七年级数学下册 第二章回顾与反思教案 北师大版

合集下载

北师大版七年级数学下册第二章相交线与平行线回顾与思考课件

北师大版七年级数学下册第二章相交线与平行线回顾与思考课件

试说明:∠ADG=∠C 解:∵BD⊥AC,EF⊥AC(已知)
∴∠2=∠3=90°(垂直的定义)
∴BD∥ EF (同位角相等,两直线平)行 ∴∠4=_∠_5___(两直线平行,同位角相)等
∵∠1=∠4 ( 已知

∴∠1=_∠__5__( 等量代换

∴ DG ∥BC (内错角相等,两直线平)行
∴∠ADG=∠C(两直线平行,同位角相等)
6.已知一个角的补角加上10°后,等于这个角余角 的3倍,则这个角的补角是 __ 度。
解:设这个角的度数为x, 则它的补角为:1800-x 它的余角为:900-x
所以有: 1800 - x+100 = 3(900-x) 得: x = 400
所以,它的补角为1400
平行线的判定方法:(数学语言) ①∵∠1=∠2(已知)
2,当点E在图(2)位置时,∠B,∠D,∠BED之间有何关系?
பைடு நூலகம்
A
B
A
B
E
E
C A
D
C
B
A
D B
E
E
C A
D C
B
D
E
∠B+∠E=∠BDE
C
D
3,思考:E的位置还可以在哪里?(除了在直线AB和CD上以外)
随着E的位置变化,∠BED 与∠B、∠D的数量关系会产生 变化吗?
E
A
B
E
A
B
C
图3
D
∠BED=∠B-∠D
互相平行)
∴∠D =∠DEF(两直线平行,内错角相等) ∴∠B+∠D=∠BEF+∠DEF
=∠DEB. 即∠B+∠D=∠DEB.
B E ……F

北师大版七年级数学下册《二章 相交线与平行线 1 两条直线的位置关系 对顶角、余角和补角》公开课教案_11

北师大版七年级数学下册《二章 相交线与平行线  1 两条直线的位置关系  对顶角、余角和补角》公开课教案_11

北师大版义务教育课程标准实验教科书七年级下册2.1.1两直线的位置关系第1课时教学设计一、教材分析1、地位作用:本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,学生已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。

在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;为接下来研究两条直线被第三条直线所截的情形,即同位角、内错角、同旁内角等概念的学习作了最基本的准备。

同时是后续学习垂直的基础。

2、目标和目标解析:1.理解邻补角和对顶角的概念;2.掌握“对顶角相等”的性质;3.理解对顶角相等的说理过程;4.经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力;5.通过师友互助、小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣。

3、教学重、难点教学重点:邻补角、对顶角的概念,对顶角的性质与应用。

教学难点:对顶角相等的性质的探索。

突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。

二、教学准备:多媒体课件、导学案、剪刀,纸。

三、教学过程教学内容师生活动设计意图一、创设情景,引入新知问题:在我们的生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线。

由此引入本节的主要内容。

(板书)课题学生观察图片,获得感性认识.让学生知道,相交线、平行线的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。

二、小组合作,探究新知1. 观察剪刀剪布的过程,引入两条相交直线所成的角问题1:张开地剪刀给人以什么形象?(出示一把张开的剪刀),张开的剪刀可看作两条相交直线。

(教师可以同时在黑板上画出几何图形)在用剪刀剪布的过程中,用力握紧把手引发了剪刀张角的变化,表演剪布过程,让学生仔细观察,提出问题问题2:两个把手之间的的角发生了什么变化?剪刀刀刃张开的口又怎么变化?握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.2.认识邻补角和对顶角,探索它们性质(1)角的位置关系探究画直线AB、CD相交于点O问题:1 、两条相交直线.形成的小于平角的角有几个?2、两两相配共组成几对角?3、各对角存在怎样的位置关系?按位置关系对他们怎样进行分类?4、各对角的度数有什么关系?学生观察、思考、回答问题学生观察、思考、回答,得出结论学生思考并在小组内交流,全班交流.由实际问题引导学生初步感知相交线形成的角及特点,同时明确本节课要学习的内容用现实生活中的例子引出两线相交所成角的问题,自然而贴切,同时在这个过程中,让学生对两线相交所成角的关系有了初步的认识,这就为研究对顶角相等作了铺垫三.细心观察,归纳定义1、探究邻补角的定义问题:(1)∠1与∠2有怎样的位置关系?(2)∠1与∠2的顶点有什么特点?(3)∠1与∠2的边所在的位置有什么特点?邻补角定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。

