2020-2021长沙市长郡中学高三数学上期末一模试题含答案
湖南省长沙市长郡中学2021届高三上学期第一次月考 数学 (含答案)

$617)0846
"
"
t
"
"
,-)&
.-)0
!-)$
/-)"
6!5!
"!7!
!"#$!%&' !"(!")!*#)"
$
"
-#!`a!-!#"(# )#*7#2$&ucHvw+'&(,. &2; &xy-!#"
+ " $
H+'&(,bFszt+/!'2$"&/!(2$",&C/F{s|}_
<2$*7$ ,-"&
,- "*) "$
"
03
"*) &*) .-) "*2 "$
03
"
"*) "*) "
!-) "*2 "$
"
03
"*) "*) /- "
! " " &!`a!-!#"(#2*4+$#).&C)a!-!#"H &' bcHdM*_).+ $ "
"
!"&3"*F
"
,-e<-f,gh "
t!!!!! 1%FG(#)(*3+(&*5%$!FGHI/JKLM%NMOPQRS
TU!
湖南省长沙市长郡中学2020-2021学年高三上学期月考(一)数学试题

长郡中学2021届高三月考试卷(一)数学本试卷共8页.时量120分钟.满分150分.一、选择题:本题共8小题,每小题5分,共40分在每小题给田的四个选项中,只有一项是符合题目要求的.1. 已知集合{}22A x x =-≤≤∣,{}lg(1)B x y x ==-∣.则A B =( ) A. {}2x x ≥-∣ B. {}12x x <<∣ C. {}12x x <≤∣ D. {}2xx ≥∣ C根据对数函数的定义域化简{}lg(1)B x y x ==-∣,再利用交集的运算求解即可. 由题意得,{}{}lg(1)1B x y x x x ==-=>∣∣, 因为{}22A xx =-≤≤∣, 所以{}12A B xx =<≤∣,故选:C. 本题主要考查对数函数的定义域以及集合交集的运算,属于基础题.2. 已知复数z 满足()3425z i -=,则z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限D化简复数z ,进而可得出复数z 的共轭复数在复平面内对应的点所在的象限.()()()25342534343434i z i i i i +===+--+,则34z i =-, 复数z 在复平面内对应的点是()3,4-,在第四象限,故选:D.本题考查复数对应的点所在象限的确定,考查了复数的除法法则以及共轭复数的应用,属于基础题.3. 已知a b c <<且0a b c ++=,则下列不等式恒成立的是 A. 222a b c << B. 22ab cb <C. ac bc <D. ab ac <C∵0a b c ++=且a b c <<,∴0,0a c <>. ∴ac bc <. 选C .4. 在ABC 中,2BD DC =,AE ED =,则BE =( ) A.1536AC AB - B. 1536AC AB -+C. 1136AC AB -+D. 1136AC AB --A根据2BD DC =,AE ED =,结合平面向量的加法和减法运算,利用平面向量的基本定理求解. 【详解】如图所示:因为AE ED =,2BD DC =, 所以()12BE BA BD =+, ()1223BA AC AB ⎛⎫=+- ⎪⎝⎭, 1536AC AB =-,故选:A 5. 设函数2()log f x x x m =+-,则“函数()f x 在1,42⎛⎫⎪⎝⎭上存在零点”是(1,6)m ∈的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件B由函数基本初等函数的单调判断函数()f x 的单调性,由函数()f x 在1,42⎛⎫⎪⎝⎭上存在零点,则102f ⎛⎫< ⎪⎝⎭,(4)0f >,即可求出参数的取值范围,再根据充分条件、必要条件的定义判断即可; 解:函数2()log f x x x m =+-在区间()0,∞+上单调递增,由函数()f x 在1,42⎛⎫⎪⎝⎭上存在零点,则11022f m ⎛⎫=--< ⎪⎝⎭,(4)60f m =->,解得162m -<<,故“函数()f x 在1,42⎛⎫⎪⎝⎭上存在零点”是“(1,6)m ∈”的必要不分条件.故选:B.本题考查函数的零点及充分条件、必要条件的判断,属于基础题.6. 已知实数a ,b ,c 满足1lg 10b a c==,则下列关系式中不可能成立的是( )A. a b c >>B. a c b >>C. c a b >>D. c b a >>D设1lg 10ba t c ===,分别表示出,,a b c ,构造函数,利用函数图象比较大小. 设1lg 10ba t c ===,0t >,则10t a =,lgb t =,1c t=,在同一坐标系中分别画出函数10x y =,lg y x =,1y x=的图象,如图,当3t x =时,a b c >>;当2t x =时,a c b >>;当1t x =时,c a b >>.故选:D. 本题考查利用函数的图象比较大小,构造函数,画出图象是关键. 7. 已知3sin cos 72sin 3cos αααα+=-,则函数2()sin 2tan |cos |6f x x x α=+-的最小值为( )A. -5B. -3C. 2-D. -1A由3sin cos 72sin 3cos αααα+=-可求出tan α值,再将()f x 化为关于cos x 的二次函数,即可根据二次函数的性质求出最小值. 由3sin cos 72sin 3cos αααα+=-,有3tan 172tan 3αα+=-,解得tan 2α=,故222()sin 2tan |cos |6cos 4|cos |5(|cos |2)1f x x x x x x α=+-=-+-=---, 故当|cos |0x =时,()f x 取最小值5-.故选:A.本题考查分式型三角函数的化简,以及关于二次型三角函数的最值问题,属于基础题.8. 设函数2()2f x x xlnx =-+,若存在区间[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[a ,]b 上的值域为[(2)k a +,(2)]k b +,则k 的取值范围是( ) A. 9221,4ln +⎛⎫⎪⎝⎭B. 9221,4ln +⎡⎤⎢⎥⎣⎦C. 9221,10ln +⎛⎤⎥⎝⎦D. 9221,10ln +⎡⎤⎢⎥⎣⎦C判断()f x 的单调性得出()(2)f x k x =+在1[2,)+∞上有两解,作出函数图象,利用导数的意义求出k 的范围.解:()'21f x x lnx =--,1()2f x x''=-,∴当12x时,()0f x '', ()f x ∴'在1[2,)+∞上单调递增,11()()2022f x f ln ∴''=->,()f x ∴在1[2,)+∞上单调递增,[a ,1][2b ⊆,)+∞,()f x ∴在[a ,]b 上单调递增,()f x 在[a ,]b 上的值域为[(2)k a +,(2)]k b +,∴()(2)()(2)f a k a f b k b =+⎧⎨=+⎩, ∴方程()(2)f x k x =+在1[2,)+∞上有两解a ,b .作出()y f x =与直线(2)y k x =+的函数图象,则两图象有两交点.若直线(2)y k x =+过点1(2,912)42ln +, 则92210ln k +=, 若直线(2)y k x =+与()y f x =的图象相切,设切点为0(x ,0)y ,则002000000(2)221y k x y x x lnx x lnx k=+⎧⎪=-+⎨⎪-+=⎩,解得1k =. 922110ln k+∴<,故选:C . 本题考查了函数的单调性,导数的几何意义,零点个数与函数图象的关系,属于中档题. 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分.部分选对的得3分. 9. (多选题)下列命题中正确的是( ) A. ()0,x ∃∈+∞,23x x >B. ()0,1x ∃∈,23log log x x <C. ()0,x ∀∈+∞,131log 2xx ⎛⎫> ⎪⎝⎭D. 10,3x ⎛⎫∀∈ ⎪⎝⎭,131log 2xx ⎛⎫< ⎪⎝⎭BD本题可通过当(0,)x ∈+∞时213x⎛⎫< ⎪⎝⎭判断出A 错误,然后通过当(0,1)x ∈时2log 0x <、3log 0x <以及223log log 31log xx =>判断出B 正确,再然后可通过取12x =判断出C 错误,最后可通过当10,3x ⎛⎫∈ ⎪⎝⎭时1311log 2xx ⎛⎫<< ⎪⎝⎭判断出D 正确.A 项:当(0,)x ∈+∞时,22133xx x ⎛⎫=< ⎪⎝⎭,即23x x<恒成立,A 错误;B 项:当(0,1)x ∈时,2log 0x <且3log 0x <,因为3322333log log 2log 1log 31log log log 2xx x x ===>,所以23log log x x <恒成立,B 正确;C 项:当12x =时,122x⎛⎫= ⎪⎝⎭,13log 1x =,此时131log 2xx ⎛⎫> ⎪⎝⎭,C 错误;D 项:由对数函数与指数函数的性质可知,当10,3x ⎛⎫∈ ⎪⎝⎭时,1311log 2xx ⎛⎫<< ⎪⎝⎭恒成立,D 正确,故选:BD.关键点点睛:本题考查全称命题和特称命题的真假判断,主要考查学生对指数函数和对数函数的性质的理解,解题时全称命题为真与存在命题为假需要证明,而全称命题为假和存在命题为真只要举一例即可,考查推理能力,是中档题.10. 已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为非零常数),则下列结论正确的是( ) A. {}n a 是等比数列B. 当1p =时,4158S =C. 当12p =时,m n m n a a a +⋅=D. 3856a a a a +=+ABC由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 正确;利用等比数列的通项公式计算得出C 正确,D 不正确. 由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=, 又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 正确; 由A 可得m n m n a a a +⋅=等价为2121122m nm np p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确;故选:ABC. 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力.11. 已知函数()f x 满足:对于定义域中任意x ,在定义域中总存在t ,使得()()f t f x =-成立.下列函数中,满足上述条件的函数是( ) A. ()1f x x B. 4()f x x = C. 1()2f x x =+ D. ()ln(21)f x x =-ACD由题意转化条件为函数()f x 的值域关于原点对称,逐项判断即可得解. 由题意可得函数()f x 的值域关于原点对称, 对于A ,函数()1f x x 的值域为R ,关于原点对称,符合题意;对于B ,函数4y x =的值域为[0,)+∞,不关于原点对称,不符合题意; 对于C ,函数1()2f x x =+的值域为(,0)(0,)-∞+∞, 关于原点对称,符合题意; 对于D ,函数()()ln 21f x x =-的值域为R ,关于原点对称,符合题意;故选:ACD . 本题考查了常见函数值域的求解,考查了转化化归思想,属于基础题.12. 下图是函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0||x ϕ<<)部分图象,下列结论正确的是( )A. 函数12y f x π⎛⎫=- ⎪⎝⎭的图象关于原点对称B. 函数()f x 的图象关于点,012π⎛⎫- ⎪⎝⎭对称C. 函数()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上单调递增D. 方程()1f x =在区间23,1212ππ⎡⎤-⎢⎥⎣⎦上的所有实根之和为83π ABD根据函数图象求出()f x 的解析式,根据正弦型函数的性质判断选项正误. 由已知,2A =,2543124T πππ=-=,因此T π=, ∴22πωπ==,所以()2sin(2)f x x ϕ=+,过点2,23π⎛⎫- ⎪⎝⎭, 因此43232k ππϕπ+=+,k ∈Z ,又0||ϕπ<<, 所以6π=ϕ,∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,对A ,2sin 212y f x x π⎛⎫=-= ⎪⎝⎭图象关于原点对称,故A 正确;对B ,当12x π=-时,012f π⎛⎫-= ⎪⎝⎭,故B 正确; 对C ,由222262k x k πππππ-≤+≤+,有36k x k ππππ-≤≤+,k ∈Z 故C 不正确;对D ,当231212x ππ-≤≤时,2[0,4]6x ππ+∈,所以1y =与函数()y f x =有4个交点令横坐标为1x ,2x ,3x ,4x ,12317822663x x x x πππ+++=⨯+⨯=,故D 正确.故选:ABD.本题考查根据正弦型函数的部分图象求函数的解析式,以及分析正弦型函数的性质,属于基础题.三、填空题:本题共4小题,每小题5分,共20分.13. 若向量2a =,2b =,()a b a -⊥,则向量a 与b 的夹角等于_________.4π 先利用垂直关系得到2a b ⋅=,再利用数量积求夹角的余弦值,根据范围即求得夹角. 因为向量2a =,2b =,()a b a -⊥,故2()0a b a a a b -⋅=-⋅=,即22a b a ⋅==.设向量a 与b 的夹角为θ,则[]0,θπ∈,[]cos 0,22a b a b θθπ⋅===∈⋅,故4πθ=.故答案为:4π.14. 若42log (4)log a b +=+a b 的最小值是___________.94根据对数的运算法则和对数的换底公式进行化简,结合基本不等式利用1的代换进行转化求解即可.