题。

探讨复杂环境下隧道爆破施工控制技术,对于提高爆破施工的安全性、可靠性和效率具有重要意义。

复杂环境下的隧道爆破施工指的是在地质条件复杂、地下水丰富、周围环境复杂多变的情况下进行爆破作业。

这种情况下,往往存在着以下几个方面的挑战:1. 地质条件多变2. 地下水丰富3. 周围环境受限在这种情况下进行隧道爆破施工,需要对爆破作业进行科学的控制和管理,以确保施工的安全和效率。

下面将从以下几个方面进行讨论。

一、地质勘察与分析地质条件是影响爆破效果的关键因素之一。

在复杂环境下进行隧道爆破施工前,需要进行详细的地质勘察和分析,了解隧道工程所处地层的构造、岩性、构造、脆性等情况,以便科学地确定爆破参数,选择适合的爆破方案。

地质勘察还应着重考虑复杂地质条件下的隧道工程安全问题,如断层、褶皱带等地质构造,以及地下水、岩溶等地质灾害。

在地质勘察和分析的基础上,可以借助先进的地质雷达、地下水位监测设备等技术手段,对隧道内部的地质和水文情况进行实时监测,及时发现地质构造变化、地下水位变化等情况,为隧道爆破施工提供准确的数据支持。

二、爆破参数的确定在复杂环境下进行隧道爆破施工,合理确定爆破参数是至关重要的。

爆破参数包括钻孔布置、钻孔直径、孔距、孔深、装药量、起爆序列等。

这些参数的选择需要充分考虑地质条件、爆破目标、周围环境等因素,以确保爆破作业的效果和安全。

在爆破参数的确定过程中,可以借助爆破模拟软件对各种参数组合进行仿真模拟,从而找到最佳的爆破方案。

还可以通过现场试验对不同的爆破参数进行试验验证,以选择最合适的爆破参数。

三、爆破作业的控制在复杂环境下进行隧道爆破施工,爆破作业的控制显得尤为重要。

需要确保爆破作业的安全,包括爆破装药、起爆控制等环节的安全可靠;需要确保爆破作业的效果,包括采用合理的起爆序列和爆破药品,以及采用合适的爆破技术。

隧道爆破振动控制技术研究

隧道爆破振动控制技术研究

隧道爆破振动控制技术研究在施工隧道时,由于物理空间的限制、隧道内外岩石的强度差异等原因,常需要利用爆破技术来进行石头的破碎,方便挖掘。

但是随着隧道越来越“近”城市、越来越复杂的地下构造和地质地形,安全、环保等方面的问题也愈加突出,尤其是因为隧道爆破产生的振动对地下环境、周边的建筑物、桥梁等产生威胁,因此隧道爆破振动控制技术便应运而生。

一、爆破振动的影响因素及特点要想研究隧道爆破时的振动,我们先得了解影响隧道爆破振动的因素和振动的特点。

爆破振动的影响因素主要有:爆炸药的性质、爆炸药的药量、爆炸药包囊厚度、爆破孔的布置方式、爆破孔直径、岩体物理力学特性以及周围环境条件等等。

在高速公路、市区内的隧道、桥梁等狭窄的地域,产生的隧道爆破振动的特点是:1. 振动频率较高2. 振幅很小3. 振动持续时间短4. 具有随机性5. 频繁产生二、隧道爆破振动控制技术的应用现状针对隧道爆破振动影响的问题,目前主要采用以下几种控制技术:1. 引爆药量调整技术通过减少爆炸药量,从而降低振动。