【七年级数学下册】完全平方公式教案(二) 北师大版

【七年级数学下册】完全平方公式教案(二)  北师大版

1.8完全平方公式(二)教科书是在学生已经经历了完全平方公式的探索和推导过程之后,并能够运用完全平方公式进行简单计算的基础上,提出本节课的学习任务的。

可以说首先是对完全平方公式的进一步巩固,并能将其运用到有关数的简便运算当中去。

同时,虽然本节课是完全平方公式的第二个课时,但其实也是对乘法公式及整式乘法运算的简单的综合运用。

为此,本节课的教学目标是:1.熟记完全平方公式,并能说出公式的结构特征,进一步发展学生的符号感。

2.能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力。

3.能够运用完全平方公式进行一些数的简便运算,体会符号运算对解决问题的作用。

4.会在多项式、单项式的混合运算中,正确运用完全平方公式进行计算,感悟换元变换的思想方法,提高灵活应用乘法公式的能力。

二、教学设计分析本节课设计了七个教学环节:回顾与思考、做一做、简单应用、综合应用、课堂小结、布置作业、联系拓广。

第一环节回顾与思考活动内容:复习已学过的完全平方公式。

1.完全平方公式:(a+b)2 = a2 + 2ab + b2(a-b)2 = a2 - 2ab + b22.公式口诀:首平方,尾平方,两倍乘积放中央,加减看前方,同加异减。

3. 想一想:(1)两个公式中的字母都能表示什么? 数或代数式(2)根据两数和或差的完全平方公式,能够计算多个数的和或差的平方吗?完全平方公式在计算化简中有些什么作用?活动目的:本堂课的学习方向首先仍是对于完全平方公式的进一步巩固应用,因而复习是很有必要的,这为后面的学习奠定了一定的基础,同时经过本环节中的第三个问题的思考,也使学生明确了本节课学习的初步目标,起到了承上启下的作用。

第二环节做一做活动内容:出示幻灯片,提出问题。

有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们。

来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块糖,……(1) 第一天有a 个男孩一起去了老人家,老人一共给了这些孩子多少块糖?(2) 第二天有b 个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3) 第三天这(a + b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?活动目的:数学源自于生活,通过生活当中的一个有趣的分糖场景,使学生进一步巩固了(a+b)2=a2+2ab+b2,同时帮助学生进一步理解了(a+b)2与a2+b2的关系。

七年级数学上册 第二章 回顾与思考(课时二)教学设计 (新版)北师大版

七年级数学上册 第二章 回顾与思考(课时二)教学设计 (新版)北师大版

七年级数学上册第二章回顾与思考(课时二)教学设计(新版)北师大版回顾与思考(二)一、学生起点分析学生的知识技能基础:学生通过本章的学习,已经掌握了有理数的有关概念。

能运用正、负数表示生活中具有相反意义的量,能用数轴上的点表示有理数,能借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,能利用数轴比较有理数的大小.对绝对值的概念以及如何求一个数的绝对值也有了一定的理解,会利用绝对值比较两个负数的大小.此外,通过本章的学习,还掌握了有理数的加、减、乘、除、乘方的运算法则及运算律,并利用其解决了一些问题,具备了利用运算解决一些简单实际问题的经验.学生活动经验基础:在本章的学习过程中,学生已经经历了一些观察、猜想、探索、发现、比较、分析、综合等数学活动,积累了比较丰富的活动经验。