解:424log (4)log log (4)a b ab +==,44a b ab ∴+=,4040a b ab +>⎧⎨>⎩得00a b >⎧⎨>⎩,得414a bab+=, 即1114b a+=, 则111559()()1214444444a b a a b a b b a b ab a +=++=++++=+=, 当且仅当4a bb a=,即2a b =时取等号, 即+a b 的最小值为94,故答案为:94.本题主要考查不等式的应用,结合对数的运算法则得到等式条件,结合1的代换是解决本题的关键.15. 《易经》中记载着一种几何图形一一八封图,图中正八边形代表八卦,中间的圆代表阴阳太极图,图中八块面积相等的曲边梯形代表八卦田.某中学开展劳动实习,去测量当地八卦田的面积如图,现测得正八边形的边长为8m ,代表阴阳太极图的圆的半径为2m ,则每块八卦田的面积为___________2m .162162π+-由图可知,正八边形分割成8个全等的等腰三角形,顶角为45︒,设等腰三角形的腰长为a ,利用正弦定理可求出a 的值,再利用三角形的面积公式求解即可. 由图可知,正八边形分割成8个全等的等腰三角形, 顶角为360458︒=︒, 设等腰三角形的腰长为a ,由正弦定理可得8135sin 45sin2a =︒︒, 解得13582sin 2a ︒=,所以三角形的面积211351cos13582sin sin 4532216(21)222S ︒-︒⎛⎫=︒=⋅=+ ⎪⎝⎭, 则每块八卦田的面积为()22116(21)216216m 82ππ+-⨯⨯=+-.故答案为:162162π-.本题主要考查了正弦定理和三角形的面积公式.属于较易题.16. 已知数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 前48项之和为___________.1176先写出前几项与1a 的关系,观察找规律发现相邻奇数项的和为2,偶数项中,每隔一项构成公差为8的等差数列,由等差数列的求和公式计算即可得到所求值,代入求解{}n a 前48项之和即可.由1(1)21nn n a a n ++-=-,则211a a =+,32132a a a =-=-, 431 57a a a =+=-,5417a a a =-=,65199a a a =+=+,761112a a a =-=-, 8711315a a a =+=-,…可知相邻奇数项的和为2,偶数项中,每隔一项构成公差为8的等差数列,由等差数列的求和公式计算即可得到所求值.因()()()1357451721224a a a a a a ++++⋅⋅⋅++=⨯=,()()246816482610464818a a a a a a a a a a a a a ++++⋅⋅⋅++=+++⋅⋅⋅++++⋅⋅⋅+, 而()()()2610461111198954012a a a a a a a a +++⋅⋅⋅+=++++⋅⋅⋅++=+,()()()484811117159561212a a a a a a a ++⋅⋅⋅+=-+-+⋅⋅⋅+-=-, 所以数列{}n a 前48项之和为()()112454012612121176a a +++-=. 故答案为:1176.本题主要考查了数列求和的问题.属于中档题.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. 请从下面三个条件中任选一个,补充在下面的问题中,并解决该问题 ①2252b c +=;②ABC 的面积为;③26AB AB BC +⋅=-.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .在已知2b c -=,A 为钝角,sin A =(1)求边a 的长;(2)求sin 26C π⎛⎫- ⎪⎝⎭的值.选择条件见解析;(1)8a =;(2)1764. (1)方案一:选择条件①,结合向量数量积的性质可求bc ,进而可求b ,c ,然后结合余弦定理可求;方案二:选择条件②:由已知即可直接求出b ,c ,然后结合余弦定理可求;方案三:选择条件③,由已知结合三角形的面积公式可求bc ,进而可求b ,c ,然后结合余弦定理可求.(2)由余弦定理可求cos C ,然后结合同角平方关系及二倍角公式,和差角公式即可求解. 方案一:选择条件①(1)由22522b c b c ⎧+=⎨-=⎩,解得64b c =⎧⎨=⎩,A 为钝角,sin A =1cos 4A =-,则22212cos 3616264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin 8C ==,∴217cos 22cos 132C C =-=,sin 22sin cos C C C ==, ∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1711732232264=-⨯=; 方案二:选择条件②(1)sin A =1sin 28ABC S bc A bc ===△∴24bc =, 由242bc b c =⎧⎨-=⎩,解得64b c =⎧⎨=⎩, 则22212cos 3616264644a b c b A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin 8C ==,∴217cos 22cos 132C C =-=,sin 22sin cos C C C ==,∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1711732232264=-⨯=; 方案三:选择条件③:(1)A 为钝角,sin A =1cos 4A =-,2()cos 6AB AB BC AB AB BC AB AC bc A +⋅=⋅+=⋅==-,24bc =, 由242bc b c =⎧⎨-=⎩,解得6b =,4c =,则22212cos 3616264644a b c bc A ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,故8a =;(2)2226436167cos 22868a b c C ab +-+-===⨯⨯,∴sin C ==,∴217cos 22cos 132C C =-=,sin 22sin cos 32C C C ==, ∴sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭171322=-⨯=. 本题主要考查了余弦定理,三角形的面积公式,和差角公式、二倍角公式在求解三角形中的应用,属于中档试题. 18. 已知()x x mf x e e-=+是偶函数. (1)求实数m 的值;(2)解不等式(2)(1)f x f x ≥+;(3)记{}()ln (3)()1ln 32xg x a f x e a x -⎡⎤=--+--⎣⎦,若()0g x ≤对任意的[0,)x ∈+∞成立,求实数a 的取值范围.(1)1m =;(2){1x x ≥∣或13x ⎫≤-⎬⎭;(3)[]1,3.(1)利用偶函数的定义求解;(2)先分析原函数的单调性,再结合奇偶性解不等式(2)(1)f x f x ≥+;(3)先写出函数()g ln (3)1ln32xx a e a x ⎡⎤=-+--⎣⎦,然后将()0g x ≤转化为ln (3)1ln32x a e a x ⎡⎤-+≤+⎣⎦,即23(3)10x x ae a e +--≥恒成立,转化为二次不等式恒成立问题求解.(1)因为()x x mf x e e=+是偶函数,则()()f x f x =-对任意实数x 恒成立, 即xxx xm m e e e e --+=+, 1(1)0x x m e e ⎡⎤⎛⎫--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦对任意实数x 恒成立,则1m =;(2)()1xxf x e e =+,1()xx f x e e '=-,当0x >时,()0f x '>,()f x 在[0,)+∞上是增函数, 又因为()f x 是偶函数,∴(2)(1)(|2|)(|1|)|2||1|f x f x f x f x x x ≥+⇔≥+⇔≥+,两边平方可得23210x x --≥,解得1≥x 或13x ≤-;故不等式的解集为{1x x ≥∣或13x ⎫≤-⎬⎭;(3)()ln (3)1ln32x g x a e a x ⎡⎤=-+--⎣⎦,问题即为ln (3)1ln32xa e a x ⎡⎤-+≤+⎣⎦恒成立,显然0a >,首先(3)10x a e -+>对任意[0,)x ∈+∞成立,即130xa e a ⎧<+⎪⎨⎪>⎩,因为[0,)x ∈+∞,则1334xe <+≤,所以03a <≤, 其次,ln (3)1ln32x a e a x ⎡⎤-+≤+⎣⎦,即为ln32(3)1x a xa e e+-+≤, 即23(3)10x x ae a e +--≥成立,亦即()()3110x xe ae +-≥成立,因为310x e +>,所以10x ae -≥对于任意[0,)x ∈+∞成立,即max1x a e ⎛⎫≥ ⎪⎝⎭所以1a ≥,综上,实数a 的取值范围为[]1,3.本题考查函数的单调性、奇偶性的综合运用,考查不等式的恒成立问题,其中函数与不等式的结合求参问题是难点,考查学生分析转化问题的能力.19. 已知正项等差数列{}n a 中,12a =,且12,1a a -,3a 成等比数列,数列{}n b 的前n 项和为112n S b ⋅=,()*122n n n S S b n N +=+∈. (1)求数列{}n a 和{}n b 的通项公式; (2)设11n n n n c b a a +=+,求数列{}n c 的前n 项和n T . (1)31n a n =-;12n n b ⎛⎫= ⎪⎝⎭;(2)711623(32)n n ⎡⎤⎛⎫-+⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦.(1)根据题意,结合等差数列的通项公式,求得3d =,即可求得数列{}n a 的通项公式,再由122n n n S S b +=+,化简得到112n n b b +=,结合等比数列的定义,即可求解; (2)由(1)可得1111233132nn c n n ⎛⎫⎛⎫=+- ⎪ ⎪-+⎝⎭⎝⎭,结合等比数列的求和公式和“裂项法”求得n T 即可.解:(1)设等差数列{}n a 的公差为d , 由12a =,且12,1a a -,3a 成等比数列, ∴2(1)2(22)d d +=+, 即2(1)4(1)d d +=+, 由已知0d >, ∴14d +=, ∴3d =,∴31n a n =-; 由122n n n S S b +=+得:11222n n n n S S b b ++-==, ∴()112g n n b n N b +=∈ 数列{}n b 是首项为12,公比为12的等比数列,则12nn b ⎛⎫= ⎪⎝⎭;(2)111111112(31)(32)233132n nn n n n c b a a n n n n -⎛⎫⎛⎫⎛⎫=+=+=+- ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭, ∴21111111111222325583132nn T n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-+-++- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1112211171113232623(32)12nn n n ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+-=-+⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎢⎥⎣⎦-. 本题主要考查等差、等比数列的通项公式的应用、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,属于中档题.20. 已知函数2())2sin 1(0,0)2x f x x ωϕωϕωϕπ+⎛⎫=++-><< ⎪⎝⎭为奇函数,且相邻同对称轴间的距离为2π. (1)当,24x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的单调递减区间;(2)将函数()f x 的图象向右平移6π个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域. (1)单调递减区间为,24ππ⎡⎤--⎢⎥⎣⎦;(2)[-.(1)利用三角恒等变换化简()f x 的解析式,根据条件,可求出周期T 和ω,结合奇函数性质,求出ϕ,再用整体代入法求出,24x ππ⎡⎤∈-⎢⎥⎣⎦内的递减区间;(2)利用函数()sin y A ωx φ=+的图象变换规律,求出()g x 的解析式,再利用正弦函数定义域,即可求出,126x ππ⎡⎤∈-⎢⎥⎣⎦时的值域.(1)())cos()2sin 6f x x x x πωϕωϕωϕ⎛⎫=+-+=+- ⎪⎝⎭,因为相邻两对称轴间的距离为2π,所以T π=,2ω=, 因为函数为奇函数,所以6k πϕπ-=,6k πϕπ=+,k Z ∈, 因为0ϕπ<<,所以6π=ϕ,函数为()2sin 2f x x =, ,24x ππ⎡⎤∈-⎢⎥⎣⎦时,22x ππ-≤≤,()f x 单调递减,需满足22x ππ-≤≤-,∴24x ππ-≤≤-,所以函数()f x 的单调递减区间为,24x ππ⎡⎤∈--⎢⎥⎣⎦;(2)由题意可得:()2sin 43g x x π⎛⎫=- ⎪⎝⎭,∵,126x ππ⎡⎤∈-⎢⎥⎣⎦,∴24333x πππ-≤-≤,∴1sin 43x π⎛⎫-≤-≤ ⎪⎝⎭,()[g x ∈-,即函数()g x 值域为[-.本题主要考查正弦函数在给定区间内的单调性和值域,包括周期性,奇偶性,单调性和最值,还涉及三角函数图像的平移伸缩和三角恒等变换中的辅助角公式.21. 倡导环保意识、生态意识,构建全社会共同参与的环境治理体系,让生态环保思想成为社会生活中的主流文化.