测量平差概述
测量平差概要

测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测量平差概要

测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
测绘技术中的平差原理及应用

测绘技术中的平差原理及应用导语:测绘技术在现代社会中扮演着极为重要的角色,它为我们提供了地理信息和地形数据,为城市规划、基础设施建设等提供了参考依据。
而平差作为测量中不可或缺的环节,更是保证了测绘数据的精确性和可靠性。
本文将介绍测绘技术中的平差原理及其应用,并探讨其在现代社会中的重要性。
一、平差原理的概述平差是测绘技术中一种重要的数据处理方法,它通过将测量结果进行修正和调整,消除误差,从而提高数据的准确性。
平差的基本原理是根据误差的传递规律,通过权衡各个观测值的权重来修正测量结果。
二、平差的分类根据观测数据量和形式的不同,平差可以分为间接平差和直接平差。
间接平差是指通过多个观测量之间的关系,将各个观测值进行联立求解的平差方法。
而直接平差是指通过最小二乘法求解各个观测值的平差方法。
三、平差的应用领域在测绘技术中,平差被广泛应用于各个领域。
首先,它在制图中起着关键作用。
通过对测量数据进行平差,可以获得更为准确的地形图和地图,为城市规划、土地利用等提供精确的基础数据。
其次,在工程测量中,平差也扮演着重要的角色。
在道路建设、大型桥梁和隧道的设计和施工过程中,平差可以提供精确的地形信息和测量结果,确保工程的顺利进行。
此外,平差还应用于船舶导航、航空导航等领域,为船只和飞机的航行提供准确的数据。
四、平差的实施步骤平差的具体实施步骤可以分为观测准备、观测操作、数据处理和结果分析等几个步骤。
首先,进行观测准备,包括确定目标区域、选择观测仪器,并进行校准和调整。
然后进行观测操作,按照预定的方法和步骤进行测量。
接下来,进行数据处理,包括数据的录入、数据的校验和数据的平差计算等。
最后,进行结果分析,对平差后的数据进行检查和分析,评估其准确性和可靠性。
五、平差技术的挑战与发展随着科技的不断进步,测绘技术也在不断发展,平差技术也面临着新的挑战和机遇。
首先,高精度测量技术的发展提出了对平差技术更高的要求。
其次,大数据和人工智能的兴起为平差技术的应用带来了新的机遇。
测绘技术中的大地测量平差方法

测绘技术中的大地测量平差方法随着科技的发展和社会的进步,测绘技术在多个领域发挥着重要作用。
而大地测量作为测绘的基础和核心内容之一,在各种测绘工程中扮演着重要角色。
大地测量中的平差方法更是测绘工作中必不可少的一环,它旨在提高测量精度和准确性,确保测绘成果的可靠性和稳定性。
一、什么是大地测量平差大地测量平差是指通过对测量数据的处理和分析,计算出测量结果的均值和状况,以消除测量误差和违背精度要求的不平衡情况。
平差方法包括最小二乘法、最小二乘均衡法、向后差分平差法等。
这些方法的目标都是通过合理地调整各个测量数值,使其误差达到最小,并满足一定的准确性要求。
二、最小二乘法的应用最小二乘法是大地测量平差中最常用的方法之一。
其基本思想是通过调整测量点坐标,使得每个观测值和计算值之间的残差平方和最小化。
通过最小二乘法,可以有效解决测量误差和不平衡的问题,提高测量结果的可靠性和准确性。
在平差测量中,最小二乘法的应用非常广泛。
例如,在平差水准测量中,通过对大量高程观测值的处理,可以得到较为精确的高程数值。
同样,在导线测量中,最小二乘法也可以用于平差观测值,从而得到更加准确的线路长度和方位角度数值。
三、最小二乘均衡法的特点最小二乘均衡法是大地测量平差中的另一种重要方法。
与最小二乘法相比,最小二乘均衡法能够更好地考虑每个观测值的权重和重要性。
在最小二乘均衡法中,每个观测值的权重都被赋予了一个合理的数值,根据观测值的可靠性进行调整。
这种方法的优点在于能够更加准确地处理测量误差的影响。
通过给予高精度测量值更大的权重,可以有效提高整体测量结果的准确性。
在相对测量中,最小二乘均衡法可以用于平差角度观测值,从而提高角度测量的可靠性。
四、向后差分平差法的应用向后差分平差法是大地测量平差的一种经典方法。
它的基本思想是根据测量误差的传递规律,逐步调整各个测量值,使误差逐级传递并累积,最终达到规定的精度要求。