在学习新知的同时发展了一定的抽象、概括能力;在解决问题的同时提高了一定的探究能力;在独立思考的基础上,体验到了合作交流的重要性.同时在本章的学习过程中,学生的语言表达以及发表见解方面都已获得了一些成功的感受,具备了学习本节课所需要的活动经验基础.二、教学任务分析本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分主要内容是有理数的有关概念;第二部分主要内容是学习有理数的加减法运算;第三部分主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.本节课主要是针对第三部分的内容进行知识梳理和复习.本节课的教学目标是:1、复习有理数的乘、除、乘方的运算法则;2、复习有理数的混合运算的运算律;3、运用有理数及其运算解决实际问题.三、教学过程设计本节课设计了六个教学环节:第一环节:说一说;第二环节:比一比;第三环节:想一想;第四环节:做一做;第五环节:课堂小结;第六环节:拓展延伸.第一环节:说一说活动内容:引导学生回顾上一节课的知识点.教师问:同学们还记得我们上节课复习的知识点吗?看看谁记得牢,说得多?活动目的:让学生在抢答中巩固本章知识点,培养学生温故知新的习惯.活动的实际效果:由于上节课已经帮助学生建构了本章的知识结构图,因此根据此框架图能很容易回忆起本章的主要知识点,有助于学生更好地从整体理解全章的知识.第二环节:比一比活动内容:巩固练习1、若|x|-|y|=0,则()A. x=yB. x=-yC. x=y=0D. x=y或x=-y2、有理数a,b 在数轴上对应位置如图所示,则a+b的值为()A. 大于0B. 小于0C. 等于0D. 大于a3、若 | 2a |= —2a,则a一定是()A.负数B.正数C.非正数D.非负数4、已知|2a+4 |+ | 3—b |=0,则a+b= .5、已知a、b在数轴上如图所示,请比较a、b、-a、-b的大小。

北师大版七年级数学下册《二章 相交线与平行线 4 用尺规作角》公开课教案_1

北师大版七年级数学下册《二章 相交线与平行线  4 用尺规作角》公开课教案_1

《用尺规作角》教学设计用尺规作角是北师版初中数学七年级下册第二章第四节内容,本章主要研究两直线的位置关系;本节要求掌握能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学目标【知识与能力目标】能用尺规作一个角等于已知角;理解文字语言与图形语言的转换;【过程与方法目标】经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识;【情感态度价值观目标】使学生在积极参与探索、交流、推理、归纳等数学活动中,进一步体会数学的严密性,提高自己的逻辑思维能力.重点难点【教学重点】能用尺规作一个角等于已知角;【教学难点】作图步骤和作图语言的叙述.课前准备【教师准备】课件、学案(每生一份);【学生准备】直尺、圆规、铅笔、练习本.教学方法学生动手操作,小组合作交流,微课辅助教学教学过程一、导入【生活情境】设计平行四边形班级布置照片墙,需要长方形、正方形、圆形、平行四边形等各种图形的纸板. 负责设计的班长遇到了难题,平行四边形如何裁出呢?【数学问题】过一点作已知直线平行线班长找来一个长方形木板,准备在上面截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.过C点画出与AB平行的另一条边CD,你有多少种方法?【问题解决】学生尝试多种方法1.用直尺与三角板画平行线.2.用量角器画一个相等的角.(依据:同位角相等两直线平行)有其他做法,只要合理即给予肯定鼓励.小结:过直线外一点作已知直线的平行线,相当于过这点作一个与已知角相等的同位角.【问题变式】摆脱平行四边形的背景,已知一个角,让你作一个角等于这个角(已知角与所求作的角未必在一个平行四边形内,甚至未必在同一平面内),你还能用哪些方法?【问题升级】尺规作图如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?【温馨提示】“尺”“规”各有什么功能?尺—画直线、射线、线段规—画圆、弧、截取线段二、回顾【提出问题】之前的学习中,曾经用尺规作过什么图形?怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?已知:线段a.求作:线段AB ,使A B=a.【尝试练习】学生独立完成,并简单交流.三、新课【学生探究】如果你只有一个圆规和一把没有刻度的直尺,你能作一个角等于已知角吗?已知:∠AOB.求作:∠A'O'B',使∠A'O'B' =∠AOB.学生先尝试独立思考,然后小组内交流探究.【温馨提示】1.为了作出这个角,显然需要先作_________.2.为了作出另一边,只需要确定_________.3.分析刚才作图的方法,如何用尺规达到同样的效果?【汇报展示】找若干小组代表上台展示,并讲解作图步骤.附:作法与示范:(1)作射线O'A' ;(2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D;(3)以点O' 为圆心,以OC 为半径画弧,交O'A' 于点C' ;(4)以点C' 为圆心,以CD 长为半径画弧,交前面的弧于点D' ;(5)过点D' 作射线O'B'. ∠A'O'B' 就是所求作的角.【视频总结】【问题解决】用尺规过点C作CD∥AB.四、练习【练习1】已知∠1,∠2,利用尺规作图,比较它们的大小.口述作法、保留作图痕迹.【练习2】已知∠1,∠2. 求作:∠AOB,使得∠AOB= ∠1+∠2.变式:你会作两个角的差吗?【练习3】已知∠AOB,利用尺规作∠A'O'B',使∠A'O'B' =2∠AOB.五、应用打台球时,球的反射角总是等于入射角.反弹之后,红球能被击入右下角的袋中吗?(用尺规作图检验)六、拓展【尺规作图的历史】中国--“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字。