某化工企业探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32/mg m ,首次改良后排放的废气中含有污染物数量为31.94/mg m ,设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r 可由函数模型()()0.5*0015,n pn r r r r p R n N +=--∈∈给出,其中n 是指改良工艺的次数.(1)试求改良后n r 的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08/mg m .试问:至少进行多少次改良工艺后才能使企业所排放的废气中含有污染物数量达标?(参考数据:取lg 20.3=)(1)()0.50.5*20.065n n r n -=-⨯∈N ;(2)6. (1)根据改良工艺前所排放的废气中含有的污染物数量为32/mg m ,首次改良后排放的废气中含有污染物数量为31.94/mg m ,得到02r =,1 1.94r =,然后再令1n =求解. (2)根据所排放的废气中含有的污染物数量不能超过30.08/mg m ,得到0.50.520.0650.08n n r -=-⨯≤求解.(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即()0.51.9422 1.945p+=--⋅,解得0.5p =-,所以()0.50.5*20.065n n r n -=-⨯∈N ,故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N . (2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 取lg 20.3=代入,得5lg 2302115.31lg 27⨯+=+-, 又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.方法点睛:在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y =N (1+p )x (其中N 为基础数,p 为增长率,x 为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.22. 已知点,1x e P x ⎛⎫⎪⎝⎭,(,sin )Q x mx x +,O 为坐标原点,设函数()()f x OP OQ m R =⋅∈.(1)当2m =-时,判断函数()f x 在(),0-∞上的单调性; (2)若0x ≥时,不等式()1f x ≥恒成立,求实数m 的取值范围. (1)函数()f x 在(,0)-∞上单调递减;(2)[2,)-+∞.(1)由题意结合平面向量的数量积运算可得()2sin x f x e x x =-+,求导后可得()0f x '<,即可得解;(2)当0x =时,易得()1f x ≥恒成立;当0x >时,求导得()cos x f x e m x '=++,设()cos x g x e m x =++,求导可得()2g x m >+,按照2m ≥-、2m <-分类,结合函数()f x 的单调性、(0)1f =即可得解.(1)由已知(),1(,sin )sin x xe f x OP OQ x mx x e mx x x ⎛⎫=⋅=⋅+=++ ⎪⎝⎭,当2m =-时,()2sin x f x e x x =-+,()2cos x f x e x '=-+, 当0x <时,1x e <,又cos 1≤x ,则()2cos 0x f x e x '=-+<, 所以函数()f x 在(,0)-∞上单调递减;(2)①当0x =时,()11f x =≥,对于m R ∈,()1f x ≥恒成立; ②当0x >时,()cos x f x e m x '=++, 设()cos x g x e m x =++,则()sin x g x e x '=-, 因为e 1x >,sin 1x ≤,所以()sin 0x g x e x '=->,()g x 在(0,)+∞上单调递增, 又(0)2g m =+,所以()2g x m >+,所以()'f x 在(0,)+∞上单调递增,且()2f x m '>+, (ⅰ)当2m ≥-时,()0f x '>,()f x 在(0,)+∞上单调递增, 因为(0)1f =,所以()1f x >恒成立,符合题意; (ⅱ)当2m <-时,(0)20f m '=+<, 因为()'f x 在(0,)+∞上单调递增,又当ln(2)x m =-时,ln(2)()cos 2cos 0m f x e m x x -'=++=+>, 则存在0(0,)x ∈+∞,对于()00,x x ∈,()0f x '<恒成立, 故()f x 在()00,x 上单调递减,所以,当()00,x x ∈时,()(0)1f x f <=,不合题意. 综上,所求m 的取值范围为[2,)-+∞.本题考查了导数的应用,考查了运算求解能力及逻辑推理能力,合理转化条件是解题关键,属于中档题.。
湖南省长沙市长郡中学2021届高三数学上学期第一次适应性考试(一模)试题 文(含解析).doc

湖南省长沙市长郡中学2021届高三数学上学期第一次适应性考试(一模)试题文(含解析)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设为虚数单位.若复数是纯虚数,则复数在复面上对应的点的坐标为()A. B. C. D.【答案】D【解析】【分析】利用复数是纯虚数求出,化简为,问题得解。
【详解】因为复数是纯虚数,所以,解得:,所以复数可化为,所以复数在复面上对应的点的坐标为.故选:D【点睛】本题主要考查了复数的有关概念及复数对应点的知识,属于基础题。
2.已知集合若,则实数的取值范围为()A. B. C. D.【答案】B【解析】【分析】分别求出集合A,B,利用列不等式即可求解。
【详解】由得:或.所以集合.由得:.又,所以(舍去)或.故选:B【点睛】本题主要考查了集合的包含关系及对数函数的性质,考查计算能力,属于基础题。
3.回文数是指从左到右读与从右到左读都一样的正整数,如11,323,4334等.在所有小于150的三位回文数中任取两个数,则两个回文数的三位数字之和均大于3的概率为()A. B. C. D.【答案】C【解析】【分析】列出所有小于150的三位回文数,从中选取两个得到基本事件总数,再从中找出两个回文数的三位数字之和均大于3的个数即可求解。
【详解】列出所有小于150的三位回文数如下:101,111,121,131,141.从中任取两个数共有10种情况如下:(101,111),(101, 121),(101, 131),(101, 141),(111, 121),(111, 131),(111, 141),(121,131),(121,141),(131,141).两个回文数的三位数字之和均大于3的有:(121,131),(121,141),(131,141)共3种情况. 两个回文数的三位数字之和均大于3的概率为:.故选:C【点睛】本题主要考查了古典概型概率计算,还考查了新概念知识,属于基础题。
湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题

湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合112162x A x N +⎧⎫=∈<<⎨⎬⎩⎭,{}240B x x x m =-+=,若1A B ∈,则A B =( )A .{1,2,3}B .{1,2,3,4}C .{0,1,2}D .{0,1,2,3} 2.已知复数z 满足()1243z i i +=- (其中i 为虚数单位),则复数z 的虚部为( ) A .2-B .2i -C .1D .i 3.()1cos x f x x=-的部分图象大致是( ) A . B .C .D .4.饕餮(tāo tiè)纹,青铜器上常见的花纹之一,盛行于商代至西周早期.有人将饕餮纹的一部分画到了方格纸上,如图所示,每个小方格的边长为1,有一点P 从A 点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能性的,那么它经过3次跳动后,恰好是沿着餮纹的路线到达点B 的概率为( )A .12B .14C .116D .185.已知椭圆C :22221(0)x y a b a b+=>>的右焦点F ,点P 在椭圆C 上,点Q 在圆E :(x +3)2+(y -4)2=4上,且圆E 上的所有点均在椭圆C 外,若|PQ |-|PF |的最小值为-6,且椭圆C 的长轴长恰与圆E 的直径长相等,则椭圆C 的标准方程为( )A .2212x y += B .2214x y += C .22143x y += D .22142x y += 6.命题p :f (x )=x +a ln x (a ∈R )在区间[1,2]上单调递增;命题q :存在x ∈[2,e ],使得1ln x x--e +4+2a ≥0成立(e 为自然对数的底数),若p 且q 为假,p 或q 为真,则实数a 的取值范围是( ) A .(-2,-32) B .(-2,-32)∪[-1,+∞) C .[-32,-1) D .(2,-32)∪[1,+∞) 7.已知()22103A B C D ⎛⎫ ⎪⎝⎭,,,,,四点均在函数f (x )=log 2ax x b +的图象上,若四边形ABCD 为平行四边形,则四边形ABCD 的面积是( )A .265B .263C .525D .5238.设数列{}n a 的前n 项和为n S ,当n *∈N 时,n a ,1n 2+,1n a +成等差数列,若2020n S =,且23a <,则n 的最大值为( )A .63B .64C .65D .66二、多选题9.2020年两会“部长通道”工信部部长表示,中国每周大概增加1万多个5G 基站,4月份增加5G 用户700多万人,5G 通信将成为社会发展的关键动力,下图是某机构对我国未来十年5G 用户规模的发展预测图.则( )A .2022年我国5G 用户规模年增长率最高B .2022年我国5G 用户规模年增长户数最多C .从2020年到2026年,我国的5G 用户规模增长两年后,其年增长率逐年下降D .这十年我国的5G 用户数规模,后5年的平均数与方差都分别大于前5年的平均数与方差10.如图,已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,2πϕ≤)的图象与x 轴交于点A ,B ,与y 轴交于点C ,2BC BD =,3OCB π∠=,||2OA =,AD =.则下列说法正确的有( ).A .()f x 的最小正周期为12B .6πϕ=-C .()f x 的最大值为163D .()f x 在区间(14,17)上单调递增 11.在正方体ABCD -A 1B 1C 1D 1中,过AB 作一垂直于直线B 1C 的平面交平面ADD 1A 1于直线l ,动点M 在直线l 上,则( )A .B 1C //lB .B 1C ⊥lC .点M 到平面BCC 1B 1的距离等于线段AB 的长度D .直线BM 与直线CD 12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x R x =∈,()()10g x x x=<,()2ln h x e x =(e 为自然对数的底数),则( )A .()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增; B .()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;C .()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[]4,1-;D .()f x 和()h x 之间存在唯一的“隔离直线”y e =-.三、填空题13.三封信随机放入两个不同的信箱中,共有n 种方法,则1(2)nx x +展开式的常数项为____________.(用数字作答) 14.设,,a b c →→→为单位向量,向量a →与b →的夹角为120°,则a c b c →→→→⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭的取值范围是_____.15.已知点A 、B 关于坐标原点O 对称,2AB =,以M 为圆心的圆过A 、B 两点,且与直线1y =相切.若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为_______.16.在三棱锥P -ABC 中,P A =PB =PC =2,二面角A -PB -C 为直二面角,∠APB =2∠BPC (∠BPC <4π),M ,N 分别为侧棱P A ,PC 上的动点,设直线MN 与平面P AB 所成的角为α.当tan α的最大值为2532时,则三棱锥P -ABC 的体积为__________.四、解答题17.在①数列{a n }为等差数列,且a 3+a 7=18;②数列{a n }为等比数列,且a 2a 6=64,a 2a 3<0;③S n -1=a n -1(n ≥2)这三个条件中任选一个,补充到下面的问题中,并加以解答. 已知数列{a n }的前n 项和为S n ,a 1=1, .(1)求数列{a n }的通项公式;(2)是否存在正整数k ∈{8,9,10},使S k >512,若存在,求出相应的正整数k 的值;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.18.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,D 在BC 边上,且BD =2DC ,若sin 2A +sin 2C -sin 2B =23sin A sin C ,c =2. (1)求sin B 的值;(2)设∠BAD =α,∠DAC =β,若△ADC ,求sin sin αβ的值. 19.据相关部门统计,随着电商网购的快速普及,快递包装业近年来实现了超过50%的高速年均增长,针对这种大好形式,某化工厂引进了一条年产量为1000万个包装胶带的生产线.已知该包装胶带的质量以某项指标值k 为衡量标准.