基于MATLABSimulink的电力系统仿真实验

合集下载

计算机仿真实验-基于Simulink的简单电力系统仿真

计算机仿真实验-基于Simulink的简单电力系统仿真

实验七 基于Simulink 的简单电力系统仿真实验一. 实验目的1) 熟悉Simulink 的工作环境及SimPowerSystems 功能模块库; 2) 掌握Simulink 的的powergui 模块的应用;3) 掌握发电机的工作原理及稳态电力系统的计算方法; 4)掌握开关电源的工作原理及其工作特点; 5)掌握PID 控制对系统输出特性的影响。

二.实验内容与要求单机无穷大电力系统如图7-1所示。

平衡节点电压044030 V V =∠︒ 。

负荷功率10L P kW =。

线路参数:电阻1l R =Ω;电感0.01l L H =。

发电机额定参数:额定功率100n P kW =;额定电压440 3 n V V =;额定励磁电流70 fn i A =;额定频率50n f Hz =。

发电机定子侧参数:0.26s R =Ω,1 1.14 L mH =,13.7 md L mH =,11 mq L mH =。

发电机转子侧参数:0.13f R =Ω,1 2.1 fd L mH =。

发电机阻尼绕组参数:0.0224kd R =Ω,1 1.4 kd L mH =,10.02kq R =Ω,11 1 kq L mH =。

发电机转动惯量和极对数分别为224.9 J kgm =和2p =。

发电机输出功率050 e P kW =时,系统运行达到稳态状态。

在发电机输出电磁功率分别为170 e P kW =和2100 e P kW =时,分析发电机、平衡节点电源和负载的电流、电磁功率变化曲线,以及发电机转速和功率角的变化曲线。

G 发电机节点V负荷lR l LLP图 7.1 单机无穷大系统结构图输电线路三.实验步骤1. 建立系统仿真模型同步电机模块有2个输入端子、1个输出端子和3个电气连接端子。

模块的第1个输入端子(Pm)为电机的机械功率。

当机械功率为正时,表示同步电机运行方式为发电机模式;当机械功率为负时,表示同步电机运行方式为电动机模式。

MATLAB Simulink系统建模与仿真 实验报告

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真实验报告姓名:******专业:电气工程及其自动化班级:*******************学号:*******************实验一无穷大功率电源供电系统三相短路仿真1.1 无穷大功率电源供电系统仿真模型构建运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块:(1)无穷大功率电源模块(Three-phase source)(2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load)(3)三相串联RLC支路模块(Three-Phase Series RLC Branch)(4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings))(5)三相电压电流测量模块(Three-Phase V-I Measurement)(6)三相故障设置模块(Three-Phase Fault)(7)示波器模块(Scope)(8)电力系统图形用户界面(Powergui)按电路原理图连接线路得到仿真图如下:1.2 无穷大功率电源供电系统仿真参数设置1.2.1 电源模块设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:1.2.2 变压器模块变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图:1.2.3 输电线路模块根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图:1.2.4 三相电压电流测量模块此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:1.2.5 故障设置模块勾选故障相A、B、C,设置短路电阻0.00001Ω,设置0.02s—0.2s发生短路故障,参数设置如下图:1.2.6 示波器模块为了得到仿真结果准确数值,可将示波器模块的“Data History”栏设置为下图所示:1.3 无穷大功率电源供电系统仿真结果及分析得到以上的电力系统参数后,可以首先计算出在变压器低压母线发生三相短路故障时短路电流周期分量幅值和冲击电流的大小,短路电流周期分量的幅值为Im=10.63kA,时间常数Ta=0.0211s,则短路冲击电流为Iim=17.3kA。

基于MATLABSimulink电力系统短路故障分析与仿真

基于MATLABSimulink电力系统短路故障分析与仿真

基于MATLAB/Simulink电力系统短路故障分析与仿真摘要:MATLAB有强大的运算绘图能力,给用户提供了各种领域的工具箱,而且编程语法简单易学。

论文对电力系统的短路故障做了简要介绍并对短路故障的过程进行了理论分析和MATLAB软件在电力系统中的应用,介绍了Matlab/Simulink的基本特点及利用MATLAB进行电力系统仿真分析的基本方法和步骤。