七年级数学下册第二章回顾与思考教案新北师大

七年级数学下册第二章回顾与思考教案新北师大

ABC D回顾与思考教学目标: 知识与技能目标:1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化。

2.在丰富的情景中,抽象出平行线、相交线等基本几何模型,从而进一步熟悉和掌握几何语言,能用语言说明几何图形。

过程与方法目标:1.经历把现实物体抽象成几何对象(点、线、面等)的数学化过程. 2.在探究说理过程中,锻炼学生的语言表达能力以与逻辑思维能力。

3.通过多个角度去思考问题,既提高学生的识图能力,又可以开阔思维,提高分析问题、解决问题的能力。

情感态度价值观:1. 感受数学来源于生活又服务于生活,激发学习数学的乐趣. 2.通过一题多变,一题多解,多解归一的练习,让学生学会挖掘题目资源,用发展的眼光看问题,观察运动中的异同, 揭示知识间内在联系。

一、 教学过程分析本节课设计了六个教学环节:第一环节:创设情境;第二环节:归纳总结;第三环节:知识应用;第四环节:拓展升华;第五环节:纵向延伸;第六A BDEO 小节:查缺补漏。

第一环节:创设情境 第二环节:归纳总结活动内容:师:你们能从这个标志中发现我们学过的基本图形么? 生1:相交直线。

师:两条相交直线有4个形影不离的朋友,他们都有很漂亮的性质, 你们知道是什么么?生2:他们的朋友是对顶角和互补的角。

生3:性质是对顶角相等,互补角相加为1800。

师:在这个标志中,除了相交线,还有没有其他重要但是很简单的结构? 生(几乎不约而同)平行线。

师:图案中告诉我们∥了么? 生:没有。

师:则怎么来判定呢?生:还得请相交直线和它的朋友来帮忙。

师:所以设计师让这两条直线都被第三条直线所截,多有先见之明!现在请同学们归纳一下,判定∥的方法有哪些?同位之间交流。

师:在整个大众图标中,若∥,∥,图中共有几对相等的角,几对互补的角。

四人小组讨论归纳,并说明理由。

师:通过对大众标志的研究,你会发现,我们总是要在复杂图形中找出最原始而不失去重要性的结构来解决问题。

七年级数学第二章整式的章节复习课

七年级数学第二章整式的章节复习课

(第一章整式的运算)回顾与思考(一)
教学目标:
1.知识与技能目标:运用问题的形式帮助学生梳理全章的内容,建立一定的知识体系。

鼓励学生在独立思考的基础上,开展小组交流,使学生在反思与交流的过程中,加
深对已学知识的理解,结合具体实例体会知识,加强知识间的联系,。

2.过程与方法:结合具体问题体会知识间的内在联系,以及本章学习中所采用的主要思想方法,发展抽象、概括能力,形成知识体系。

3.情感态度与价值观:在独立思考的基础上积极参与讨论,敢于发表自己的观点,从交流中获益;在解决问题的过程中了解数学的价值,发展“用数学“的信心。

教学重点:梳理所学内容:整式的概念及相关的运算性质、运算法则、乘法公式的理解与运用,会解相关的题目,形成知识间的体系。

教学难点:建立相关的知识体系,使新旧知识成为一个有机整体。

课前准备:多媒体及课件
回顾与思考(二)
教学目标:
1.知识与技能目标:在运用知识解决具体问题的过程中,加深对全章知识体系的理解。

发展推理能力和有条理的表达能力。

2.过程与方法:体会数学的应用价值及在解决问题过程中与他人合作的重要性。

培养学生在独立思考的基础上,积极参与对数学问题的讨论,并敢于发表自己的观点。

3.情感态度与价值观:进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步
形成积极参与数学活动的意识。