为估算其经济效益,该化工厂先进行了试生产,并从中随机抽取了1000个包装胶带,统计了每个包装胶带的质量指标值k ,并分成以下5组,其统计结果及产品等级划分如下表所示:试利用该样本的频率分布估计总体的概率分布,并解决下列问题(注:每组数据取区间的中点值).(1)由频数分布表可认为,该包装胶带的质量指标值k 近似地服从正态分布()2,N μσ,其中μ近似为样本平均数x ,σ近似为样本的标准差s ,并已求得10.03s ≈.记X 表示某天从生产线上随机抽取的30个包装胶带中质量指标值k 在区间(]50.54,80.63之外的包装胶带个数,求()1P X =及X 的数学期望(精确到0.001);(2)已知每个包装胶带的质量指标值k 与利润y (单位:元)的关系如下表所示:()()1,4t ∈.假定该化工厂所生产的包装胶带都能销售出去,且这一年的总投资为5000万元(含引进生产线、兴建厂房等等一切费用在内),问:该化工厂能否在一年之内通过生产包装胶带收回投资?试说明理由.参考数据:若随机变量()2,Z N μσ~,则()0.6827P Z μσμσ-<≤+=,()220.9545P Z μσμσ-<≤+=,()330.9973P Z μσμσ-<≤+=,290.81860.0030≈,ln13 2.6≈.20.已知底面为正三角形的斜三棱柱111ABC A B C -中,,E F 分别是棱11A B ,AB 的中点,点1A 在底面投影为AC 边的中点O ,11A C AC P ⋂=,1A F AE G =.(1)证明:PG //平面111A B C ;(2)若6AB =,15AA =,点M 为棱11A B 上的动点,当直线AM 与平面1A FC 所成时,求点M 的位置. 21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 且垂直于x 轴的直线交抛物线C 于D ,E 两点,且|DE |=4.(1)求抛物线C 的方程;(2)设直线l 过点A (2,0)且与抛物线C 交于P ,Q 两点,点R 在抛物线C 上,点N 在x 轴上,NP NQ NR 0++=,直线PR 交x 轴于点B ,且点B 在点A 的右侧,记△APN的面积为S 1,△RNB 的面积为S 2,求12S S 的最小值. 22.已知函数f (x )=e x +x e -,其中e 是自然对数的底数.e-+m-1在(0,+∞)上恒成立,求实数m的取值范围;(1)若关于x的不等式mf(x)≤x(2)已知正数a满足:存在x∈[1,+∞),使得f(x0)<a(-x03+3x0)成立.试比较1a e-与1e a-的大小,并证明你的结论.参考答案1.D【分析】根据题意,解不等式求出集合{}0,1,2A =,由1A B ∈,得1B ∈,进而求出3m =,从而可求出集合{}1,3B =,最后根据并集的运算即可得出答案.【详解】 解:由题可知,112162x A x N +⎧⎫=∈<<⎨⎬⎩⎭, 而112162x +<<,即114222x -+<<,解得:23x -<<, 又由于x ∈N ,得{}0,1,2A =,因为1A B ∈,则1B ∈,所以140m -+=,解得:3m =, 所以{}{}24301,3B x x x =-+==,所以{}0,1,2,3A B ⋃=.故选:D.【点睛】本题考查集合的交集的定义和并集运算,属于基础题.2.A【分析】由题目条件可得()12435z i i +=-=,即512z i =+,然后利用复数的运算法则化简. 【详解】 因为435i -=,所以()12435z i i +=-=, 则()()()5125510121212125i i z i i i i --====-++- 故复数z 的虚部为2-.故选:A .【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.3.A【分析】利用排除法,根据函数的定义域,奇偶性以及特殊值可得结果.【详解】解:由于()1cos x f x x=-,则1cos 0x -≠,即2,x k k Z π≠∈, 可知()f x 的定义域为{}2,x x k k Z π≠∈,则0x ≠,故排除C ,而()()()1cos 1cos x x f x f x x x---===----, 所以()f x 为奇函数,则图象关于原点对称,故排除B ,又因为当x π=时,()01cos 2f ππππ==>-,故排除D. 故选:A.【点睛】本题考查函数图象的识别和判断,结合函数的定义域,奇偶性以及特殊值是解题的关键,属于基础题.4.D【分析】列举出所有的基本事件,确定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】点P 从A 点出发,每次向右或向下跳一个单位长度,跳3次的所有基本事件有:(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下),共8种不同的跳法(线路), 符合题意的只有(下,下,右)这1种,所以3次跳动后,恰好是沿着饕餮纹的路线到达点B 的概率为18. 故选:D.【点睛】本题考查数学文化与古典概型,考查计算能力,属于基础题.5.C因为圆E :(x +3)2+(y -4)2=4的半径为2,所以2a =,由椭圆的定义可得1||4||PF PF =-,根据题意可得当且仅当1,,,E Q P F 四点共线时,|PQ |-|PF |取得最小值为6,所以1||EF =.【详解】因为圆E :(x +3)2+(y -4)2=4的半径为2,所以2a =,设椭圆的左焦点为1F (,0)c -,由椭圆的定义可得1||||24PF PF a +==,所以1||4||PF PF =-,所以1||||||||4PQ PF PQ PF -=+-1||4QF ≥-1||||6QF EQ =+-1||6EF ≥-,当且仅当1,,,E Q P F 四点共线时,等号成立,又|PQ |-|PF |的最小值为-6,所以1||66EF -=,即1||EF ==1c =或52c a =>=(舍). 所以222413b a c =-=-=,所以椭圆C 的标准方程为22143x y +=.故选:C. 【点睛】本题考查了椭圆的定义,考查了圆的标准方程,考查了椭圆中的最值问题,属于中档题. 6.C求出命题p 对应的a 的取值范围为[)1,a ∈-+∞,再求出命题q 对应的a 的取值范围为3,12a ⎡⎫∈--⎪⎢⎣⎭,再根据复合命题p 且q 为假,p 或q 为真,得出p 真q 假,p 假q 真两种情况,即可得出结果。
湖南省长沙市长郡中学2020-2021学年高三上学期月考(一)数学试题

长郡中学2021届高三月考试卷(一)数学本试卷共8页.时量120分钟.满分150分.一、选择题:本题共8小题,每小题5分,共40分在每小题给田的四个选项中,只有一项是符合题目要求的.1. 已知集合{}22A x x =-≤≤∣,{}lg(1)B x y x ==-∣.则A B =( )A. {}2xx ≥-∣ B. {}12xx <<∣ C. {}12xx <≤∣ D. {}2xx ≥∣ 2. 已知复数z 满足()3425z i -=,则z 共轭复数在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知a b c <<且0a b c ++=,则下列不等式恒成立的是( ) A. 222a b c <<B. 22ab cb <C. ac bc <D. ab ac <4. 在ABC 中,2BD DC =,AE ED =,则BE =( ) A.1536AC AB - B. 1536AC AB -+ C. 1136AC AB -+ D.1136AC AB - 5. 设函数2()log f x x x m =+-,则“函数()f x 在1,42⎛⎫ ⎪⎝⎭上存在零点”是(1,6)m ∈的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 已知实数a ,b ,c 满足1lg 10ba c==,则下列关系式中不可能成立的是( ) A. a b c >> B. a c b >> C. c a b >>D. c b a >>7. 已知3sin cos 72sin 3cos αααα+=-,则函数2()sin 2tan |cos |6f x x x α=+-的最小值为( )A. -5B. -3C.D. -18. 设函数2()2f x x xlnx =-+,若存在区间[]1,,2a b ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[a ,]b 上的值域为[(2)k a +,的(2)]k b +,则k 的取值范围是( ) A. 9221,4ln +⎛⎫ ⎪⎝⎭B. 9221,4ln +⎡⎤⎢⎥⎣⎦C. 9221,10ln +⎛⎤⎥⎝⎦D. 9221,10ln +⎡⎤⎢⎥⎣⎦二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分.部分选对的得3分.9. 下列命题中正确的是( ) A. ()0,x ∃∈+∞,23x x >B. ()0,1x ∃∈,23log log x x <C. ()0,x ∀∈+∞,131log 2xx ⎛⎫> ⎪⎝⎭D. 10,3x ⎛⎫∀∈ ⎪⎝⎭,131log 2xx ⎛⎫< ⎪⎝⎭10. 已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( )A. 数列{}n a 为等比数列B. 1p =时,41516S =C. 当12p =时,()*,m n m n a a a m n N +⋅=∈ D. 3856a a a a +=+11. 已知函数()f x 满足:对于定义域中任意x ,在定义域中总存在t ,使得()()f t f x =-成立.下列函数中,满足上述条件的函数是( ) A. ()1f x xB. 4()f x x =C. 1()2f x x =+ D. ()ln(21)f x x =-12. 下图是函数()sin()f x A x ωϕ=+(其中0A >,0>ω,0||x ϕ<<)的部分图象,下列结论正确的是( )A. 函数12y f x π⎛⎫=- ⎪⎝⎭的图象关于原点对称B. 函数()f x 图象关于点,012π⎛⎫-⎪⎝⎭对称 C. 函数()f x 在区间,34ππ⎡⎤-⎢⎥⎣⎦上单调递增 D. 方程()1f x =在区间23,1212ππ⎡⎤-⎢⎥⎣⎦上的所有实根之和为83π三、填空题:本题共4小题,每小题5分,共20分.13. 已知向量a 、b 满足2a =,2b =,若()a b a -⊥,则向量a 与b 的夹角为______.14. 若42log (4)log a b +=+a b 的最小值是___________.15. 《易经》中记载着一种几何图形一一八封图,图中正八边形代表八卦,中间的圆代表阴阳太极图,图中八块面积相等的曲边梯形代表八卦田.某中学开展劳动实习,去测量当地八卦田的面积如图,现测得正八边形的边长为8m ,代表阴阳太极图的圆的半径为2m ,则每块八卦田的面积为___________2m .16. 已知数列{}n a 满足1(1)21nn n a a n ++-=-,则{}n a 前48项之和为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 请从下面三个条件中任选一个,补充在下面的问题中,并解决该问题 ①2252b c +=;②ABC的面积为;③26AB AB BC +⋅=-.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .在已知2b c -=,A为钝角,sin A =(1)求边a 的长; (2)求sin 26C π⎛⎫-⎪⎝⎭的值. 18. 已知()xxmf x e e -=+是偶函数. (1)求实数m 的值;的(2)解不等式(2)(1)f x f x ≥+;(3)记{}()ln (3)()1ln 32x g x a f x e a x -⎡⎤=--+--⎣⎦,若()0g x ≤对任意的[0,)x ∈+∞成立,求实数a的取值范围.19. 已知正项等差数列{}n a 中,12a =,且1a ,21a -,3a 成等比数列,数列{}n b 的前n 项和为n S .112b =,122n n n S S b +=+.(1)求数列{}n a 和{}n b 的通项公式; (2)设11n n n n c b a a +=+,求数列{}n c 前n 项和n T 的取值范围.20.已知函数2())2sin 1(0,0)2x f x x ωϕωϕωϕπ+⎛⎫=++-><<⎪⎝⎭为奇函数,且相邻同对称轴间的距离为2π. (1)当,24x ππ⎡⎤∈-⎢⎥⎣⎦时,求()f x 的单调递减区间; (2)将函数()f x 的图象向右平移6π个单位长度,再把横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域.21. 节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32/mg m ,首次改良后所排放的废气中含有的污染物数量为31.94/mg m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型0.5001()5(,*)n p n r r r r p R n N +=--∈∈给出,其中n 是指改良工艺的次数. (1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08/mg m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标.(参考数据:取20.3)lg =的22. 已知点,1x e P x ⎛⎫⎪⎝⎭,(,sin )Q x mx x +,O 为坐标原点,设函数()()f x OP OQ m R =⋅∈.(1)当2m =-时,判断函数()f x 在(),0-∞上的单调性; (2)若0x ≥时,不等式()1f x ≥恒成立,求实数m 取值范围.的。
2020届长郡中学一模 文科数学 含答案

厂
\
{2 V
x
-3 -2 - I 01 I 2 3 X
+4
2 3
5
-4
A
-5B
8. 执行如下的程序框图,则输出的S是
1{
丿
32 勹 2
`
A. 36
B. 45
C. — 36
D. — 45
9.
