初中数学--不等式与不等式组练习题
(必考题)初中七年级数学下册第九单元《不等式与不等式组》经典练习题(含答案解析)

一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤2.不等式组1322<4x x ->⎧⎨-⎩的解集是( )A .4x >B .1x >-C .14x -<<D .1x <- 3.若a b >,则下列结论不一定成立的是( )A .a c b c ->-B .22ac ab >C .c a c b -<-D .a c b c +>+4.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤5.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .26.己知关于x ,y 的二元一次方程ax b y +=,下表列出了当x 分别取值时对应的y 值.则关于x 的不等式0ax b --<的解集为( )x… -2 -1 0 1 2 3 … y …321-1-2…A .x <1B .x >1C .x <0D .x >0 7.若a +b >0,且b <0,则a 、b 、-a 、-b 的大小关系为( ) A .-a <-b <b <aB .-a <b <a <-bC .-a <b <-b <aD .b <-a <-b <a8.下列变形中,不正确的是( )A .若a>b ,则a+3>b+3B .若a>b ,则13a>13b C .若a<b ,则-a<-bD .若a<b ,则-2a>-2b.9.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( ) A .a >1B .a≤2C .1<a≤2D .1≤a≤210.若a b <,则下列不等式中不正确的是( ) A .11+<+a b B .a b ->-C .22a b --<--D .44a b < 11.不等式325132x x ++≤-的解集表示在数轴上是( ) A .B .C .D .12.关于x 的不等式620x x a-≤⎧⎨≤⎩有解,则a 的取值范围是( )A .a <3B .a≤3C .a≥3D .a >3 13.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤214.若线段4、4、m 能构成三角形,且使关于x 的不等式组23834x m x m >-⎧⎨-+≥-⎩有解的所有整数m 的和为( ) A .6 B .1C .2D .315.不等式1322x x -+>的解在数轴上表示正确的是( ) A . B .C .D .二、填空题16.先阅读短文,回答后面所给出的问题:对于三个数a 、b 、c 中,我们给出符号来表示其中最大(小)的数,规定{}min ,,a b c 表示这三个数中最小的数,{}max ,,a b c 表示这三个数中最大的数.例如:{}min 1,2,31-=-,{}max 1,2,33-=;{}(1)min 1,2,1(1)a a a a ≤-⎧-=⎨->-⎩,若{}{}min 4,4,4max 2,1,2x x x x +-=+,则x 的值为_______.17.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.18.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.19.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________. 20.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求a 的取值范围是_______.21.不等式12x -<的正整数解是_______________.22.若关于x 的不等式组13420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.23.已知关于x 的不等式组0,10x a x +>⎧⎨->⎩的整数解共有3个,则a 的取值范围是___________.24.若干名学生住宿舍,每间住 4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x 间宿舍,则可列不等式组为____ 25.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.26.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.三、解答题27.我国古代民间把正月正、二月二、三月三、五月五、六月六、七月七、九月九这“七重”列为吉庆日;“七”在生活中表现为时间的阶段性,比如一周有“七天”……在数的学习过程中,有一类自然数具有的特性也和“七”有关.定义:对于四位自然数n ,若其千位数字与个位数字之和等于7,百位数字与十位数字之和也等于7,则称这个四位自然数n 为“七巧数”.例如:3254是“七巧数”,因为347+=,257+=,所以3254是“七巧数”; 1456不是“七巧数”,因为167+=,但457+≠,所以1456不是“七巧数”.(1)若一个“七巧数”的千位数字为a ,则其个位数字可表示为______(用含a 的代数式表示);(2)最大的“七巧数”是______,最小的“七巧数”是______;(3)若m 是一个“七巧数”,且m 的千位数字加上十位数字的和,是百位数字减去个位数字的差的3倍,请求出满足条件的所有“七巧数”m .28.解下列不等式组: (1)3(1)51124x x x x -<+⎧⎨-≥-⎩(2)3(2)421152x x x x --≥⎧⎪-+⎨>⎪⎩29.解不等式组2536x x +<⎧⎨-<⎩,并把解集在数轴上表示出来.30.若关于x 的方程23244x m m x -=-+的解不小于7183m --,求m 的取值范围.。
七年级数学不等式与不等式(组)练习题