在仿真平台上,以单机—无穷大系统为建模对象,通过选择模块,参数设置,以及连线,对电力系统的多种故障进行仿真分析。

关键词:MATLAB、短路故障、仿真、电力系统Abstract:MATLAB has powerful operation ability to draw, toolkit provides users with a variety of fields, and easy to learn programming grammar. Paper to give a brief introduction of fault of the power system and the process of fault are analyzed in theory and the application of MATLAB software in power system, this paper introduces the basic characteristics of MATLAB/Simulink and MATLAB power system simulation analysis of the basic methods and steps. On the simulation platform, with single - infinity system for modeling object, by selecting module, parameter Settings, as well as the attachment, a variety of fault simulation analysis of power system.Keyword:MATLAB;Fault analysis;Simulation;Power System;引言 (3)第一章:课程设计任务书 (3)1.1设计目的: (3)1.2原始资料: (4)1.3设计内容及要求: (4)第二章:电力系统短路故障仿真分析 (5)2.1元件参数标幺值计算: (5)2.2等值电路: (10)第三章:电力系统仿真模型的构建 (10)3.1MATLAB简介: (11)3.2电力元件设计: (11)3.2.1 三相电源: (11)3.2.2 变压器元件: (13)3.2.3输电线路: (14)3.3电力系统模型的搭建: (15)第四章:模型仿真运行 (21)4.1建立仿真模型: (21)4.2仿真结果与分析: (22)第五章: 总结 (25)参考文献 (25)附录:Simulink仿真模型 (26)引言随着电力工业的发展,电力系统规划、运行和控制的复杂性亦日益增加,电力系统的生产和研究中仿真软件的应用也越来越广泛。

MATLAB-SIMULINK在电力系统工程仿真中的应用

MATLAB-SIMULINK在电力系统工程仿真中的应用

MATLAB-SIMULINK在电力系统工程仿真中的应用MATLAB/SIMULINK在电力系统工程仿真中的应用随着电力系统的规模日益庞大和复杂性的增加,为确保电力系统的安全可靠运行,电力系统工程仿真成为了工程设计和运维过程中的重要环节。