若将函数
j(x)
=sin(wx+f) 的图象向右平移
则 PF] 了平勹的最小值是 16.阿波罗尼斯(古希腊数学家,约公元前262 —190年)的著作《圆锥曲线论》是古代世界
光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明
过这样一个命题:平面内与两定点距离的比为常数k(k>O 且kc:/=1)的点的轨迹是圆 ,
后人将这个圆称为阿氏圆现有/::,ABC,AC=6,sin C=2sin A,则当/::,ABC的面积最
3. 回答第1I卷时,将答案写在答题卡上, 写在本试卷上无效。 4. 考试结束后,将本试卷和答题卡一并交回。
第I卷
一 、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有 一项是符合
题目要求的.
1.已知集合M= {xlx(x-2)<0},N= {-2,-1,0,1,2},则M门N=
A.{O,l}
近线的平行线 ,与两条渐近线的交点分别为A,B,若平行四边形PAOB的面积为 4 ,
则双曲线的标准方程是
2
A. 正 — 兰4 =1
?
?
B.
王 2
—
兰3 =1
C.x1 —y9 =1
2021年湖南省长沙市长郡中学高考数学一模试卷(解析版)

2021年湖南省长沙市长郡中学高考数学一模试卷一、单项选择题(每小题5分).1.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.已知集合P={x|x2﹣5x﹣6≤0},Q={x|3x≥1},则P∩Q=()A.{x|﹣1≤x≤0}B.{x|0≤x≤1}C.{x|0≤x≤6}D.{x|﹣6≤x≤0} 3.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.24.设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.某班科技兴趣小组研究在学校的图书馆顶上安装太阳能板的发电量问题,要测量顶部的面积,将图书馆看成是一个长方体与一个等底的正四棱锥组合而成,经测量长方体的底面正方形的边长为26米,高为9米,当正四棱锥的顶点在阳光照射下的影子恰好落在底30°面正方形的对角线的延长线上时,测的光线与底面夹角为30°,正四棱锥顶点的影子到长方体下底面最近顶点的距离为11.8米,则图书馆顶部的面积大约为()平方米(注:,,)A.990B.890C.790D.6906.已知非空集合A,B满足以下两个条件:(i)A∪B={1,2,3,4,5},A∩B=∅;(ii)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.7B.8C.9D.107.已知实数a,b,c∈R,满足,则a,b,c大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c8.已知△ABC中,AB=2BC=4,AC=2,点M在线段AC上除A,C的位置运动,现沿BM进行翻折,使得线段AB上存在一点N,满足CN⊥平面ABM;若NB>λ恒成立,则实数λ的最大值为()A.1B.C.2D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.为了了解市民对各种垃圾进行分类的情况,加强垃圾分类宣传的针对性,指导市民尽快掌握垃圾分类的方法,某市垃圾处理厂连续8周对有害垃圾错误分类情况进行了调查.经整理绘制了如图所示的有害垃圾错误分类重量累积统计图,图中横轴表示时间(单位:周),纵轴表示有害垃圾错误分类的累积重量(单位:吨).根据统计图分析,下列结论正确的是()A.当x∈[0,2)时有害垃圾错误分类的重量加速增长B.当x∈[2,4)时有害垃圾错误分类的重量匀速增长C.当x∈[4,6)时有害垃圾错误分类的重量相对于当x∈[2,4)时增长了30%D.当x∈[6,8]时有害垃圾错误分类的重量相对于当x∈[0,2)时减少了0.6吨10.如果平面向量,那么下列结论中正确的是()A.||=3||B.C.与的夹角为30°D.在方向上的投影为11.如图,某校测绘兴趣小组为测量河对岸直塔AB(A为塔顶,B为塔底)的高度,选取与B在同一水平面内的两点C与D(B,C,D不在同一直线上),测得CD=s.测绘兴趣小组利用测角仪可测得的角有:∠ACB,∠ACD,∠BCD,∠ADB,∠ADC,∠BDC,则根据下列各组中的测量数据可计算出塔AB的高度的是()A.s,∠ACB,∠BCD,∠BDC B.s,∠ACB,∠BCD,∠ACDC.s,∠ACB,∠ACD,∠ADC D.s,∠ACB,∠BCD,∠ADC12.数学中的很多符号具有简洁、对称的美感,是形成一些常见的漂亮图案的基石,也是许多艺术家设计作品的主要几何元素.如我们熟悉的∞符号,我们把形状类似∞的曲线称为“∞曲线”.在平面直角坐标系xOy中,把到定点F1(﹣a,0),F2(a,0)距离之积等于a2(a>0)的点的轨迹称为“∞曲线”C.已知点P(x0,y0)是“∞曲线”C上一点,下列说法中正确的有()A.“∞曲线”C关于原点O中心对称B.C.“∞曲线”C上满足|PF1|=|PF2|的点P有两个D.|PO|的最大值为三、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上)13.在(2+)6的展开式中,常数项等于.14.已知是函数f(x)=a sin x+b cos x(a>0)的对称轴,则f(x)的对称中心为.15.定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,例如:[1.3]=1,[﹣1.5]=﹣2,[2]=2.当x∈[0,n)(n∈N*)时,f(x)的值域为A n.记集合A n中元素的个数为a n,则值为.16.若关于x的方程+x﹣ln(ax)﹣2=0(a>0)有解,则正数a的取值范围是.四、解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17.△ABC的内角A,B、C的对边分别为a,b,c,已知向量=(c﹣a,sin B),=(b ﹣a,sin A+sin C)且∥.(1)求C;(2)若,求sin A.18.已知等差数列{a n}的前n项和为S n,且满足a3=8,S5=2a7.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前2n项和T2n.19.如图1,在等边△ABC中,点D、E分别为边AB、AC上的动点且满足DE∥BC,记.将△ADE沿DE翻折到△MDE的位置并使得平面MDE⊥平面DECB,连接MB,MC得到图2,点N为MC的中点.(1)当EN∥平面MBD时,求λ的值;(2)试探究:随着λ值的变化,二面角B﹣MD﹣E的大小是否改变?如果是,请说明理由;如果不是,请求出二面角B﹣MD﹣E的正弦值大小.20.已知函数f(x)=lnx﹣a(1﹣)+1(a∈R).(1)讨论函数f(x)的单调性;(2)若f(x)>0在(1,+∞)上恒成立,求整数a的最大值.21.已知椭圆=1(a>b>0)的上顶点到右顶点的距离为,离心率为,过椭圆C的左焦点F1作不与x轴重合的直线MN与椭圆C相交于M,N两点,过点M作直线m:x=﹣2a的垂线ME,E为垂足.(1)求椭圆C的标准方程;(2)①已知直线EN过定点P,求定点P的坐标.②点O为坐标原点,求△OEN面积的最大值.22.某电子公司新开发一电子产品,该电子产品的一个系统G有2n﹣1个电子元件组成,各个电子元件能正常工作的概率均为p,且每个电子元件能否正常工作相互独立.若系统中有超过一半的电子元件正常工作,则系统G可以正常工作,否则就需维修.(1)当n=2,p=时,若该电子产品由3个系统G组成,每个系统的维修所需费用为500元,设ξ为该电子产品需要维修的系统所需的总费用,求ξ的分布列与数学期望;(2)为提高系统G正常工作的概率,在系统内增加两个功能完全一样的电子元件,每个新元件正常工作的概率均为p,且新增元件后有超过一半的电子元件正常工作,则系统C 可以正常工作,问p满足什么条件时,可以提高整个系统G的正常工作概率?参考答案一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.2.已知集合P={x|x2﹣5x﹣6≤0},Q={x|3x≥1},则P∩Q=()A.{x|﹣1≤x≤0}B.{x|0≤x≤1}C.{x|0≤x≤6}D.{x|﹣6≤x≤0}解:集合P={x|x2﹣5x﹣6≤0}={x|﹣1≤x≤6},Q={x|3x≥1}={x|x≥0},∴P∩Q={x|0≤x≤6}.故选:C.3.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.2解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.4.设a,b是实数,则“a>b”是“a2>b2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解:因为a,b都是实数,由a>b,不一定有a2>b2,如﹣2>﹣3,但(﹣2)2<(﹣3)2,所以“a>b”是“a2>b2”的不充分条件;反之,由a2>b2也不一定得a>b,如(﹣3)2>(﹣2)2,但﹣3<﹣2,所以“a>b”是“a2>b2”的不必要条件.故选:D.5.某班科技兴趣小组研究在学校的图书馆顶上安装太阳能板的发电量问题,要测量顶部的面积,将图书馆看成是一个长方体与一个等底的正四棱锥组合而成,经测量长方体的底面正方形的边长为26米,高为9米,当正四棱锥的顶点在阳光照射下的影子恰好落在底30°面正方形的对角线的延长线上时,测的光线与底面夹角为30°,正四棱锥顶点的影子到长方体下底面最近顶点的距离为11.8米,则图书馆顶部的面积大约为()平方米(注:,,)A.990B.890C.790D.690解:如图1,根据题意得:∠PSO=30°,CC1=9,SC1=11.8,AB=26,所以,故SO=SC1+C1O=11.8+18.2=30,故在Rt△PSO中,设PO=x,则PS=2x,SO=30,所以|SO|2+|OP|2=|SP|2,即:900+x2=4x2,解得在正四棱锥P﹣ABCD中,PO'=17﹣9=8,AB=26,取BC中点E,连接EP,EO',所以EO'=13,由正四棱锥的性质得△PEO'为直角三角形,故|PE|2=|PO'|2+|O'E|2=132+82=233,所以,所以正四棱锥P﹣ABCD的侧面积为.故选:C.6.已知非空集合A,B满足以下两个条件:(i)A∪B={1,2,3,4,5},A∩B=∅;(ii)A的元素个数不是A中的元素,B的元素个数不是B中的元素,则有序集合对(A,B)的个数为()A.7B.8C.9D.10解:若集合A中只有1个元素,则集合B中只有4个元素,则1∉A,4∉B,∴4∈A,1∈B,此时只有=1;若集合A中只有2个元素,则集合B中只有3个元素,则2∉A,3∉B,∴3∈A,2∈B,此时有=3;若集合A中只有3个元素,则集合B中只有2个元素,则3∉A,2∉B,∴2∈A,3∈B,此时有=3;若集合A中只有4个元素,则集合B中只有1个元素,则4∉A,1∉B,∴1∈A,4∈B,此时有=1,∴有序集合对(A,B)的个数为:1+3+3+1=8.故选:B.7.已知实数a,b,c∈R,满足,则a,b,c大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c解:因为,则a>0,c<0,对于函数f(x)=x﹣lnx,(x>0),f′(x)=1﹣,可得f(x)在(0,1)递减,在(1,+∞)递增,∴f(x)≥(1)=1>0,∴lna<a,即,∴,令函数h(x)=,h′(x)=,可得h(x)的图像如下:∴a<b,综上:b>a>c,故选:D.8.已知△ABC中,AB=2BC=4,AC=2,点M在线段AC上除A,C的位置运动,现沿BM进行翻折,使得线段AB上存在一点N,满足CN⊥平面ABM;若NB>λ恒成立,则实数λ的最大值为()A.1B.C.2D.解:因为AB=2BC=4,AC=2,且点M在线段AB上除A、C的位置运动,要使AB上存在一点N,满足CN⊥平面ABM,使NB>λ恒成立,则当M恰好为C点时,为临界条件(M不可为C点,但可用来计算),即CN⊥AB,且NB=λ,因为AB=4,可得CN2=4﹣λ2,CN2=(2)2﹣(4﹣λ)2,所以4﹣λ2=12﹣(4﹣λ)2,解得λ=1,所以λ的最大值为1.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.为了了解市民对各种垃圾进行分类的情况,加强垃圾分类宣传的针对性,指导市民尽快掌握垃圾分类的方法,某市垃圾处理厂连续8周对有害垃圾错误分类情况进行了调查.经整理绘制了如图所示的有害垃圾错误分类重量累积统计图,图中横轴表示时间(单位:周),纵轴表示有害垃圾错误分类的累积重量(单位:吨).根据统计图分析,下列结论正确的是()A.当x∈[0,2)时有害垃圾错误分类的重量加速增长B.当x∈[2,4)时有害垃圾错误分类的重量匀速增长C.当x∈[4,6)时有害垃圾错误分类的重量相对于当x∈[2,4)时增长了30%D.