七年级数学《不等式与不等式(组)》练习题班级_______姓名________成绩_________A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( ) 76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个 B、6个 C、7个 D、8个2、下列各式中,是一元一次不等式的是( )A、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C、b a 3131D、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A、2-- e d B、2-- e d C、e d -≥2- D、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( ) A 、x >2- B 、2-<x <2 C 、x <2 D 、 空集6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D 、x <21 7、不等式2+x <6的正整数解有( ) A 、1个 B 、2个 C 、3 个 D 、4个8、下图所表示的不等式组的解集为( )-2A 、x 3B 、32 x -C 、 2- xD 、32 x -二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a 1 b1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x -③ ⎩⎨⎧-21 x x 13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
初中数学不等式与不等式组练习题目

不等式的解与解集(上午班)一、选填题1.下列说法错误的是()A、1不是x≥2的解B、0是x<1的一个解C、不等式x+3>3的解是x>0D、x=6是x-7<0的解集2、不等式x-2>3的解集是()A、x>2B、x>3C、x>5D、x<53、若不等式-3x+n>0的解集是x<2,则不等式-3x+n<0的解集是________.4、若一个角的余角不大于它的补角的1/3,则这个角的范围是()5、某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=售价-进价/进价*100%)不底于5%,则至少可打()A.6折B.7折C.8折D.9折6、在下列不等式中,与3-2x/3≤-1的解集相同的是()A.2x+6≥0B.2x-6≤0C.2x-6≥0D.2x+6≤0二、解答题1.利用不等式的性质解下列不等式,并把解集在数轴上表示出来.(1)4x+3<3x (2)2x-4≥0 (3)-x+2>52.已知不等式5x-2<6x+1的最小正整数解是方程3x-ax=6的解,求a的值.3.已知两个正整数的和与积相等,求这两个正整数.4、在满足x+2y≤3,x≥0,y≥0的条件下,求2x+y能达到的最大值5、根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B>0,则A>B;若A-B=0,则A=B;若A-B<0,则A<B,这种比较大小的方法称为“作差比较法”,试比较2x2-2x与x2-2x的大小.5、某校师生要去外地参加夏令营,车站提出2种车票票价,第一种是教师按原价付款,学生按原价的78%付款:第2种方案是师生按原价的80%付款,该校有5名教师,试根据参加夏令营的学生人数,选购票付款的最佳方案8.若不等式2X—M小于等于0只有3个正整数解,求正整数M的取值范围9.已知某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元,某中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由。
【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。
七年级数学下册不等式与不等式组练习题

七年级数学下册不等式与不等式组练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____2.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________. 3.已知3a ≤,则负整数=a _____.4.已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____. 5.已知函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,则m =_____. 6.若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.二、单选题7.在二元一次方程12x +y =8中,当y <0时,x 的取值范围是( ).A .23x <B .23x >-C .23x >D .23x <- 8.已知x a <的解中最大的整数解为3,则a 的取值范围为( )A .34x <<B .34x <≤C .34x ≤<D .34x ≤≤9.下列结论:①一个数和它的倒数相等,则这个数是±1和0;①若﹣1<m <0,则21m m m <<;①若a +b <0,且0b a>,则33a b a b +=--;①若m 是有理数,则|m |+m 是非负数;①若c <0<a <b ,则(a ﹣b )(b ﹣c )(c ﹣a )>0;其中正确的有( )A .1个B .2个C .3个D .4个10.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 12.已知方程3a 1a a 44a --=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( ) A .23b <≤ B .34b <≤ C .23b ≤< D .34b ≤<三、解答题13.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴.(1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗.14.解方程:-314x x +=.15.比较大小:和4;和12.参考答案:1.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2,①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 2.