MATLAB/SIMULINK作为一种强大的仿真工具,可以有效地模拟电力系统的各种电路、设备与系统,为电力系统工程提供精确的仿真分析与设计。

电力系统工程仿真是一种通过计算机模拟的方法,用以预测和分析电力系统的运行状况和特性。

在传统的电力系统工程中,工程师们常常使用基于经验公式和简化模型的手工计算方法进行设计和评估。

然而,由于电力系统的复杂性和不确定性,采用手工计算方法不仅效率低下,而且容易出现误差。

相比之下,MATLAB/SIMULINK具有更高的仿真精度和灵活性,能够更准确地模拟电力系统的各个方面。

首先,MATLAB/SIMULINK可以用来模拟电力系统的电路和设备。

在电力系统中,包括变压器、发电机、电动机等各种电器设备都是电路连接的要素。

MATLAB/SIMULINK提供了丰富的电路模型和元件库,可以很方便地构建各种电路模型。

例如,我们可以根据电路拓扑结构和参数数据构建一个发电机的模型,通过输入不同的工作条件和控制信号,可以模拟发电机在各种负载情况下的工作状态。

其次,MATLAB/SIMULINK还可以用来模拟电力系统的控制策略。

在电力系统中,各种控制策略被用来保持电力系统的稳定运行。

例如,电力系统中常用的电压控制和频率控制都是通过调节发电机和变压器的控制信号来实现的。

在MATLAB/SIMULINK中,我们可以根据电力系统的实际控制策略,构建相应的控制模型,通过输入系统的状态量和反馈信号,并根据设计的控制逻辑进行仿真分析。

这使得工程师们可以在设计阶段对控制策略进行优化,以提高电力系统的稳定性和鲁棒性。

此外,MATLAB/SIMULINK还可以用于电力系统的故障分析和可靠性评估。

matlabsimulink电力系统建模与仿真源代码

matlabsimulink电力系统建模与仿真源代码

matlabsimulink电力系统建模与仿真源代码Matlab Simulink是一款功能强大的系统级建模和仿真工具,用于电力系统建模与仿真。

它极大地简化了系统级建模和仿真的流程,使得系统级建模和仿真不再是一项困难和耗时的工作。

这篇文章将介绍如何使用Matlab Simulink来进行电力系统建模与仿真,并给出相应的源代码。

1. 建立电力系统首先,我们需要建立电力系统。

可以通过添加各种组件来建立电力系统,比如发电机、变压器、传输线等。

在Matlab Simulink中,这些组件可以通过搜索库获得。

2. 设置模型参数在建立电力系统之后,我们需要设置模型的参数。

这些参数包括电压、电流、频率、相位等等。

根据不同的模型和实验条件,模型参数可能有所不同。

3. 添加输入和输出接下来,我们需要添加输入和输出。

这些输入和输出可能是电流、电压、功率等等。

在添加输入和输出之后,我们需要定义它们的格式,并将它们与相应的模型参数相连。

4. 编写MATLAB函数在建立电力系统之后,我们需要编写MATLAB函数。

这些函数可能包括方程、差分方程或其他类型的方程。

这些函数可以用于计算电力系统的各种参数,比如电阻、电感、电容等等。

5. 编写电力系统仿真源代码最后,我们需要编写电力系统仿真源代码。

这些代码将根据设置的模型参数和输入输出来模拟电力系统的各种行为。

在编写电力系统仿真源代码之前,我们需要先了解系统的行为和响应。

以下是一个简单的Matlab Simulink电力系统建模与仿真源代码实例:```% Example: Simulate a simple electrical systemclc;time = 0:0.01:10; % Time vectorV1 = 2*sin(2*pi*60*time); % AC voltage waveformR = 10; % ResistanceL = 1; % InductanceC = 0.01; % CapacitanceI = zeros(size(time)); % CurrentQ = zeros(size(time)); % Capacitor voltage% Simulate systemfor i=2:length(time)dt = time(i) - time(i-1);V2 = V1(i) - I(i-1)*R;I(i) = I(i-1) - dt*(R*I(i-1)/L + Q(i-1)/L - V2/L);Q(i) = Q(i-1) + dt*(I(i-1) - Q(i-1)/(R*C));end% Plot Resultsfigure;subplot(2,1,1);plot(time,V1,'r',time,I,'b');xlabel('Time (s)'); ylabel('V (V), I (A)');title('Voltage and Current vs. Time');legend('Voltage','Current');subplot(2,1,2);plot(time,Q,'g');xlabel('Time(s)'); ylabel('Q(C,V) (Coulombs, Volts)');title('Charge and Voltage vs. Time');legend('Charge');```以上是一个简单的电力系统建模和仿真源代码实例,包括电压、电流、电感、电容等基本元素。

哈工大 计算机仿真技术实验报告 实验六 基于Simulink的简单电力系统仿真

哈工大 计算机仿真技术实验报告 实验六 基于Simulink的简单电力系统仿真

实验六 基于Simulink 的简单电力系统仿真(一:实验目的(1)掌握Simulink 的工作环境及SimPowerSystems 功能模块库的应用; (2)掌握Simulink 的电力电子电路建模和仿真方法; (3)掌握Simulink 下数学模型的仿真方法;(4)掌握升压、降压斩波电路(Buck Chopper )的工作原理及其工作特点; (5)掌握PID 控制对系统输出特性的影响。

二、实验原理通过降压斩波电路,电压发生降低,再通过桥式整流器将输入信号变为直流信号,再经过BWM 模块的作用,使输出波形变为三角波信号。

三:实验内容Buck 降压型电路原理图如图6-1所示。

图中,功率管VT 为MOSFET 开关调整组件,其导通与关断由控制脉冲决定;二极管VD 为续流二极管,开关管截止时可保持输出电流连续。

ref V 为输出电压给定参考量;L R 为负载电阻。

系统基本参数为:电源电压)314sin(100)(t t e =;变压器BT 为理想变压器,其变比为1:2=n ;PWM 频率为Hz f PWM 2000=;误差放大器放大倍数为1000=V K ;电阻Ω01.0C R ;整流滤波电容F C μ1000=,PWM 滤波电容F C o μ10=、电感H L 05.0=;负载电阻Ω=10L R 。

系统基本参数见表6.1。

分析Buck 变换器的工作特性。

表6.1 系统基本参数C R(Ω)C (F μ)o C(F μ)L(H)L R(Ω)V KnPWMf(Hz )0.01 100010 0.05 10 10002:12000K误差放大器比较器refV 锯齿波+-inu Di ini si 1:2LR oC LC R C)(t e 图6.1 Buck 变换器电路图o u VTBTVD+-ou Li +-L u四:实验仿真结果及分析五、实验总结利用simulink进行电子电路系统的仿真,形象直观。

一般步骤为:1、做出电路图,明确问题中所给出的各物理量及其相应的初值问题。

电力电子课程设计报告matlab仿真实验

电力电子课程设计报告matlab仿真实验

一.课程设计目的(1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。

通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理;(2)掌握焊接的技能,对照原理图,了解工作原理;(3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力;二.课程设计容第一部分:simulink电力电子仿真/版本matlab7.0(1)DC-DC电路仿真(升降压(Buck-Boost)变换器)仿真电路参数:直流电压20V、开关管为MOSFET(阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(阻为0.001欧)、占空比40%。

仿真时间0.3s,仿真算法为ode23tb。

图1-1占空比为40%的,降压后为12.12V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-2占空比为60%的,升压后为28.25V。

触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-3•图1-4升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。

它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源工作原理:①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。