2. 引爆时间依序错延技术在方向、间距等条件固定的情况下,根据预测的振动值大小,采取错延引爆时间,只发生小分段的爆破作业,达到减小整体振动的目的。

3. 阻抗匹配技术采用改善岩体与爆破时间的相互影响关系来达到降低爆破所产生的振动波的强度的目的。

4.防振手段这种技术主要是通过隔振和减振,迫使爆破振动能匀速向周围环境传输,以达到起到防振的目的。

三、隧道爆破振动控制技术研究进展和未来应用方向隧道爆破振动控制技术在国内外的研究已经有了一定的基础。

首先,随着计算机技术的进步,计算模拟成为爆破振动控制技术研究的重要手段。

其中,地震动计算、弹性波传播、岩体力学、爆炸力学等方面的研究成果,为隧道爆破振动控制技术的研究奠定了理论基础。

其次,生物仿生学的出现,使得一些仿生结构、材料被用于隧道爆破振动控制技术的研究。

例如,蜂巢结构、树形结构等,在发挥其原有功能的同时,可以起到隔振和减振的作用。

隧道工程爆破技术PPT课件

隧道工程爆破技术PPT课件

排放标准
确保废气排放符合国家和地方的相关标准,避免对环境和人体健康造成危害。
爆破噪声控制与减振
1 2
噪声来源分析
分析爆破产生的噪声来源,了解噪声的特性。
噪声控制措施
采取适当的控制措施,如消声、吸声、隔声等, 降低噪声对周边环境和人员的影响。
3
减震措施
采取适当的减震措施,如设置减震沟、使用减震 材料等,降低爆破对周边建筑和设施的影响。
详细描述
早期的隧道工程爆破技术采用手工凿岩的方式,炸药和雷管的性能也比较落后。随着科技的不断进步 ,隧道工程爆破技术也得到了极大的发展。现代的隧道工程爆破技术采用了先进的爆破设计和监测技 术,同时引入了智能化的爆破设备和安全管理系统,大大提高了施工效率和安全性。
02
隧道工程爆破技术的基本原理
炸药爆炸的原理
03
爆破效果
爆破后隧道断面平整,岩石块度适中 ,便于挖掘机和装载机进行挖掘和装 载。同时,爆破过程中对周围山体的 震动和飞石控制较好,没有造成严重 的安全事故。
06
隧道工程爆破技术的未来发展
新型炸药与起爆器材的研究与应用
总结词
新型炸药与起爆器材的研究与应用是隧 道工程爆破技术未来发展的重要方向之 一。
装载。同时,爆破过程中对周围山体的震动和飞石控制较好,没有造成
严重的安全事故。
某铁路隧道爆破工程案例
案例概述
某铁路隧道位于山区,全长约7公里,也是采用爆破技术进 行开挖。
爆破设计
根据地质勘察资料,设计采用深孔爆破方案,炮孔深度为5-7米,孔径为 50-60毫米。炸药选用TNT和黑索金混合炸药,采用分段装药结构。
详细描述
隧道工程爆破技术是利用炸药爆炸瞬间产生的能量,将岩石 破碎成满足施工要求的小块,然后通过运输设备将其运出隧 道。该技术具有施工速度快、开挖成本低、适用范围广等优 点,因此在各类隧道工程中被广泛应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

隧道控制爆破技术与应用
隧道控制爆破技术与应用
摘要:本文通过隧道爆破在围岩中产生的破坏和扰动,以及爆破地震动效应的分析指出,通常用控制爆破时隧道围岩或构造物的振动峰值,能实现控制爆破破坏的目的,详细列举了隧道微振动爆破技术在应用过程中爆破参数的选定、布孔图形及装药量的计算方法。

关键词:隧道工程控制爆破微振动爆破
近年来,随着国民经济的快速发展,各种建设的规模日益扩大,在全国各地,都在积极发展的高速铁路、公路、水工建设及城市地铁轻轨项目中,都有很多地下工程和隧道施工。

在这些工程中,有些隧道在开挖时,必须采用减轻爆破强度、减小爆破扰动的爆破技术,方能保证隧道施工安全,这时,通常采用以下三种情况:
1、软弱围岩为避免塌方和能安全进行大断面开挖,常使用大型施工机械或微振动的隧道控制爆破。