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.3.1-,2-,3-.【分析】直接根据绝对值的概念可得a 的取值范围,然后列举出负整数即可.【详解】①3a ≤,①33a -≤≤.①a 为负整数,①a 为1-,2-,3-.故答案为:1-,2-,3-.【点睛】此题主要考查绝对值的概念及一元一次不等式组的整数解,正确理解绝对值的概念是解题关键. 4.1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①②①-①,得33x y a -=-①0x y ->①330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键. 5.-3【分析】根据解析式是关于x 的一次函数,只经过二、四象限可知函数为正比例函数,k <0,b =0,列方程与不等式求解即可.【详解】解:函数y =(2m ﹣4)x +m 2﹣9是关于x 的一次函数,①函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,①224090m m -⎧⎨-=⎩<, 解得23m m ⎧⎨=±⎩<, ①m =3>2舍去,m =-3<2,满足条件,①m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.6.1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=-- 去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则. 7.C【解析】略8.B【分析】根据x a <的解中最大的整数解为3,则3x =是不等式的解,则3a >,同时4x =不是不等式的解,则4a ≤,从而求解.【详解】解:①x a <的解中最大的整数解为3,①3x =是不等式的解,则3a >,又①同时4x =不是不等式的解,则4a ≤,①34a <≤,故选B .【点睛】本题主要考查了不等式的整数解,解题的关键在于能够熟练掌握相关知识进行求解.9.C【分析】根据绝对值的性质,倒数的性质,不等式的性质,有理数的运算法则依次判断即可.【详解】①0没有倒数,①①错误.①﹣1<m <0, ①1m<0,2m >0, ①①错误.①a +b <0,且0b a>,①a <0,b <0,①a +3b <0,①|a +3b |=﹣a ﹣3b .①①正确.①|m |≥﹣m ,①|m |+m ≥0,①①正确.①c <0<a <b ,①a ﹣b <0,b ﹣c >0,c ﹣a <0,①(a ﹣b )(b ﹣c )(c ﹣a )>0正确,①①正确.故选:C .【点睛】本题考查绝对值,倒数,不等式的性质,有理数的运算法则,正确掌握相关法则是求解本题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根.12.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键. 13.(1) −2<a<4;(2) 小于3【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.【详解】解:(1)根据题意得:|a −1|<3,得出−2<a <4,(2)由(1)得:到点B 的距离小于3的数在−2和4之间,①在−3,0,4三个数中,只有0所对应的点到B 点的距离小于3.【点睛】本题考查了数轴上两点之间的距离为两个数差的绝对值,以及解不等式,难度适中.14.x =32 或x =﹣54【分析】利用绝对值的性质,将方程转化为314xx +﹣=或314x x +﹣=﹣,再分情况讨论: 当3x +1>0时可得到|3x +1|=3x +1;当3x +1<0时可得到|3x +1|=-3x -1,分别求出对应的方程的解即可. 【详解】解:原方程式化为-314x x +=或31-4xx +﹣=, 当3x +1>0时,即x >﹣13, 由-314x x +=得-3-14x x =,①x =﹣52与x >﹣13 不相符,故舍去; 由-31-4x x +=得314x x﹣﹣=﹣,①x=32,符合题意;当3x+1<0时,即x<﹣13,由-314x x+=得314x x++=,①x=34与x<﹣13不相符,故舍去;由-31-4x x+=得314x x++=﹣,①x=﹣54,符合题意;故原方程的解是x=32或x=﹣54.【点睛】本题主要考查的是含有绝对值符号的一元一次方程的解法.分类讨论是解题的关键.15.412<【分析】(1)根据无理数的估算即可得;(22,由此即可得.(1)解:1216<,4.(2)解:34<,<2,121<-11<,12<.【点睛】本题考查了实数的大小比较、无理数的估算,熟练掌握无理数的估算是解题关键.。
中考数学不等式与不等式祖专题训练50题含参考答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.若不等式(1)1a x a 的解集是1x <,则a 必满足( ) A .1a <-B .1a >-C .1a <D .1a >2.判断下列各式中不等式有( )个(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -. A .2B .3C .4D .63.x 与3的和的一半是负数,用不等式表示为( ) A .1302x +> B .1302x +<C .()1302x +> D .()1302x +< 4.若关于x 的方程311x ax +=-的解是正数,则a 的取值范围是( ) A .a >﹣1 B .a >﹣1且a ≠0 C .a <﹣1 D .a <﹣1且a ≠﹣35.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A .41x x >⎧⎨≤-⎩B .41x x ≤⎧⎨>-⎩C .41x x >⎧⎨>-⎩D .41x x <⎧⎨≥-⎩6x 的取值范围是( ) A .4x ≥B .>4xC .4x ≤D .4x <7.若a >b ,则下列不等式不成立的是( ) A .a +m >b +m B .a (m 2+1)>b (m 2+1) C .22a b -<-D .a 2>b 28.