在实际应用中,向后差分平差法常用于较为复杂的水准网、三角网等测量工作中。
(整理)测量平差

测量平差一.测量平差基本知识 1.测量平差定义及目的在设法消除系统误差、粗差影响下,其基本任务是求待定量的最优估量和评定其精度。
人们把这一数据处理的整个过程叫测量平差。
测量平差的目的:一是通过数据处理求待定量的最优估值;二是评定观测成果的质量。
2.协方差传播律及协方差传播律是观测值(向量)与其函数(向量)之间精度传递的规律。
①观测值线性函数的方差: 函数向量:Y=F(X) Z=K(X)其误差向量为:ΔY=F ΔX ΔZ=K ΔX则随机向量与其函数向量间的方差传递公式为⎪⎪⎪⎭⎪⎪⎪⎬⎫====F D K D K D F D K D K D F D F D TXZYTXYZTXZTXY②多个观测值线性函数的协方差阵t×n×n ×t×n T n XX t t ZZ K D K D =③非线性的协方差传播T XX ZZ K KD D =3.权及常用的定权方法①权表示比例关系的数字特征称之为权,也就是权是表征精度的相对指标。
权的意义不在于它们本身数值的大小,而在于它们之间所存在的比例关系。
()n i iiP ,...,2,1220==σσi P 为观测值i L 的权,20σ是可以任意选定的比例常数。
②单位权方差权的作用是衡量观测值的相对精度,称其为相对精度指标。
确定一组权时,只能用同一个0σ,令0σσ=i ,则得:iiP ===02202021σσσσ上式说明20σ是单位权(权为1)观测值的方差,简称为单位权方差。
凡是方差等于20σ的观测值,其权必等于1。
权为1的观测值,称为单位权观测值。
无论20σ取何值,权之间的比例关系不变。
③ ⅰ.水准测量的权NC P h =式中,N 为测站数。
SC P h =式中,S 为水准路线的长度。
ⅱ.距离量测的权ii S C P =式中,i S 为丈量距离。
ⅲ.等精度观测算术平均值的权CP ii N=式中,i N 为i 次时同精度观测值的平均值。
测量平差的基本原理和计算方法

测量平差的基本原理和计算方法测量平差是测量学中一个重要的概念,它用于消除测量误差,提高测量精度。
本文将介绍测量平差的基本原理和计算方法。
一、测量平差的基本原理测量平差的基本原理是通过对测量数据进行处理,消除不可避免的误差,得到更为准确的结果。
在实际的测量过程中,由于各种因素的影响,测量结果往往不是完全准确的。
而通过平差可以将这些误差分布在测量要素上,使得整个测量结果更为合理。
平差的基本原理包括以下几个方面:1. 观测误差的性质:观测误差是服从一定的概率分布的,一般满足正态分布或其近似分布。
2. 绘图、观测和计算误差的连接性:测量平差将绘图误差、观测误差和计算误差联系在一起,通过适当的方法进行计算处理。
3. 误差的耦合性:测量过程中的各个要素之间存在着一定的关系,其误差也会相互影响。
通过平差可以将这些误差合理地分配和补偿。
二、测量平差的计算方法测量平差的计算方法有很多种,下面将介绍几种常见的方法。
1. 最小二乘法:最小二乘法是一种常用的测量平差方法,其基本思想是将误差的平方和最小化。
通过对误差进行建模和优化,可以得到一组最优解。
2. 最大似然估计法:最大似然估计法是一种基于统计原理的测量平差方法。
它根据观测数据的概率分布,选择出最具可能性的结果。
通过最大化似然函数,可以得到一组最优解。
3. 权值平差法:权值平差法是一种根据观测精度的大小,给予不同权值的平差方法。
通过给观测数据引入权值,可以使得精度高的数据在计算过程中起到更大的作用,从而提高整体的测量精度。
4. 卡尔曼滤波法:卡尔曼滤波法是一种基于状态估计的测量平差方法。
它通过建立状态模型和测量模型,利用观测数据进行误差修正,从而得到更加准确的结果。
三、测量平差的应用测量平差在实际应用中有着广泛的应用。
以下通过几个领域的案例来说明。
1. 地理测量:在地理测量中,测量平差常用于大地测量和地图制图。
通过平差可以消除地球曲率、大地水准面等因素的影响,得到更加准确的测量结果,提高地图的精度和真实度。
平差的名词解释

平差的名词解释在测量领域中,平差是一种常用的技术手段,它的作用是对测量结果进行处理和修正,以提高测量数据的准确性和可靠性。
平差的核心思想是通过对测量误差进行分析和处理,得到更接近真实值的测量结果。