当x∈[6,8]时有害垃圾错误分类的重量相对于当x∈[0,2)时减少了0.6吨解:根据题意,依次分析选项:对于A,由统计图可知,第2周增长数量比第1周增长数量明显要多,所以是加速增长,所以选项A正确;对于B,当x∈[2,4)时图象是线段,所以是匀速增长,所以选项B正确;对于C,当x∈[4,6)时增长数量比当x∈[2,4)时增长数量要少,所以是减少,所以选项C错误;对于D,当x∈[0,2)时共增长2.4吨,当x∈[6,8]时共增长0.6吨,所以减少了1.8吨,所以选项D错误.故选:AB.10.如果平面向量,那么下列结论中正确的是()A.||=3||B.C.与的夹角为30°D.在方向上的投影为解:因为,所以.对于A,因为,所以,故A正确;对于B,因为,所以,故B正确;对于C,因为,所以与的夹角为180°,故C错误;对于D,在方向上的投影为,故D错误.故选:AB.11.如图,某校测绘兴趣小组为测量河对岸直塔AB(A为塔顶,B为塔底)的高度,选取与B在同一水平面内的两点C与D(B,C,D不在同一直线上),测得CD=s.测绘兴趣小组利用测角仪可测得的角有:∠ACB,∠ACD,∠BCD,∠ADB,∠ADC,∠BDC,则根据下列各组中的测量数据可计算出塔AB的高度的是()A.s,∠ACB,∠BCD,∠BDC B.s,∠ACB,∠BCD,∠ACDC.s,∠ACB,∠ACD,∠ADC D.s,∠ACB,∠BCD,∠ADC解:对于A,已知s,∠ACB,∠BCD,∠BDC,在△BCD中,利用三角形内角和为180°可求得∠CBD=π﹣∠BDC﹣∠BCD,利用正弦定理=,可求得BC,在△ABC中,AB⊥BC,由tan∠ACB=,即可求AB;对于B,在△BCD中,已知一边CD,一角∠BCD,无法求解三角形,在△ABC中,已知两角∠ABC=90°,∠ACB,无法求解三角形,在△ACD中,已知一边CD,一角∠ACD,无法求解三角形;对于C,在△ACD中,已知一边CD,两角∠ACD,∠ADC,由三角形内角和可求得∠CAD,由正弦定理可求得AC,在△ABC中,已知两角∠ACB,∠ABC=90°,一边AC,利用sin∠ACB=,可求得AB;对于D,在△ABC中,已知两角∠ABC=90°,∠ACB,由tan∠ACB=,可用AB表示BC,由sin∠ACB=,可用AB表示AC,在△ACD中,已知∠ADC,边CD,AB表示AC,利用余弦定理可用AB表示AD,在Rt△ABD中,利用勾股定理可用AB表示BD,在△BCD中,已知∠BCD,CD,AB表示BD,AB表示BC,利用余弦定理可建立关于AB的方程,即可求解AB.故选:ACD.12.数学中的很多符号具有简洁、对称的美感,是形成一些常见的漂亮图案的基石,也是许多艺术家设计作品的主要几何元素.如我们熟悉的∞符号,我们把形状类似∞的曲线称为“∞曲线”.在平面直角坐标系xOy中,把到定点F1(﹣a,0),F2(a,0)距离之积等于a2(a>0)的点的轨迹称为“∞曲线”C.已知点P(x0,y0)是“∞曲线”C上一点,下列说法中正确的有()A.“∞曲线”C关于原点O中心对称B.C.“∞曲线”C上满足|PF1|=|PF2|的点P有两个D.|PO|的最大值为解:对A,设动点C(x,y),由题意可得C的轨迹方程为,把(x,y)关于原点对称的点(﹣x,﹣y)代入轨迹方程,显然成立;所以A正确;对B,因为P(x0,y0),故,又,所以a2sin∠F1PF2=2a⋅|y0|,即,故,故B正确;对C,若|PF1|=|PF2|,则P(x0,y0)在F1F2的中垂线即y轴上.故此时x0=0,代入,可得y0=0,即P(0,0),仅有一个,故C错误;对D,因为∠POF1+∠POF2=π,故cos∠POF1+cos∠POF2=0,,因为|OF1|=|OF2|=a,,故.即,所以.又|PF1|﹣|PF2|≤|F1F2|=2a,当且仅当P,F1,F2共线时取等号.故,即|OP|2≤2a2,解得,故D正确.故选:ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上)13.在(2+)6的展开式中,常数项等于160.解:(2+)6的展开式的通项公式为T r+1==26﹣r x3﹣r,令3﹣r=0,可得r=3,所以常数项为23=160.故答案为:160.14.已知是函数f(x)=a sin x+b cos x(a>0)的对称轴,则f(x)的对称中心为(kπ﹣,0),(k∈Z).解:f(x)=a sin x+b cos x(a>0)=sin(x+∅),tan∅=.∵是函数f(x)=a sin x+b cos x(a>0)的对称轴,∴f(0)=f(),∴sin(0+∅)=sin(+∅)=cos∅,∴tan∅=1,∴∅=,∴f(x)=sin(x+),由x+=kπ,得:x=kπ﹣,∴对称中心为(kπ﹣,0)(k∈Z).故答案为:(kπ﹣,0),(k∈Z).15.定义函数f(x)=[x[x]],其中[x]表示不超过x的最大整数,例如:[1.3]=1,[﹣1.5]=﹣2,[2]=2.当x∈[0,n)(n∈N*)时,f(x)的值域为A n.记集合A n中元素的个数为a n,则值为.解:根据题意,[x]表示不超过x的最大整数,即[x]=,则有x[x]=,则[x[x]]在各区间中的元素个数是:1,1,2,3,…,n﹣1;故a n=1+1+2+3+……+(n﹣1)=1+,=()+()+……+()=++……+=(﹣)+(﹣)+……+(﹣)=2(1﹣)=;故答案为:.16.若关于x的方程+x﹣ln(ax)﹣2=0(a>0)有解,则正数a的取值范围是[1,+∞).解:因为,即e[ln(ax)﹣x+1]=[ln(ax)﹣x+1]+1有解,由e x≥x+1,当且仅当x=0时取等号,可知ln(ax)﹣x+1=0在区间(0,+∞)内有解,所以ax=e x﹣1在区间(0,+∞)内有解,即在区间(0,+∞)内有解,设,则,易知函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,而f(1)=1,x→0时,f(x)→+∞,x→+∞时,f(x)→+∞,∴要使在区间(0,+∞)内有解,只需a≥1.故答案为:[1,+∞).四、解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17.△ABC的内角A,B、C的对边分别为a,b,c,已知向量=(c﹣a,sin B),=(b ﹣a,sin A+sin C)且∥.(1)求C;(2)若,求sin A.解:(1)∵向量=(c﹣a,sin B),=(b﹣a,sin A+sin C)且∥,∴(c﹣a)(sin A+sin C)=(b﹣a)sin B,由正弦定理可得(c﹣a)(a+c)=(b﹣a)b,∴a2+b2﹣c2=ab,∴cos C===,∵C∈(0,π),∴C=.(2)由(1)可得B=﹣A,由题设及正弦定理可得:sin C+3sin(﹣A)=3sin A,即+cos A+sin A=sin A,可得sin(A﹣)=,由于0,﹣<A﹣<,∴cos(A﹣)=,∴sin A=sin(A﹣+)=sin(A﹣)cos+cos(A﹣)sin=.18.已知等差数列{a n}的前n项和为S n,且满足a3=8,S5=2a7.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,求数列{b n}的前2n项和T2n.解:(1)设等差数列{a n}的公差为d,则由题意可得,解得a1=2,d=3,所以数列{a n}的通项公式为a;(2)因为b=(﹣1),所以T2n=(a2﹣a1)+(a4﹣a3)+…+(a2n﹣a2n﹣1)+(22+23+…+2n+1)=3n+=3n+22n+2﹣4.19.如图1,在等边△ABC中,点D、E分别为边AB、AC上的动点且满足DE∥BC,记.将△ADE沿DE翻折到△MDE的位置并使得平面MDE⊥平面DECB,连接MB,MC得到图2,点N为MC的中点.(1)当EN∥平面MBD时,求λ的值;(2)试探究:随着λ值的变化,二面角B﹣MD﹣E的大小是否改变?如果是,请说明理由;如果不是,请求出二面角B﹣MD﹣E的正弦值大小.解:(1)取MB的中点为P,连接DP,PN,因为MN=CN,MP=BP,所以NP∥BC,又DE∥BC,所以NP∥DE,即N,E,D,P四点共面,又EN∥面BMD,EN⊂面NEDP,平面NEDP∩平面MBD=DP,所以EN∥PD,即NEDP为平行四边形,所以NP∥DE,且NP=DE,即,即.(2)解:取DE的中点O,由平面MDE⊥平面DECB,且MO⊥DE,所以MO⊥平面DECB,如图建立空间直角坐标系,不妨设BC=2,则,D(λ,0,0),,所以,.设平面BMD的法向量为,则,令,即,又平面EMD的法向量,所以,即随着λ值的变化,二面角B﹣MD﹣E的大小不变.且,所以二面角B﹣MD﹣E的正弦值为.20.已知函数f(x)=lnx﹣a(1﹣)+1(a∈R).(1)讨论函数f(x)的单调性;(2)若f(x)>0在(1,+∞)上恒成立,求整数a的最大值.解:(1)函数f(x)的定义域是(0,+∞),∵f(x)=lnx﹣a(1﹣)+1(a∈R),∴f′(x)=﹣=,当a≤0时,f′(x)>0对x∈(0,+∞)恒成立,当a>0时,由f′(x)>0得x>a,由f′(x)<0得0<x<a,综上,当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增;(2)由f(x)>0得lnx﹣a(1﹣)+1>0,故<lnx+1,即a<对x∈(1,+∞)恒成立,令g(x)=,则g′(x)==,令h(x)=x﹣lnx﹣2,则h′(x)=1﹣=,∵x>1,∴h′(x)>0,∴h(x)在(1,+∞)上单调递增,∵h(3)=1﹣ln3<0,h(4)=2﹣ln4>0,故∃x0∈(3,4)满足x0﹣lnx0﹣2=0,当1<x<x0时,h(x)<0,g′(x)<0,当x>x0时,h(x)>0,g′(x)>0,故g(x)在(1,x0)单调递减,在(x0,+∞)单调递增,故g(x)min=g(x0)==x0,故a<x0,∵3<x0<4,a∈Z,故a的最大值是3.21.已知椭圆=1(a>b>0)的上顶点到右顶点的距离为,离心率为,过椭圆C的左焦点F1作不与x轴重合的直线MN与椭圆C相交于M,N两点,过点M作直线m:x=﹣2a的垂线ME,E为垂足.(1)求椭圆C的标准方程;(2)①已知直线EN过定点P,求定点P的坐标.②点O为坐标原点,求△OEN面积的最大值.解:(1)根据题意可得,所以a=2,b=,所以椭圆的方程为+=1.(2)①由题意知,由对称性可知,P必在x轴上,F(﹣1,0),设直线MN的方程为:x=my﹣1,M(x1,y1),N(x2,y2),E(﹣4,y1),联立,得(3m2+4)y2﹣6my﹣9=0,所以y1+y2=,y1y2=,所以﹣2my1y2=3(y1+y2),又k EN=,所以直线EN的方程为y﹣y1=(x+4),令y=0,则x=﹣4﹣=﹣4﹣=﹣4﹣=﹣4+=﹣,所以直线EN过定点P(﹣,0).②由(1)知△=144(m2+1)>0,|y1﹣y2|===,所以S△OEN=|OP||y1﹣y2|=•=,令t=,t≥1,则S△OEN==,在[1,+∞)上单调递减,所以t=1时,[S△OEN]max=.22.某电子公司新开发一电子产品,该电子产品的一个系统G有2n﹣1个电子元件组成,各个电子元件能正常工作的概率均为p,且每个电子元件能否正常工作相互独立.若系统中有超过一半的电子元件正常工作,则系统G可以正常工作,否则就需维修.(1)当n=2,p=时,若该电子产品由3个系统G组成,每个系统的维修所需费用为500元,设ξ为该电子产品需要维修的系统所需的总费用,求ξ的分布列与数学期望;(2)为提高系统G正常工作的概率,在系统内增加两个功能完全一样的电子元件,每个新元件正常工作的概率均为p,且新增元件后有超过一半的电子元件正常工作,则系统C 可以正常工作,问p满足什么条件时,可以提高整个系统G的正常工作概率?解:(1)当n=2时,一个系统有3个电子元件,则一个系统需要维修的概率为,(1分)设X为该电子产品需要维修的系统个数,则,ξ=500X,∴,∴ξ的分布列为:ξ050010001500P∴.(2)记2k﹣1个元件组成的系统正常工作的概率为p k.2k﹣1个元件中有i个正常工作的概率为,因此系统工常工作的概率.在2k﹣1个元件组成的系统中增加两个元件得到2k+1个元件组成的系统,则新系统正常工作可分为下列情形:(a)原系统中至少有k+1个元件正常工作,概率为;(b)原系统中恰有k个元件正常工作,且新增的两个元件至少有1个正常工作,概率为;(c)原系统中恰有k﹣1个元件正常工作,且新增的两个元件均正常工作,概率为.因此,=,故当时,p k单调增加,增加两个元件后,能提高系统的可靠性.。
2020-2021长沙市长郡双语实验学校高中必修一数学上期末第一次模拟试题(及答案)