如果不等式组7x x m <⎧⎨>⎩无解,那么m 的取值范围是( )A .7m >B .7m ≥C .7m <D .7m ≤9.如果a b >,那么下列式子一定正确的是( ) A .22a b >B .55a b -<-C .510ba > D .22ab ->+10.若a b > ,则下列不等式变形错误的是A .11a b +>+B .22a b > C .D .11.若m <n ,则下列各式中正确的是() A .m -2>n -2B .2m >2nC .-2m >-2nD .22m n > 12.下列说法不正确的是( ) A .2x =-是不等式21x ->的一个解 B .2x =-是不等式21x ->的一个解集 C .728x x ->+与15x <的解集不相同D .3x <-与721x ->的解集相同13.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品( ) A .9件B .10件C .11件D .12件14.若整数a 使关于x 的分式方程2311a x x+=--的解为正数,且使关于y 的不等式组21324()0y yy a +⎧->⎪⎨⎪-⎩的解集为2y <-,则符合条件的所有整数a 之和为( ) A .3 B .5 C .7 D .915.对于题目:“已知点A (﹣6,4),B (3,4),若抛物线2121y x x a=-+与线段AB 恰有一个公共点,求a 的取值范围”,嘉嘉的结果是4a ,淇淇的结果是1a >,则( )A .嘉嘉的结果正确B .淇淇的结果正确C .嘉嘉、淇淇的结果合在一起才正确D .嘉嘉、淇淇的结果合在一起也不正确16.适合|2a+5|+|2a -3|=8的整数a 的值有( ) A .4个B .5个C .7个D .9个17.若()11a x a +>+的解集是1x <,则a 必须满足是( ) A .a<0B .1a >-C .1a <-D .1a ≤18.已知,a b c 、、是实数,且a b >,则以下四个式子中,正确的是( ) A .ac bc >B .22a b -->C .11a b>D .11a b -+-+>19.不等式组30312x x +≥⎧⎨-≤⎩的解集是( )A .x ≤﹣1B .x ≥3C .﹣3≤x ≤1D .﹣3≤x <120.关于x ,y 的方程组21431x y p x y p +=+⎧⎨+=-⎩的解满足x y ≤,则p 的范围是( )A .p ≤52B .p ≥52C .p ≥-52D .p ≤-52二、填空题21.用不等式表示:y 的3倍与1的和大于8;_____________.22.语句“x 的18与y 的和不超过5”可以表示为 _____.23.如果关于x ,y 的二元一次方程组22522x y m x y m +=+⎧⎨+=-+⎩的解满足1x y +>,那么m 的取值范围是_______.24.已知关于x 、y 的方程组3522323x y m x y m +=+⎧⎨+=-⎩的解满足不等式23x y +≥,则m 的取值范围为___.25.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.26.解不等式组()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩,它的解集为___________________.27.关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.28.如图所示的不等式的解集是________.29.不等式组1123(7)x x x ≥⎧⎨--⎩>的整数解的和为_____.30.已知式子413a -的值小于2,则a 的最大整数值是_______. 31.不等式组2352x x -≥⎧⎨->-⎩的解集是__________.32.不等式组1012x x x ->⎧⎪⎨+≥⎪⎩的解集是________.33.若关于x 的分式方程11222k x x--=--的解是正数,则k 的取值范围是______. 34.若3x my n =⎧⎨=+⎩和121x m y n =+⎧⎨=-⎩都是方程y =kx +k +1的解,且k <7,则n 的取值范围是______.35.不等式组253(3)121035x x x +<+⎧⎪-⎨+≥⎪⎩的整数解有________个.36.定义运算[x ]表示求不超过x 的最大整数.如[0.5]=0,[1.3]=1,[﹣1.2]=﹣2,[﹣2.5]=﹣3.若[﹣2.5]•[2x ﹣1]=﹣6,则x 的取值范围是 _____. 37.不等式组1221113x x x⎧-≥⎪⎨⎪--⎩>的解集是________.38.已知||4(5)21k k x y ---=是关于x ,y 的二元一次方程,则1k +________(填“是”或“不是”)不等式221x x +<-的解.39.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3 个整数解,那么a 的取值范围是_____.40.据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.三、解答题41.解不等式组:()2132324x x x x +<-⎧⎨--≤⎩.42.某校购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且购买乙种树苗的棵数比甲种树苗棵数的2倍多30棵.(1)若购买两种树苗的总费用不超过3400元,最多可以购买甲种树苗多少棵?(2)为保证绿化效果,学校决定再购买甲、乙两种树苗共24棵(两种树苗都要买),总费用不超过500元,问有哪几种可能的购买方案?43.下面是小明同学解不等式的过程,请认真阅读并完成相应任务. 213232x x -->-1. 解:2(2x -1)>3(3x -2)-6……第一步 4x -2>9x -6-6……第二步 4x -9x >-6-6+2……第三步 -5x >-10……第四步 x >2……第五步(1)任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的;①第______步开始出现错误,这一步错误的原因是______. (2)任务二:请直接写出该不等式的正确解集.44.解不等式组: 215238x x x x +-⎧<⎪⎨⎪≥-⎩并将解集在如图所示的数轴上表示出来.45.