一、平差的概念和背景平差是一个摘自英文单词“adjustment”的中文翻译,它最初源于土地测量工程,并在后来广泛应用于各个测量领域。
在传统的测量中,由于各种误差的存在,例如仪器、人为、大地形态等因素,所得到的测量结果是不完全准确的。
因此,平差便成为了必不可少的一环,用以处理和修正这些误差,以达到更高的测量精度。
二、平差的基本原理平差的基本原理是通过测量数据的统计分析和数学模型的建立,对原始测量数据进行加权调整,以降低误差对测量结果的影响。
具体而言,平差过程包括以下几个步骤:1. 数据预处理:对原始测量数据进行检验和筛选,去除明显的异常值和错误数据。
2. 观测方程的建立:通过观测原理和测量公式,建立代表测量对象间关系的数学模型,即观测方程。
3. 误差分析:对观测方程中各个观测量的误差进行分析,确定其误差特征和大小。
4. 加权计算:根据误差分析结果,对观测方程中的各个观测量进行加权计算,以提高高精度数据的权重,低精度数据的权重降低。
5. 解算和调整:通过数值计算方法,解算出最优平差结果,并进行调整,使观测方程的残差(测量值和计算值之间的差异)达到最小。
6. 结果评定:对平差结果进行可靠性评估,包括检验残差是否符合一致性条件、评定测量精度等。
三、平差的应用领域平差广泛应用于各个测量领域,包括但不限于:1. 土地测量:在土地测量中,平差常用于确定地块边界和计算地形图等工作。
通过对地块边界点的测量数据进行平差处理,可以提高地块边界的准确性和精度,避免土地纠纷的发生。
2. 工程测量:在工程测量中,平差常用于确定建筑物、桥梁、道路等工程物体的位置和形态。
通过对工程测量数据的平差处理,可以提高工程设计的精度,确保施工的准确性。
测量平差

第0章 绪 论地球科学的测量数据或观测数据是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其他实体的空间分布有关的信息数据。
任何观测数据总是包含有信息和干扰两部分,采集数据就是为了获取有用的信息。
干扰也称为误差,是除了信息以外的部分。
在实际工作中,需要进行大量观测数据的处理,它是测量工作重要环节之一。
高斯(Gauss)和勒戎德尔(Legendre)于19世纪初创立了解决这一问题的基本理论和方法,即最小二乘法。
从那时起,两个世纪以来,随着科学与技术的不断进步,特别是近代科学与技术的发展,最小二乘法也增添了许多新的内容,理论更趋全面严谨,方法更加灵活多样,应用也更为广泛。
《误差理论与测量平差》课程的任务,就是介绍这一方面的有关理论和方法。
本章将说明观测数据总是不可避免地带有误差,以及测量平差所研究的内容,最后介绍本课程的任务和内容。
§0.1 测量平差的基本概念在测量工作中,由于受测量过程中客观存在的各种因素影响,使得一切测量结果都不可避免地带有误差。
例如,对一段距离进行重复观测时,各次观测的长度总不可能完全相同。
又如,一个平面三角形三内角之和理论上应等于180°,实际上,如果对这三个内角进行观测,其三内角观测值之和一般不等于180°,而存有差异。
这种差异的产生,是因为观测值中含有观测误差。
于是,研究观测误差的内在规律,对带有误差的观测数据进行数学处理并评定其精确程度等,就成为测量工作中需要解决的重要实际问题。
一、误差来源观测误差产生的原因很多,概括起来主要有以下四个方面:观测者:由于观测者的感觉器官的鉴别能力有一定的局限性,因此在仪器的安置、照准、读数等方面都会产生误差。
同时,观测者的工作态度、技术水平以及情绪的变化,也会对观测成果的质量产生影响。
测量仪器:所谓测量仪器,是指采集数据所采用的任何工具和手段。
由于每一种仪器只具有一定限度的准确度,由此观测所得的数据必然带有误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
处理
误差
粗差 系统误差
偶然误差
偶然误差: 采用测量平差的方法
系统误差:采用适当的观测方法
校正仪器
计算加改正
系统误差补偿
粗 差 : 重复观测 严格检核
发现后舍弃或重测
计算中发现
主页
A、偶然误差(Accident error)
误差在大小和符号上都表现出偶然性, 单个误差的大小和符号没有规律性,但 就大量误差的总体而言,具有统计规律。 如对中误差、照准误差 偶然误差具有随机性,也称随机误差。 带有偶然误差的观测列是本课程的主要 研究对象。