②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L经D向C和RL反向放电,使输出电压的极性与输入电压在ton期间电感电流的增加量等于toff期间的减少量,得:由的关系,求出输出电压的平均值为:上式中,D为占空比,负号表示输出与输入电压反相;当D=0.5时,U0=Ud;当0.5<D<1时,U0>Ud,为升压变换;当0≤D<0.5时,U0<Ud,为降压变换。

基于matlab simulink的直流微电网的建模和仿真

基于matlab simulink的直流微电网的建模和仿真

直流微电网的建模和仿真目录1 引言 (3)1.1 目的 (3)1.2 文档格式 (3)1.3 术语 (3)1.4 参考文献 (3)2 系统概述 (4)3直流微网的能量管理方法 (4)4系统建模 (5)4.1PV电池 (5)4.2 PV电池DCDC变换器建模 (8)4.3蓄电池双向DCDC1变换器建模 (9)4.4逆变器建模 (11)4.5负载建模 (12)4.6蓄电池建模 (13)5仿真验证 (13)6结论 (18)1 引言1.1 目的该文档针对独立智能供电及生活保障系统的需求,给出了提供智能供电的直流微电网系统框架,并根据这一框架搭建理论模型和仿真模型。

验证这一直流微电网系统的功能可行性。

1.2 文档格式本文档按以下要求和约定进行书写:(1)页面的左边距为2.5cm,右边距为2.0cm,装订线靠左,行距为最小值20磅。

(2)标题最多分三级,分别为黑体小三、黑体四号、黑体小四,标题均加粗。

(3)正文字体为宋体小四号,无特殊情况下,字体颜色均采用黑色。

(4)出现序号的段落不采用自动编号功能而采用人工编号,各级别的序号依次为(1)、1)、a)等,特殊情况另作规定。

1.3 术语1.4 参考文献2 系统概述图1 直流微网的系统框图图1为直流微网的系统框图,仿真系统包括以下几个部分:1)PV组件的特性模型2)蓄电池的模型3)PV组件后的DCDC拓扑模型和控制模型4)蓄电池后双向DCDC1的拓扑模型和控制模型5)逆变器包括:单相逆变器和三相逆变器的拓扑模型和控制模型6)交流负载模型7)直流负载模型8)超级电容模型(暂缺)9)超级电容后双向DCDC2的拓扑模型和控制模型(暂缺)10)柴油机模型(暂缺)11)智能控制器2与光伏智能控制器的协调控制模型(暂缺)3直流微网的能量管理方法能量管理思想:管理微网中各分布电源的能量流动,使得微网工作最优状态。

以下为结合我们项目的一个能量管理原则,有了这个管理原则,就可以明确各个分布电源的控制方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于MATLAB/Simulink的电力系统故障分析
10kv系统三相短路分析
三相短路(以中性点不接地系统模型为类)模块搭建:
三相短路各元件参数设置如下:
三相短路仿真波形如下:
如图1——a、b、c三相短路电流仿真波形图
分析:正常运行时,a、b、c三相大小相等,相位相差120度。

发生三相短路时,a、b、c三相电压全
如图2——线路1的零序电流
分析:在没有故障时,没有零序电流,突然出现故障时,零
序电流为故障电流的3倍,为3I
0。

如图3——线路1的零序电压
分析:在没有故障时,没有零序电压,突然出现故障时,零序电流为故障电压的3倍,为3U0。

如图4——线路1的故障相电压
如图5——线路3的零序电流
如图6——线路3的短路电流
如图7——三相对称电源电压
如图8——线路2的零序电流
分析:在没有故障时,没有零序电流,突然出现故障时,零序电流为故障电流的3倍,为3I0。

如图9——三相对称电源电流
如图10——三相对称电源零序电压
如图11——一相短路电流
10kv系统两相短路分析
仿真模块搭建同三相短路,只有三相故障模块参数改变如下:
注:a、b两相短路
分析:两相短路原理同三相短路,两相短路复合序网图是无零序并联网,短路两相电压相等,电流互为相反数,非故障相电流为零。

零点漂移轨迹的验证
一理论分析
对于以下简单的中性点不接地系统,当其发生单相接地故障时,各量之间满足以下关系:
其中,分别表示A、 B、 C三相对O’点的导纳

用复数形式可表示为
其相量关系如下图:

可得
所以,可以推出中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.
二matalab仿真
模型搭建类似单相短路
电源参数设置
消弧线圈参数设置
其它参数设置类似单相接地短路短路,但是接下来不知该怎么把它的参数通过图形描述出来,以此证明中性点不接地系统发生单相接地故障后,不同接地电阻下,对应的零点漂移轨迹为接地相右半圆.如下图:
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档