解不等式组: ()12221x x x ->⎧⎪⎨+≥-⎪⎩①②46.解不等式或不等式组,并在数轴上表示解集. (1)5341x x +>-; (2)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩.47.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同. (1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.48.某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?49.萧红中学校去年在商场购买甲、乙两种不同品牌的篮球则买甲种篮球花费1500元,购买乙种篮球花费4000元,购买乙种篮球的数量是购买甲种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花50元(1)求每个甲种篮球和每个乙种篮球的单价各是多少元?(2)为响应国家“五育并举”的号召.今年学校决定再次购买甲、乙两种篮球共60个.恰逢商场这两种篮球的售价进行调整.两种篮球售价比去年购买时提高了20%、乙种篮球售价比去年购买时降低了20%.如果今年购买甲、乙两种篮球的总费用不超过10350元,那么学校今年至少可购买多少个乙种篮球?50.一次函数y=-3x+b的图像经过点(-1,2).(1)求这个一次函数表达式;(2)若点A(2m,y1),B(m-1,y2)在该一次函数的图像上,且y1<y2,求实数m的取值范围.参考答案:1.A【分析】由不等式(1)1a x a 的解集是1x <,不等式的方向发生了改变,从而可得:1a +<0,于是可得答案.【详解】解:不等式(1)1a x a 的解集是1x <,1a ∴+<0,a ∴<1-,故选:A .【点睛】本题考查的是不等式的基本性质,不等式的解集,掌握“不等式的两边都除以同一个负数,不等号的方向要改变.”是解题的关键 2.C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -中(1)1>0a +;(3)89<;(4)31x x -≤;(6)>1x y -是不等式,共4个,故选C .【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠. 3.D【分析】理解:和的一半,应先和,再一半;负数,即小于0. 【详解】根据题意得:12(x +3)<0.故选D .【点睛】本题考查了列不等式.解题的关键是找准关键字,把文字语言转换为数学语言. 4.D【分析】先求出方程的解,根据解是正数列出不等式,即可解答 【详解】在方程两边同乘x ﹣1得:3x+a=x ﹣1, 解得:x=-1-a2①方程的解是正数,①102112aa --⎧>⎪⎪⎨--⎪≠⎪⎩解得a <﹣1且a≠﹣3. 故选D .【点睛】本题考查了分式方程的解、一元一次不等式,解决本题的关键是根据方程的解是正数得出不等式 5.D【分析】根据不等式的解集在数轴上的表示方法即可得出. 【详解】解:由数轴可知,4x <且1x ≥-,①这个不等式组可能是41x x <⎧⎨≥-⎩故答案为:D .【点睛】本题考查了不等式组的解集在数轴上的表示方法,解题的关键是熟知数轴表示不等式组解集的方法. 6.C【分析】根据二次根式的非负性质列出不等式来求解. 【详解】解:①①40x -≥, ①4x ≤. 故选:C .【点睛】本题主要考查了二次根式有意义的条件,理解二次根式的非负性质是解答关键. 7.D【详解】A. ①a >b , ①a+m >b+m ,故正确; B. ①a >b ,① a (m 2+1)>b (m 2+1),故正确; C. ①a >b ,①-22ab <-,故正确;D. ①a=1,b=-2时,满足a >b ,但 a 2<b 2,故不正确; 故选D .8.B【分析】根据不等式组无解,判断m 与7的大小关系.【详解】解:①不等式组7x x m <⎧⎨>⎩无解,①m ≥7, 故选:B .【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 9.B【分析】根据不等式的性质逐个判断即可. 【详解】解:A .不妨设a =-1,b =-2,则a 2<b 2,本选项不一定成立,故本选项不符合题意; B .①a >b ,①-5a <-5b ,故本选项符合题意; C .不妨设a =-5,b =-10, 则510ab=,故本选项不符合题意; D .不妨设a =1,b =2,则a -2<b +2,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 10.D【详解】试题分析:根据不等式的基本性质依次分析各选项即可作出判断. A .11a b +>+,B .22a b>,C .,均正确,不符合题意;D .,故错误,本选项符合题意.考点:不等式的基本性质点评:本题属于基础应用题,只需学生熟练掌握不等式的基本性质,即可完成. 11.C【详解】若m <n ,不等两边都乘以—2,不等号方向改变得, -2m >-2n,①答案是C.-2m >-2n.故答案为 C.点睛:本题考查不等式的性质,不等式两边同加或同减同一个数,不等号方向不变;不等式两边同乘同一个正数,不等号方向不变;不等式两边同乘同一个负数,不等号方向改变.12.B【分析】利用不等式解与解集的定义判断即可.【详解】解:A、x=-2是不等式-2x>1的一个解,说法正确,不符合题意;B、x=-2是不等式-2x>1的一个解,原说法错误,符合题意;C、x-7>2x+8的解集为x<-15与x<15的解集不相同,说法正确,不符合题意;D、x<-3与-7x>21的解集相同,说法正确,不符合题意,故选:B.【点睛】本题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.13.C【分析】购买5件需要15元,30元超过15元,则购买件数超过5件,设可以购买x件这样的商品,根据:5件按原价付款数+超过5件的总钱数≤30,列出不等式求解即可得.【详解】设可以购买x(x为整数)件这样的商品.3×5+(x-5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选C.