2020-2021长沙市长郡双语实验学校高中必修一数学上期末第一次模拟试题(及答案)一、选择题1.设4log 3a =,8log 6b =,0.12c =,则( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>2.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]3.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<4.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>7.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.98.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}9.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 10.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,211.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .11二、填空题13.已知log log log 22a a ax yx y +-=,则x y的值为_________________. 14.已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.15.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________.16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____. 18.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.19.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________.20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34x f f x ⎡⎤-=⎣⎦,则()4f =______. 三、解答题21.已知函数()21log 1x f x x +=-. (1)判断()f x 的奇偶性并证明; (2)若对于[]2,4x ∈,恒有()2log (1)(7)mf x x x >-⋅-成立,求实数m 的取值范围.22.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 23.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由. 24.已知函数22()log (3)log (1)f x x x =-++. (1)求该函数的定义域;(2)若函数()y f x m =-仅存在两个零点12,x x ,试比较12x x +与m 的大小关系. 25.已知集合{}24A x x =-≤≤,函数()()2log 31xf x =-的定义域为集合B .(1)求A B U ;(2)若集合{}21C x m x m =-≤≤+,且()C A B ⊆⋂,求实数m 的取值范围. 26.设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】由对数的运算化简可得2log 3a =,32log 6b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log 3log 42a ====, 328222log 61log 6log 6log 6log 83b ====, 又由3362<<,所以3222log 3log 6log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.2.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.3.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c,()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】 考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.6.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.7.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.8.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.9.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立; ∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.10.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,()y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.11.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可.【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.12.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.二、填空题13.【解析】【分析】首先根据对数的运算性质化简可知:即解方程即可【详解】因为且所以即整理得:所以或因为所以所以故答案为:【点睛】本题主要考查对数的运算性质同时考查了学生的计算能力属于中档题解析:3+【解析】 【分析】首先根据对数的运算性质化简可知:2()2x y xy -=,即2()6()10x x y y -+=,解方程即可.【详解】 因为log log log 22a a ax yx y +-=,且x y >, 所以2log log ()2aa x y xy -=,即2()2x y xy -=. 整理得:2260x y xy +-=,2()6()10x xy y-+=.26432∆=-=,所以3x y =-3x y =+因为0x y >>,所以1xy >.所以3x y=+故答案为:3+【点睛】本题主要考查对数的运算性质,同时考查了学生的计算能力,属于中档题.14.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:3,4⎛⎤-∞- ⎥⎝⎦【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min 21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.故答案为;3,4⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.15.【解析】根据题意当时为奇函数则故答案为解析:15-【解析】根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则 故答案为15-.16.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得 解析:10,2⎡⎫⎪⎢⎣⎭【解析】【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围.【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1 即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤< 故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题. 17.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1【解析】【分析】直接利用对数计算公式计算得到答案.【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣ 故答案为:1【点睛】本题考查了对数式的计算,意在考查学生的计算能力.18.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f (﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2 解析:23【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解【详解】∵函数()()()21xf x x x a =+-为奇函数, ∴f (﹣x )=﹣f (x ),即f (﹣x )()()()()2121x x x x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ),即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a ,∴2a ﹣1=0,解得a 12=.故2(1)3f = 故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键. 19.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2【解析】【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值.【详解】由题意得:()00323f =+=,()23331103f a a =-+=-, 所以由()()01032f f a a =-=, 解得2a =.故答案为:2.【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.20.【解析】【分析】采用换元法结合函数的单调性计算出的解析式从而即可求解出的值【详解】令所以又因为所以又因为是上的增函数且所以所以所以故答案为:【点睛】本题考查用换元法求解函数的解析式并求值难度一般已知 解析:82【解析】【分析】采用换元法结合函数的单调性计算出()f x 的解析式,从而即可求解出()4f 的值.【详解】令()3x f x t -=,所以()3xf x t =+, 又因为()4f t =,所以34t t +=,又因为34ty t =+-是R 上的增函数且1314+=,所以1t =,所以()31x f x =+,所以()443182f =+=. 故答案为:82.【点睛】本题考查用换元法求解函数的解析式并求值,难度一般.已知()()f g x 的解析式,可考虑用换元的方法(令()g x t =)求解出()f x 的解析式. 三、解答题21.(1)奇函数,证明见解析;(2)015m <<【解析】【分析】(1)先求出函数定义域,再利用函数奇偶性的定义判断即可;(2)由题意,101(1)(7)x m x x x +>>---对[]2,4x ∀∈恒成立,转化为0(1)(7)m m x x >⎧⎨<+-⎩恒成立,求出函数()()()17g x x x =+-的最小值进而得解.【详解】(1)因为101x x +>-,解得1x <-或1x >, 所以函数()f x 为奇函数,证明如下:由(1)知函数()f x 的定义域关于原点对称,又因为1222111()log log log ()111x x x f x f x x x x --+-+⎛⎫-====- ⎪--+-⎝⎭, 所以函数()f x 为奇函数;(2)若对于[]2,4x ∈,2()log (1)(7)m f x x x >--恒成立, 即221log log 1(1)(7)x m x x x +>---对[]2,4x ∈恒成立, 即101(1)(7)x m x x x +>>---对[]2,4x ∈恒成立, 因为[]2,4x ∈,所以107m x x +>>-恒成立, 即0(1)(7)m m x x >⎧⎨<+-⎩恒成立, 设函数()()()17g x x x =+-,求得()g x 在[]2,4上的最小值是15,所以015m <<.【点睛】本题考查函数奇偶性的判断及不等式的恒成立问题,考查分离变量法的运用,考查分析问题及解决问题的能力,难度不大.22.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值.【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m ≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m ≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值,当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去;当()23f =时,解得1m =,此时3为最大值,符合题意.综上所述,1m =.【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型.23.(1)12k =(2)0a ≤(3)存在,316m =- 【解析】【分析】(1)利用公式()()0f x f x --=,求实数k 的值;(2)由题意得()2log 21x a <+恒成立,求a 的取值范围;(3)()214x x h x m =++⋅,[1,2]x ∈,通过换元得21y mt t =++,[2,4]t ∈,讨论m 求函数的最小值,求实数m 的值.