教学重点:进一步理解整式的概念及相关的运算、性质、运算法则、乘法公式的理解与运用,会解相关的题目,建立起相关的知识体系。

教学难点:灵活应用运算性质、运算法则、乘法公式解决问题。

课前准备:多媒体及课件
教学过程:。

(完整版)新北师大版七年级数学下册全册教案

(完整版)新北师大版七年级数学下册全册教案

2015—2016学年度第二学期教学进度任课教师:学科:数学年(班)级:本学期总目标:培养学生良好的学习习惯,提高他们学习数学的热情,力争取得一个比较优异的学习成绩教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。

1.1 同底数幂的乘法教学目标:知识与技能:使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算。

过程与方法:在推导“性质”的过程中,培养学生观察、概括与抽象的能力。

情感、态度、价值观:提高学生学习数学的兴趣。

教学重点和难点:幂的运算性质.教学过程:一、实例导入:二、温故:2.,指出下列各式的底数与指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?三、知新:1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10(乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即a m·a n=a m+n.3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则:同底数幂相乘,底数不变,指数相加。

注意:强调幂的底数必须相同,相乘时指数才能相加.四、巩固:例1计算:(1) (-3)7×(-3)6;(2)(1/111)3×(1/111).(3)-x3·x5 (4) b2m·b2m+1..例2、光在真空中的速度约为3×108米/秒,泰阳光照射到地球上大约需要5×102秒,地球距离太阳大约有多远?五、拓展:1、计算:(1)105·106;(2)a7·a3;(3)y3·y2;(4)b5·b;(5)a6·a6;(6)x5·x5.2、计算:(1)y12·y6;(2)x10·x;(3)x3·x9;(4)10·102·104;(5)y4·y3·y2·y;(6)x5·x6·x3.六、课堂小结:1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.5.若底数是多项式时,要把底数看成一个整体进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回顾与反思教学设计
教学设计思想:
本节为一堂复习课;教师可以从现实生活中导入课题,以问题的形式帮助学生总结本章的内容,在学生充分思考、交流的基础上,引导学生梳理本章的结构框架,再通过练习的形式对内容加以巩固.
一、教学目标
(一)知识与技能
1.熟记补角、余角、对顶角的概念及其性质.
2.掌握平行线的特征.
3.掌握平行线的条件.
4.利用尺规作简单的图形.
(二)过程与方法
1.通过复习进一步巩固对补角、余角、对顶角的掌握.
2.通过复习掌握直线平行的条件以及平行线的特征,并会应用它们去说理.
(三)情感、态度与价值观
1.经历观察、操作、想象、交流等过程,进一步发展学生的空间概念.
2.进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实.
二、教学重难点
(一)教学重点
运用补角、余角的性质解决问题;运用直线平行的条件及平行线的特征解决实际问题.
(二)教学难点
几何语言的理解以及用自己的语言表述理由,书写自己的理由.
三、教具准备
投影片.
四、教学方法
小组讨论法.
五、教学安排
1课时.
六、教学过程
Ⅰ.创设情景,引入新课
[师]平行线、相交线在现实生活中随处可见,同时它们又构成同一平面内两条直线的基本位置关系.在这一章里,我们探索了平行线、相交线的有关事实,并以直观认识为基础进行简单的说明,将直观与简单的推理相结合,且借助平行的有关结论解决一些简单的实际问题.
下面我们以问题形式来顺理本章的有关内容.
Ⅱ.讲授新课
[师]现在同学们独自思考下列问题,并回答.
1.生活中有哪些平行线和相交线的例子?
2.两条直线相交,至少有几对相等的角?
3.判断两条直线是否平行,通常有哪些路径?
4.平行线有哪些特征?
[生甲]生活中平行线和相交线的例子很多;如:立交桥、房屋等等.
[生乙]两条直线相交,形成两对对顶角.这两对对顶角相等,所以,两条直线相交,至少有两对角相等.
[生丙]判断两条直线平行的途径有:
(1)定义;(2)两条直线都和第三条直线平行,则这两条直线相互平行;(3)同位角相等,两直线平行;(4)内错角相等,两直线平行;(5)同旁内角互补,两直线平行.
[生丁]:平行线的特征:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.
下面我们用一个知识框图来表述这一章的内容(幻灯片展示图片——知识结构)
Ⅲ.课堂练习
例1.已知:如图5,AB∥CD,求证:∠B+∠D=∠BED。