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.14.B【分析】解分式方程,检验根得出a的范围;根据分式方程的解为正数,列出不等式求得a的范围;解不等式组,根据解集为y<-2,的出a的范围;根据a为整数,得出a的值,最后求和即可.【详解】解:分式方程的两边都乘以(x-1)得:2-a=3(x-1),解得53ax-=,①x-1≠0,①51 3a-≠,①a ≠2,①方程的解为正数, ①503a ->, ①a<5且a ≠2;21?324()0?y y y a +⎧->⎪⎨⎪-≤⎩①②, 解不等式①得:y<-2,解不等式①得:y ≤a ,①不等式组的解集为y<-2,①a ≥-2.①-2≤a<5且a ≠2①整数a 的和为(-2)+(-1)+0+1+3+4=5;故选:B .【点睛】本题考查了分式方程的解,一元一次不等式组的解集,考核学生的计算能力,注意分式方程一定要检验.15.D【分析】分两种情况进行分析讨论:a >0与a <0,根据抛物线的顶点位置和开口方向,结合题意,列出不等式求解即可.【详解】解:当a >0时,1-a <1,①抛物线的对称轴在y 轴右边,顶点在y =4的下方,若抛物线与线段AB 恰有一个公共点,则()()22162614132314a a⎧--⨯-+≥⎪⎪⎨⎪⨯-⨯+<⎪⎩, 解得,a >1;当a <0时,1-a >1,若1<1-a <4,即-3<a <0时,抛物线开口向下,顶点在直线y =4的下方,则抛物线与线段AB 无交点;若1-a =4,即a =-3时,抛物线的顶点在线段AB 上,此时抛物线与线段AB 只有一个公共点;若1-a >4,即a <-3时,抛物线的对称轴在直线x =-3的左边,顶点在直线y =4的上方, 若抛物线与线段AB 恰有一个公共点,则()()2216261132314a a⎧--⨯-+>⎪⎪⎨⎪⨯-⨯+≤⎪⎩, 解得,a <一4,综上,a <-4或a =-3或a >1.故嘉嘉、淇淇的结果合在一起也不正确,故选:D .【点睛】题目主要考查二次函数的基本性质及解不等式组,理解题意,根据题意列出不等式组是解题关键.16.A【详解】①|2a +5|+|2a -3|=8,①250230a a +>⎧⎨-<⎩ , ①5322a -<<, ①整数a 的值有:-2,-1,0,1共4个.故选A.点睛:本题考查了绝对值的化简和一元一次不等式组的解法.根据绝对值的运算法则:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,可得250230a a +>⎧⎨-<⎩,解不等式组求出a 的整数解.17.C【分析】由()1a b x a +>+的解集是1x <,可得0a b +<,再利用不等式的解集可得11a a b+=+,再利用两数相除,同号得正,可得10a +<,从而可得答案. 【详解】解: ()1a b x a +>+的解集是1x <,∴ 0a b +<,∴ 不等式的解集为:x <1,a a b++∴11 aa b+=+,①10a+<,①a<1,-故选:.C【点睛】本题考查的是利用不等式的基本性质解不等式,以及利用不等式的解集确定字母系数的范围,掌握不等式的基本性质是解题的关键.18.D【分析】分别利用不等式的基本性质判断得出即可.【详解】A、由a>b,当c<0时,得ac<bc,原变形错误,故这个选项不符合题意;B、由a>b,得-2a<-2b,原变形错误,故这个选项不符合题意;C、由a>b,得11a b>或11a b<,原变形错误,故这个选项不符合题意;D、由a>b,得-1+a>-1+b,原变形正确,故这个选项符合题意;故选:D.【点睛】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.19.C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:30 312 xx+≥⎧⎨-≤⎩①②解不等式①,得:x≥﹣3,解不等式②,得:x≤1,则不等式组的解集为:﹣3≤x≤1.故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.D【分析】根据x y≤,列出不等式,即可求出p的取值范围.【详解】方程组21 431 x y px y p+=+⎧⎨+=-⎩①②①×2得:4x+2y=2p+2①,①-①得:-y=p+3,解得:y=-p-3,把y=-p-3代入①得:x=p+2,①方程组得解为:23x p y p =+⎧⎨=--⎩; ①方程组的解满足条件x y ≤,①p+2≤-p-3解得:p≤52- 故选:D .【点睛】本题考查了解一元一次不等式,以及解二元一次方程组,弄清题意是解题的关键.21.318y +>.【分析】关系式为:y 的3倍18+>,把相关数值代入即可.【详解】解:根据题意,可列不等式:318y +>,故答案为:318y +>.【点睛】考查列一元一次不等式,根据关键词得到相应的关系式是解决本题的关键.22.18x +y ≤5 【分析】x 的18即x 乘18,与y 的和不超过5,就是小于或等于5,据此解答即可. 【详解】解:语句“x 的18与y 的和不超过5”可以表示为18x +y ≤5. 故答案为:18x +y ≤5. 【点睛】本题主要考查了不等式的意义,关键是明白不超过5,就是小于或等于5. 23.4m >-##-4<m【分析】直接把两个方程相加,求出,根据1x y +>得出关于m 的不等式,解之即可.【详解】解:22522x y m x y m +=+⎧⎨+=-+⎩, 直接把两个方程相加,得337x y m +=+,①73m x y ++=, ①1x y +>, ①713m +>, ①4m >-.故答案为:4m >-.【点睛】本题考查了解二元一次方程组、一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.2m ≤【分析】先利用加减消元法解二元一次方程组,求得用m 表示的x 、y ,根据方程组的解满足不等式x +2y ≥3可得关于m 的不等式,解不等式即可.【详解】解:3522323x y m x y m +=+⎧⎨+=-⎩①②, ①×2-①×3,得:134y m =-,将134y m =-代入①,得:721x m =-,①方程组的解为721134x m y m =-⎧⎨=-⎩, ①方程组的解满足不等式x +2y ≥3,①()72121343m m -+-≥,解得:2m ≤,故答案为:2m ≤.