【详解】(1)f x ()是偶函数()()0f x f x ∴--=,()()22log 21log 210x x kx kx -∴++-++=,22112log (21)0210212x x kx x k x x R k k -+∴==∴-=∈∴-=∴=+Q . (2)由题意得()2log 21x a <+恒成立, ()2211log 2100x x a +>∴+>∴≤Q .(3)()214x x h x m =++⋅,[1,2]x ∈,令2x t =,则21y mt t =++,[2,4]t ∈,1°当0m =时,1y t =+的最小值为3,不合题意,舍去;2°当0m >时,21y mt t =++开口向上,对称轴为102t m=-<, 21y mt t ∴=++在[2,4]上单调递增min 432y m ∴=+=,104m ∴=-<,故舍去; 3°当0m <时,21y mt t =++开口向下,对称轴为102t m =->, 当132m -≤即16m ≤-时,y 在4t =时取得最小值, min 3165216y m m ∴=+=∴=-,符合题意; 当132m->即106m -<<时,y 在2t =时取得最小值, min 14324y m m ∴=+=∴=-,不合题意,故舍去;综上可知,316m =-. 【点睛】 本题考查复合型指,对数函数的性质,求参数的取值范围,意在考查分类讨论的思想,转化与化归的思想,以及计算能力,本题的难点是第三问,讨论m ,首先讨论函数类型,和二次函数开口方向讨论,即分0m =,0m >,和0m <三种情况,再讨论对称轴和定义域的关系,求最小值.24.(1)(1,3)- (2)12x x m +>【解析】【分析】(1)根据对数真数大于零列不等式组,解不等式组求得函数的定义域.(2)化简()f x 表达式为对数函数与二次函数结合的形式,结合二次函数的性质,求得12x x +以及m 的取值范围,从而比较出12x x +与m 的大小关系.【详解】(1)依题意可知301310x x x ->⎧⇒-<<⎨+>⎩,故该函数的定义域为(1,3)-; (2)2222()log (23)log ((1)4)f x x x x =-++=--+,故函数关于直线1x =成轴对称且最大值为2log 42=,∴122x x +=,2m <,∴12x x m +>.【点睛】本小题主要考查函数定义域的求法,考查对数型复合函数对称性和最值,属于基础题.25.(1){}2x x ≥-;(2)(]2,3【解析】【分析】(1)由对数函数指数函数的性质求出集合B ,然后由并集定义计算;(2)在(1)基础上求出A B I ,根据子集的定义,列出m 的不等关系得结论.【详解】(1)由310x ->,解得0x >, 所以{}0B x x =>. 故{}2A B x x ⋃=≥-.(2)由{}04A B x x ⋂=<≤.因为()C A B ⊆⋂,所以20,1 4.m m ->⎧⎨+≤⎩所以23m <≤,即m 的取值范围是(]2,3.【点睛】本题考查对数型复合函数的定义域,考查集合的交并集运算,考查集合的包含关系.正确求出函数的定义域是本题的难点.26.(1)4,2a b ==(2)21log 2x +=(3)()[]0,240g x ∈ 【解析】【分析】(1)由()()211,2log 12f f ==解出即可(2)令()0f x =得421x x -=,即()22210xx --=,然后解出即可 (3)()42x x g x =-,令2x t =,转化为二次函数【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42x x f x =-,令()0f x =得421x x -=,即()22210x x --=,解得122x =,又20,2x x >∴=,解得2log x = (3)由(1)知()42x x g x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈, 因为()g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 sin A: sin B : sinC 5:11:13 ,可得出 a : b : c 5:11:13 ,
设 a 5t t 0 ,则 b 11t , c 13t ,则角 C 为最大角,
由余弦定理得 cos C a2 b2 c2 25t2 121t2 169t2 23 0,则角 C 为钝角,
求得最小值.
【详解】
作出可行域,如图 ABC 内部(含边界),作直线 l : 2x y 0 ,平移该直线,当直线 l
过点 A(3, 0) 时, 2x y 取得最大值 6,所以 m 6 .
1 4 1 (a b)( 1 4) 1 (5 b 4a ) 1 (5 2 b 4a ) 3 ,当且仅当 b 4a ,
=3tanC,则 a=_____.
20.设等比数列 an 满足 a1 + a2 = –1, a1 – a3 = –3,则 a4 = ___________.
三、解答题
21.在 ABC 中, a,b, c 分别是角 A, B,C 所对的边,且 2csin B 3a tan A. (1)求 b2 c2 的值;
由题意可得: Sn 3 3 2n , Sn 3 2n 3 ,
由等比数列前 n 项和的特点可得数列 an 是首项为 3,公比为 2 的等比数列,数列的通项
公式: an 3 2n1 ,
设 bn b1qn1 ,则: b1qn1 b1qn 3 2n1 ,解得: b1 1, q 2 ,
10.已知等比数列
an
的各项都是正数,且
3a1
,
1 2
a3
,
2a2
成等差数列,则
a8 a6
a9 a7
A. 6
B. 7
C. 8
D. 9
x 1
11.已知变量 x,
y
满足约束条件
x
y
3
,则 z 2x y 的最小值为( )
x 2 y 3 0
A.1
B.2
C.3
D.6
12.已知 x , y 均为正实数,且 1 1 1 ,则 x y 的最小值为( ) x2 y2 6
(1)求数列 an 的通项公式;
(2)若数列bn满足 bn
n(n 1)an 1 n(n 1)
( n N*
),求数列bn的前 n
项和
Sn
.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】
【详解】
先作可行域,而 y 4 表示两点 P(x,y)与 A(-6,-4)连线的斜率,所以 y 4 的取值范围
3
23.设数列an的前 n 项和 Sn 满足: Sn na n 2n(n 1) ,等比数列bn的前 n 项和为
Tn ,公比为 a1 ,且T5 T3 2b5 .
(1)求数列 an 的通项公式;
(2)设数列
1
an
an1
的前
n
项和为
Mn
,求证:
1 5
Mn
1 4
.
24.在 ABC 中, 3a sin C c cos A . (Ⅰ)求角 A 的大小;
ab1+ab2+…+ab10=1+2+23+25+…+29+10 进行求和. 解:∵数列{an}是以 2 为首项,1 为公差的等差数列, ∴an=2+(n-1)×1=n+1, ∵{bn}是以 1 为首项,2 为公比的等比数列,
∴bn=1×2n-1, 依题意有:ab1+ab2+…+ab10=1+2+22+23+25+…+29+10=1033, 故选 A.
8.D
解析:D 【解析】 【分析】 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方 程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】
y x 画出满足约束条件 x y 2 的可行域,如图,
y 3x 6
画出可行域 ABC , A(2, 0) , B(1,1) , C(3,3) ,
1 ab
5
a
b
1
a
4
b2
,
化为 a b2 5a b 4 0 ,
解得1 a b 4 ,
则 a b 的取值范围是1, 4.
故选:A. 点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能
力,属于中档题.
10.D
解析:D 【解析】
【分析】
设各项都是正数的等比数列{an}的公比为 q,(q>0),由题意可得关于 q 的式子,解之可 得 q,而所求的式子等于 q2,计算可得.
(Ⅱ)若 SABC 3 , b c 2 2 3 ,求 a 的值. 25. ABC 的内角 A, B,C 所对的边分别为 a,b, c .已知 ABC 的面积 S 1 b2 tan A
6 (1)证明: b 3ccos A ;
(2)若 c 1, a 3 ,求 S .
26.在等比数列 an 中, a1 1,且 a2 是 a1 与 a3 1的等差中项.
A. 1 2
B. 2
C. 2
D. 2 2
x 2y 3 0 3.已知 x,y 满足 x 3y 3 0 ,z=2x+y 的最大值为 m,若正数 a,b 满足 a+b=m,则
y 1
1 4 的最小值为( ) ab
A.3
B. .已知数列{an}的前 n 项和为 Sn ,点 (n, Sn 3) (n N*) 在函数 y 3 2x 的图象上,等
比数列{bn}满足 bn bn1 an (n N*) ,其前 n 项和为 Tn ,则下列结论正确的是( )
A. Sn 2Tn
B.Tn 2bn 1
C.Tn an
D.Tn bn1
5.若 ABC 的三个内角满足 sin A: sin B : sin C 5:11:13 ,则 ABC ( )
ab 6
ab 6 a b 6
ab 2
ab
即 a 1 ,b 2 时等号成立,即 1 4 的最小值为 3 .
33
ab
2
故选:B.
【点睛】
本题考查简单的线性规划,考查用基本不等式求最值,解题关键是用“1”的代换凑配出基 本不等式的定值,从而用基本不等式求得最小值.
4.D
解析:D 【解析】
【分析】
【详解】
平移直线 z 2x y ,
由图可知,直线 z 2x y 经过 C(3,3) 时
目标函数 z 2x y 有最大值,
z 2x y 的最大值为 9.
故选 D. 【点睛】 本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的 一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线); (2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或 最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.
17.已知 a、b、cR , c 为实常数,则不等式的性质“ a b a c b c ”可以用一个
函数在 R 上的单调性来解析,这个函数的解析式是 f (x) =_________
18.已知数列{an}的前 n 项和 Sn=n2+2n+1(n∈N*),则 an=________.
19.已知△ABC 中,角 A、B、C 对应的边分别为 a、b、c,且 bcosC﹣ccosB 1 a2,tanB 4
2020-2021 长沙市长郡中学高三数学上期末一模试题含答案
一、选择题
x y 2 0
1.设 x, y 满足约束条件 2x y 3 0 ,则 y 4 的取值范围是
x y 0
x6
A.[3, 3] 7
B.[3,1]
C.[4,1]
D. (, 3][1, )
2.已知等比数列 an 的公比为正数,且 a3 a9 2a52 , a2 1 ,则 a1 ( )
术”,即△ABC 的面积 S
1 4
a2c2
a2
c2 2
b2
2
,其中
a、b、c
分别为 △ABC
内角 A、B、C 的对边.若 b 2 ,且 tanC 3sinB ,则△ABC 的面积 S 的最大值为 1 3cosB
__________.
15.已知数列 an 为正项的递增等比数列, a1 a5
7.C
解析:C 【解析】 【分析】 【详解】
由 an1 an 2 an 1 1,可得 an1 1 an 1 1 2 ,an1 1 an 1 1 ,
an +1 是以1为公差,以1为首项的等差数列.
∴ an 1 n, an n2 1,即 a20 202 1 399 .
故选 C.
x6
x6
是[kAD , kAC ] [3,1] ,选 B.
点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还 是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜 率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.
2.D
解析:D 【解析】
A.20
二、填空题
B.24
C.28
D.32
yx
13.已知
x,
y
满足约束条件
x
y
4
,则
z
2
x
y
的最大值为__________.
y 2 0
14.(广东深圳市 2017 届高三第二次(4 月)调研考试数学理试题)我国南宋时期著名的数
学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法---“三斜求积