分析:可以考虑把∠BED变成两个角的和。

如图5,过E点引一条直线EF∥AB,则有∠B=∠1,再设法证明∠D=∠2,需证
EF∥CD,这可通过已知AB∥CD和EF∥AB得到。

证明:过点E作EF∥AB,则∠B=∠1(两直线平行,内错角相等)。

∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠D=∠2(两直线平行,内错角相等)。

又∵∠BED=∠1+∠2,
∴∠BED=∠B+∠D(等量代换)。

变式1:已知:如图6,AB∥CD,求证:∠BED=360°-(∠B+∠D)。

分析:此题与例1的区别在于E点的位置及结论。

我们通常所说的∠BED都是指小于平角的角,如果把∠BED看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。

因此,我们模仿例1作辅助线,不难解决此题。

证明:过点E作EF∥AB,则∠B+∠1=180°(两直线平行,同旁内角互补)。

∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠D+∠2=180°(两直线平行,同旁内角互补)。

∴∠B+∠1+∠D+∠2=180°+180°(等式的性质)。

又∵∠BED=∠1+∠2,
∴∠B+∠D+∠BED=360°(等量代换)。

∴∠BED==360°-(∠B+∠D)(等式的性质)。

变式2:已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。

分析:此题与例1的区别在于E点的位置不同,从而结论也不同。

模仿例1与变式1作辅助线的方法,可以解决此题。

证明:过点E作EF∥AB,则∠FEB=∠B(两直线平行,内错角相等)。

∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠FED=∠D(两直线平行,内错角相等)。

∵∠BED=∠FED-∠FEB,
∴∠BED=∠D-∠B(等量代换)。

变式3:已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。

分析:此题与变式2类似,只是∠B、∠D的大小发生了变化。

证明:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁内角互补)。

∵AB∥CD(已知),
又∵EF∥AB(已作),
∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠FED+∠D=180°(两直线平行,同旁内角互补)。

∴∠1+∠2+∠D=180°。

∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质)。

∴∠2=∠B-∠D(等式的性质)。

即∠BED=∠B-∠D。

例2.已知:如图9,AB∥CD,∠ABF=∠DCE。

求证:∠BFE=∠FEC。

证法一:过F点作FG∥AB,则∠ABF=∠1(两直线平行,内错角相等)。

过E点作EH∥CD,则∠DCE=∠4(两直线平行,内错角相等)。

∵FG∥AB(已作),AB∥CD(已知),
∴FG∥CD(平行于同一直线的两条直线互相平行)。

又∵EH∥CD(已知),
∴FG∥EH(平行于同一直线的两条直线互相平行)。

∴∠2=∠3(两直线平行,内错角相等)。

∴∠1+∠2=∠3+∠4(等式的性质)
即∠BFE=∠FEC。

证法二:如图10,延长BF、DC相交于G点。

∵AB∥CD(已知),
∴∠1=∠ABF(两直线平行,内错角相等)。

又∵∠ABF=∠DCE(已知),
∴∠1=∠DCE(等量代换)。

∴BG∥EC(同位角相等,两直线平行)。

∴∠BFE=∠FEC(两直线平行,内错角相等)。

如果延长CE、AB相交于H点(如图11),也可用同样的方法证明(过程略)。

证法三:(如图12)连结BC。

∵AB∥CD(已知),
∴∠ABC=∠BCD(两直线平行,内错角相等)。

又∵∠ABF=∠DCE(已知),
∴∠ABC-∠ABF=∠BCD-∠DCE(等式的性质)。

即∠FBC=∠BCE。

∴BF∥EC(内错角相等,两直线平行)。

∴∠BFE=∠FEC(两直线平行,内错角相等)。

七、板书设计
回顾与反思
一、问题串
1.举例
2.两条直线相交
3.直线平行的条件
4.平行线的特征
二、知识框图
三、课堂练习。

相关文档
最新文档