2、城市隧道地面地下环境复杂,人口密集,房屋林立,地下管线密布,经常使用微振动控制爆破施工。

3、临近既有线施工或两相邻隧道同时施工,采用爆破施工时宜采用微振动控制爆破。

隧道爆破施工时,不对隧道围岩及隧道周围环境,特别是地表建筑物造成破坏,或过大扰动,是我们在爆破施工中追求的一个目标。

1、隧道爆破产生的破坏和扰动
隧道施工爆破对隧道围岩的稳定性有显而易见的影响;当隧道埋深较浅时,常常对地面的建筑物造成扰动和破坏,开挖爆破对隧道围岩破坏和扰动大致有以下几个方面
(1)接近爆破一定距离内,爆破能力对介质的作用为非弹性,围岩在这个区域内,在冲击波和高温高压的爆炸气体共同作用下,出现破碎圈;
(2)稍远处伴随着冲击波在介质中产生的应力波和地震波,对围岩产生扰动和破坏。

但是,目前对岩石的爆破机理,特别是隧道爆破过程本身对围岩的作用机理的研究还很不充分,隧道工程爆破的设计和实践目前仍以工程类比法或经验为主完成,在一些隧道施工工地的现场观测资料表明,施工爆破对围岩的扰动和破坏是十分明显的。

2. 工程爆破的地震效应
在岩土中爆炸时,炸药爆破能量的2%到6%将转变为地震波。

隧道工程的爆源,同时也是地震源。

它会产生在围岩一定范围内传播的,由随时间而变化的应力构成的力系引起的爆破地震动效应。

其主要研究内容是爆破地震波的传播规律及其对传播介质和围岩,以及建筑结构的影响。

如前所述,在距爆源一定距离内,爆炸能量对介质的作用为非弹性作用,该范围内出现岩体因爆破作用形成的破碎带,在某一定距离以远,这种非弹性作用终止,而开始出现弹性效应。

这种弹性扰动在岩体介质中以地震波的形式由爆炸区向外传播。

这种爆破地震动实际上是震源发出的行进的波动扰动,这种行进的波动扰动会引起围岩介质质点的振动。

质点的振动强度超过某一限度时,就会造成隧道围岩,衬砌,及某些情况下地表建筑物的开裂,破坏,甚至坍塌。

观测资料表明,二次爆破造成的扰动破坏更大。

重复爆破作用的扰动,会导致岩石或结构物中已有的裂隙累积性扩展。

3. 控制爆破振动的隧道爆破技术
减轻,控制爆破振动的爆破技术,常常也称为微振动爆破技术。

如前所述,在控制爆破振动的爆破技术中,人们经过大量工程实践,已经充分认识到必须采用综合技术措施,才能得到较理想的效果。

其中大多数工程都会首先考虑的,如:合理的开挖分部,掏槽技术,使用低爆速炸药,毫秒雷管微差爆破,改善装药结构,及最重要的一点控制爆破规模,每循环的进尺等。

这里,仍需强调说明的是,隧道微振动爆破时通常不对一次爆破的总药量进行控制,而是对同时起爆的同段药量加以控制。

这一点对于软弱围岩毫无疑问是正确的。

但对坚硬完整的岩层,则常是掏槽炮眼的爆破产生一次爆破中强度最大的振动。

尽管它不是同时起爆最大一段药量。

这时经常是周边眼为最大一响药量。

振动速度的全程监测
是进行微振动爆破的重要的必不可少环节。

而依据工程对象的爆破振动速度安全指标,计算和设计最大共同作用装药量则是隧道微振动爆破技术的重要环节。

3.1. 计算允许的单段最大共同作用装药量
我国《爆破安全规程》中,对各类建筑物所允许的安全振动速度有如下规定;
(1)土窖洞,土胚房,毛石房屋 1.0―1.5cm/s
(2)一般砖房,非抗震的大型砌块建筑物2.0―3.0 cm/s
(3)钢筋混凝土结构房屋3.0―5.0cm/s
(4)水工隧道7―15cm/s
(5)交通隧道10―20cm/s
实际应用时,每个工程都要结合工程的具体情况,作出相应的安全规定。