【点睛】本题主要考查了解二元一次方程组和一元一次不等式,熟练掌握解二元一次方程组的基本方法和解不等式的基本步骤是解题的关键.25.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.26.3<x≤4【分析】先分别解出各不等式的解集,再找到其公共解集即可求解. 【详解】解()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩①② 解不等式①得x >3;解不等式①得x≤4故不等式组的解集为3<x≤4故答案为:3<x≤4.【点睛】此题主要考查不等式组的求解,解题的关键是熟知不等式的求解方法. 27.m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:①正比例函数()2y m x =+中,y 随x 的增大而增大,①2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.28.x ≤2【分析】本题考查不等式的解集在数轴上表示,左边表示小于,实心圆点表示等于.【详解】解:由图得,x ≤2.故答案为x ≤2.29.10【详解】试题解析:解不等式1−2x >3(x −7),得:225x <, 则不等式组的解集为2215x ≤<, ①不等式组的整数解的和为1+2+3+4=10,故答案为1030.1 【分析】根据题意列一元一次不等式4123a -<,解此不等式的解集为74a <,再找到其中最大的整数解即可.【详解】解:由题意得,4123a -<, 416a ∴-<,47a <,74a ∴<, ∴a 的最大整数值是1,故答案为:1.【点睛】本题考查解一元一次不等式、不等式的整数解等知识,准确解出一元一次不等式的解集是解答本题的关键.31.57x ≤【分析】先求出两个不等式的解集,再求其公共解.【详解】2352x x ①②-≥⎧⎨->-⎩, 由①得,x≥5,由①得,x<7,所以,不等式组的解集是:5≤x <7.故答案为5≤x <7.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 32.12x <≤【分析】分别求出两个不等式的解集,即可求解.【详解】解①1012x x x ->⎧⎪⎨+≥⎪⎩①②, 解不等式①得① 1x >解不等式①得①2x ≤,①不等式组的解集为12x <≤ 故答案为① 12x <≤【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.33.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠ ①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.34.n <11【分析】将方程的解代入方程中,得到关于k 、m 、n 的方程组,可求k =n -4,根据k <7即可求n 的取值范围.【详解】解:由题意可得:()312111n km k n k m k +=++⎧⎨-=+++⎩解得:k =n -4①k <7①n -4<7①n <11故答案为:n <11【点睛】本题考查了二元一次方程的解,求出k =n -4是本题的关键.35.4 【分析】先解不等式组,得到该不等式组的解集为445x -<≤,即可得到其整数解的个数.【详解】解:253(3)121035x x x +<+⎧⎪⎨-+≥⎪⎩①②, 解不等式①可得:4x >-;解不等式①可得:45x ≤, 所以该不等式组的解集为:445x -<≤, 所以该不等式组的整数解为3-,2-,1-,0,共4个,故答案为:4.【点睛】本题考查不等式组的整数解,正确解一元一次不等式组是解题的关键. 36.1.52x ≤<【分析】根据题意得出﹣3•[2x ﹣1]=﹣6,即[2x ﹣1]=2,据此可得2≤2x ﹣1<3,解之即可.【详解】解:根据题意,得:﹣3•[2x ﹣1]=﹣6,①[2x ﹣1]=2,则2≤2x ﹣1<3,解得1.52x ≤<.故答案为:1.52x ≤<.【点睛】本题主要考查解一元一次不等式组,解题的关键是根据新定义列出关于x 的不等式组.37.-5<x≤-4【分析】先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法即可求得解集. 【详解】解不等式1x 22-≥得:x≤-4, 解不等式11-x >1-3x 得:x>-5,所以不等式组的解集是:-5<x≤-4,故答案为-5<x≤-4.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组解集的确定方法是关键. 不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了. 38.不是【分析】先根据二元一次方程的定义求出k 值,从而得k +1的值,再把k +1代入不等式检验,即可求解.【详解】解:①||4(5)21k k x y ---=是关于x ,y 的二元一次方程, ①5041k k -≠⎧⎨-=⎩,解得:k =-5, ①k +1=-5+1=-4,把x =k +1=-4代入不等式左边得-4+2=-2,把x =k +1=-4代入不等式右边得2×(-4)-1=-9,①-2>-9,①k +1不是不等式221x x +<-的解,故答案为:不是.【点睛】本题考查二元一次方程的定义,判定一个数是否是不等式的解,求出k 值是解题的关键.39.-3≤a <-2.【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式3-2x >2,得:x <12 ,解不等式x-a >0,得:x >a ,则不等式组的解集为a <x <12,①不等式组恰有3个整数解,①不等式组的整数解为-2、-1、0,则-3≤a <-2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.40.28.25【分析】设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.