主页
5、测量平差学科的特色
测量平差是集概率统计学、线性代数、 计算机软件、误差理论、测量数据处理 技术为一体的一门新学科; 测量平差学科的基本理论和方法可广泛 应用于计量学、物理学、电工学、化工 学及各类工程学科;
主页
1.4 本课程任务和基本内容
1、本课程研究的任务
讲授测量平差的基本理论和基本方法,为进一步 学习和研究测量平差打下深入的基础。 测量平差的任务:一是依据某种最优化的准则, 处理一系列带有偶然误差的观测值,求出观测值 或未知量的最可靠值(adjusted value )(也称为平差 值、最或是值、最或然值、估值、最佳估值); 二是进行测绘产品质量控制 ,评定测量成果及其 函数的精度。
主页
C、粗差(Gross error)
粗差是指比在正常观测条件下所可能出现的
最大误差还要大的误差;如观测时大数读错、计
算机输入错误、记录记错等
严格来讲粗差不属于观测误差;
一定的限差:先查可以避免大部分粗差。 检验方法:科学的检验理论和方法进行排查。 平差方法:用一定的平差方法处理
现代数据采集的高自动化,数据量的海量化, 使得粗差问题在现今的高新测量技术(GPS、 GIS、RS)中尤为突出。
主页
概率论与数理统计需要复习的内容
概率和随机变量 概率密度 正态分布 数学期望\方差\协方差\ 数理统计的基础知识 参数估计 参数的假设检验
主页
教学方式与内容
讲授为主,例题、习题相结合。 内容:主要讲前十章的内容
主页
观测数据总是பைடு நூலகம்可避免 地带有误差。
测量平差研究误差处理 的基本理论、基本知识和基 本方法。
马尔柯夫(A、A、Markov)确立高斯---
--- 马尔柯夫平差模型的(1912年)
主页
高斯简介
高斯,德国著名数学家、物理学家、天文学家和大地测量学家。 1777年4月30日生于不伦瑞克, 1799年以论文《代数学基本定理的 重新证明》获得黑尔姆施泰特大学博士学位。高斯对大地测量学 的发展作出了卓越的贡献,解决了一系列理论问题和实践问题。 早在1794年,他首创了最小二乘法理论,并应用于谷神星(小行星 1号)轨道和星历的计算。1809年在题为《围绕太阳沿圆锥曲线轨 道公转的天体的运动理论》一文中,正式发表了最小二乘法理论。 随后在1815~1826年期间,陆续发表了关于这一方面的几篇论文, 使最小二乘法应用于测量平差的问题大部分得到了解决,极大地 推动了19世纪大地测量的发展。高斯是椭球面大地测量学的开拓 者。他对微分几何和曲面理论作了深入研究,以此为基础于1822 年首创了将椭球面投影到平面上的正形投影法,解决了在有限区 域内保持投影后的图形同原图形相似的问题,并因此于1823年获 得丹麦科学院奖金。高斯在天文学方面的贡献也促进了大地天文 学的发展。1805~1807年他创造了用迭代过程计算天体轨道的新 方法,以代替过去惯用的内插法. 1832年,高斯首次提出测定地磁 场强度的绝对法 。
《误差理论与测量数据处理》, 测量平差教研室,测绘出版社;
《误差理论与测量数据处理习题 集》,武汉大学测绘学院测量平差 学科组编著, 武汉大学出版社
主页
测绘工程专业主干课:
▪ 专业基础主要课程: 测量学(5)、测量平差基础(5)、控制测量 学(5)、摄影测量学(4)、测绘数据计算机 处理(3) 专业课: GPS(4)、GIS(3)、工程测量(4)、数字 制图(3)、近代平差(2)等 本课程性质: 专业基础课、必修课、考试课
向量形式
:
i L~i Li , i 1,2, , n
L~ L
n,1 n,1 n,1
其中
n,1
1
2
n T
L~
n,1
L~1
L~2
L~n T
L
n,1
L1
L2
Ln T
主页
5、观测误差的分类和处理
分类
g s a
主页
课程安排
前修课程:测量学、高数、线性代数、 概率论与数理统计 课程上一个学期进行: 第三学年上学期:4学分 后续课程:测绘数据的计算机处理、控 制测量、近代平差
主页
课程特点
1.要求的数学基础: 高等数学 线性代数 概率论与数理统计
2.公式多 3.自己动手动脑
主页
线性代数需要复习的内容
矩阵的定义 相关与无关的概念 系数矩阵与增广矩阵 同型矩阵\相等矩阵\特殊矩阵(对角,单位 阵,分块) 矩阵的运算(线性\乘法\转置\逆\微分\秩 ) 线性方程组 高斯消元法