如建筑物的质点峰值振动速度安全控制标准:
(1)较坚固的建筑(如砖混) <2.5cm/s
(2)一般建筑物 <1.5cm/s
(3)陈旧房屋 <0.8 cm/s
(4)隧道Ⅲ类围岩<3cm/s Ⅳ类围岩<5―6cm/s
对于居民稠密的浅埋隧道,为避免爆破振动及噪音对居民产生不安和恐惧,一般振动速度应控制在1.5 cm/s以下。

而且应尽量在白天进行爆破。

由以上允许安全振动速度通过以下公式计算最大一段允许炸药
用量:
(8)
式中:―最大一段允许用药量;kg
―振动速度控制标准; cm/s
R―爆源中心至振速控制点距离; m
K―与爆破技术,地质地形有关的系数;
α―爆破振动衰减指数。

K,α值,有条件的工点可以通过试验爆破及振动观测直接得出。

或通过手册资料工程类比确定。

3.2. 爆破器材的选择
无水的隧道可以选用二号岩石硝铵炸药或乳化炸药。

有水隧道则应选用乳化炸药,水胶炸药或其他防水炸药。

此外,采用低爆速炸药,如爆速2000m/s 的品种,或小直径药卷,如直径20mm或25mm的光面爆破专用炸药。

则肯定对减轻爆炸振动是有益的。

3.3. 选择合理的起爆段间时差
根据工地实测数据资料,软弱围岩中爆破振动频率比较低,一般多在100Hz以下;振动持续时间大多为100―200ms。

为避免段间振动叠加,段间隔时间一般应大于100ms。

而不少在硬岩隧道工地的观测资料表明,这时爆破振动频率较高,通常仅几十赫兹。

振动持续时间也较短,因而有些技术人员认为坚硬完整岩层中隧道爆破可以选用段间隔时间不小于50ms,甚至不小于25ms即可。

3.4. 确定整个爆破设计
隧道其他部位的炮眼均应尽量按照浅密原则布置。

即一次爆破深度(规模)不宜太大。

炸药尽可能均匀地分布在布置较密的炮眼中,这样可避免装药过于集中。

周边炮眼应按光面爆破设计。

必要时应在两装药孔间加打空眼以减振。

周边眼还应采用小直径药卷不耦合装药或串状间隔装药结构。

有时在条件允许时,也采用预留光面层光面爆破技术。

但是,如果周边眼进行预裂爆破,则进行预裂的周边眼将成为产生最大振动速度的,同段起爆药量最大的炮眼。

这时,应用前述方法计算出允许最大段药量,必要时预裂的周边炮眼分几次起爆。

预裂有利于主体爆破减震。

3.5. 全程振动监测
进行隧道微振动爆破时,应在施工现场进行施工全过程的爆破振动观测。

测定应在施工隧道后方几十米范围内选择几个观测断面,并在拱顶,拱腰或拱脚,边?中部及隧底设置测点。

同时,应在地表沿隧道开挖方向一定范围内的地面,或是各种房屋建筑物的梁,柱及不同楼层地面上设置测点。

如近邻有已建成隧道或其他地下建筑,或是紧邻施工的Ⅱ线隧道等,则应在其内选定若干观测断面布置测点。

测点一般可只观测垂直向振动速度。

如有可能应争取布置一定数
量三向振动速度测点。

3.6. 爆破效果综述
完全符合爆破方案设计要求;保留部分完好无裂痕,除钢筋未爆破拆除外,混凝土全部拆除,且崩落飞石未超出5米范围。

微振动爆破技术已发展成为一个市场前景广阔、技术含量高的新型产业。

随着我国城市改造速度的加快,它将成为一个建筑企业立足市场的拳头项目。

------------最新【精品】范文。

相关文档
最新文档