主页
B、系统误差(Systematic error)
误差在大小和符号上都表现出系统 性,或者在观测过程中按一定的规 律变化,或者为一常数。如尺长误差
(保持常数)钢尺温度变化,热胀冷缩 (有规律变化)
系统误差具有累计性 测量规范中所制定的种种限制都是 减少系统误差对观测结果的影响。
主页
例子
某钢尺的注记长度为30m,经鉴定后,它的实 际长度为30.016m,即每量一整尺,就比实际 长度量小0.016m,也就是每量一整尺段就有 +0.016m的系统误差。这种误差的数值和符号 是固定的,误差的大小与距离成正比,若丈量 了五个整尺段,则长度误差为 5×(+0.016)=+0.080m。若用此钢尺丈量结果为 167.213m,则实际长度为: 167.213+×0.0016=167.213+0.089=167.302(m)
返回 主页
观测值不可避免地存在误差
仪器工具误差 环境误差:随时间变化、大气折光、无线电传 播干扰、多路径效应 图像转换误差 基准误差 定轨误差 输入误差 人员误差
主页
4、观测误差的计算
测量所得的观测值与该量的真值之间的差值,这种差 值称为测量真误差,即:
测量真误差(true error )=真值-观测值
主页
工程控制网布设及优化设计
1)测图控制网 2)施工控制网 3)变形监测网 4)安装测量控制网。 布设测角网(三角网triangle network) 、测边网 (三边网trilateration network )、边角网 (triangulateration network )、导线网(traverse networt )、GPS网(gps networt )、水准网 (leveling network)等等。
主页
2、本课程的基本内容
1、误差的基础理论(CH1、2、3) 2、平差的几种数学模型(CH4) 3、平差的几种典型方法和概括平差函数模型(CH5、6、 7、8、9) 4、误差椭圆(error ellipse )与数据的统计假设检 验(CH10、11) 5、近代平差理论(CH12) 本课程的重点为误差理论、最小二乘平差以及几种平 差模型,误差椭圆。特别是要学好古典平差中条件平 差(condition adjustment )和间接平差(parameter adjustment )的原理和精度评定,难点为最小二乘平 差原理以及各种平差模型。
主页
测绘科学与技术
❖ 大地测量与测量工程
数学
❖ 摄影测量与遥感
政治 英语
❖ 地图制图与地理信息系统工程 测量平差
❖ 工程测量
❖ 海洋测量
主页
测绘界的院士知多少?
» 测绘界的院士知多少?
夏坚白、王之卓、方 俊 陈永龄、陈俊勇、刘先琳 李德仁、宁津生、刘经南 许厚泽、魏子卿、王家耀 王任享、高 俊、张祖勋 许其凤、叶淑华
Theory of errors and basis of surveying adjustment
主页
武汉大学测绘学院 测量 平 差 学 科组 编著 武汉大学出版社出版
2003年1月第1版 书号: ISBN 7-307-03709-2/p·55 定价: 21元
主页
参考书目
《测量平差原理》,於宗俦等,测 绘出版社;
2、产生观测误差的原因 观测受观测条件的影响
3、如何发现观测误差 采用多余观测法发现观测误差
继续 主页
多余观测(Redundant observation)
两点间距离:
B
必要观测:S1
A
多余观测:S2
差异=S1-S2
只有有了多余观测才能产生测量差异,从而发现观测误差。 观测误差的存在使得测量平差必要。 多余观测的存在使测量平差成为可能。
返回 主页
观测条件
观测值(observatin value)如何获取? 观测条件
观测者 采用一定的 仪器 在一定的 外界环境 中测取
技术水平 工作态度
精密度 误差
温度、湿度 风力 等
观测条件对观测成果产生影响,不可避免产生观测误差 观测条件较好则观测质量较高,观测条件较差则观测质 量较低,观测条件相同则观测质量相同。
主页
作业:
习题1-1 习题1-2 习题1-3 习题1-4 习题1-5
观测值中为什么存在观测误差? 观测误差如何计算? 观测误差如何分类?如何处理? 测量平差的任务是什么? 平差计算方法的发展分为那几个阶段?
主页
主页
主页
三、 测量平差的简史和发展