【详解】解:设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,①《长津湖》与《铁道英雄》的日销售量和为450本,①a +b =450,即b =450-a ,①《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本, ①22303b a ≤< ,即()24502303a a -≤<, 解得:180230a ≤< ,①《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,①5060m n <+≤ ,①《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,①()()332205ma nb mb na +-+= ,①b =450-a ,①()()345034502205ma n a m a na +---+=⎡⎤⎡⎤⎣⎦⎣⎦,①()()13503135032205n a m a ma na ---+-= ,①()()413502205m n a --= ,①180230a ≤<,①413500a -<,①0m n -< ,即m n < ,①当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即()3345013503ma nb ma n a ma n na +=+-=+- 最大,①此时3na 的值最小,则m 最大,①180230a ≤<,①a 的最小值为180,将a =180代入()()413502205m n a --=,解得: 3.5m n -=- ,即 3.5n m =+ ,①5060m n <+≤,①50 3.560m m <++≤,即23.2528.25m <≤ ,①m 最大,①28.25m = ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为28.25元.故答案为:28.25【点睛】本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.41.35x <≤【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()2132324x x x x +<-⎧⎪⎨--≤⎪⎩①② 由①得,3x >,由①得,5x ≤,故不等式组的解集为:35x <≤.【点睛】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.42.(1)最多可以购买甲种树苗40棵;(2)该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵【分析】(1)设购买甲种树苗x 棵,由购买两种树苗的总费用不超过3400元,列出不等式,可求解;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,由总费用不超过500元,列出不等式,即可求解.【详解】解:(1)设购买甲种树苗x 棵,由题意可得:()30202303400x x ++≤,解得:40x ≤,答:最多可以购买甲种树苗40棵;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,依题意得:()302024500m m +≤﹣, 解得:2m ≤.又①m 为正整数,①m 可以取1,2,①该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵.【点睛】本题考查的是一元一次不等式的应用,正确理解题目意思是解决本题的关键. 43.(1)①乘法分配律;①五,不等式两边都除以-5,不等号的方向没有改变(2)x <2【分析】(1)①由题意可得依据乘法分配律(运算律)进行变形的;①由题意根据不等式的基本性质3进行分析即可;(2)由题意根据不等式的基本性质3进行分析计算即可.(1)解:①以上解题过程中,第二步是依据乘法分配律(运算律)进行变形的;①第五步开始出现错误,这一步错误的原因是不等式两边都除以-5,不等号的方向没有改变;故答案为:乘法分配律;五,不等式两边都除以-5,不等号的方向没有改变;(2)213232x x -->-1. 解:2(2x -1)>3(3x -2)-64x -2>9x -6-64x -9x >-6-6+2-5x >-10x <2该不等式的正确解集是x <2.【点睛】本题考查解一元一次不等式,注意掌握其一般步骤:①去分母;①去括号;①移项;①合并同类项;①化系数为1.44.3<x ≤4【分析】先解每个不等式,再将不等式解集表示在数轴上,再取公共解集即可.【详解】解:21{5238x x x x +-<≥-①②,由①得:x >3,由②得:x ≤4,将解集在数轴上表示出来如下:∴原不等式组的解集为:3<x ≤4.【点睛】本题考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的一般步骤和正确的取不等式组的解集.45.34x <≤【分析】分别求不等式的解,再找公共部分,就是不等式组的解.【详解】解:由①式得:3x >.由①式得:4x ≤.①不等式组的解集为: 34x <≤.【点睛】本题主要考查解一元一次不等式组,掌握“同小取小”, “同大取大”, “大小小大取中间”,“小小大大无解”是关键.46.(1)x >−4,数轴见详解;(2)x ≤1,数轴见详解【分析】(1)根据解一元一次不等式的方法,可以求得该不等式的解集,然后在数轴上表示出其解集即可;(2)先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示即可.【详解】解:(1)5x +3>4x −1,移项,得5x −4x >−1−3,合并同类项,得x >−4,其解集在数轴上表示如下,。
《第7章 一元一次不等式与不等式组》试卷及答案_初中数学七年级下册_沪科版_2024-2025学年

《第7章一元一次不等式与不等式组》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知一元一次不等式(3x−5<4), 那么解集为:A.(x<3)B.(x>3)C.(x<−3)D.(x>−3)2、若不等式组$({.)$的解集是下列哪一项?A.(x>2)且(x≤2)B.(x<2)且(x≥2)C.(x>2)且(x≤6)D. 无解3、下列哪个不是一元一次不等式的正确形式?A. 2x + 3 > 5B. x - 4 ≤ 2C. 3x = 7D. x + 2 < 54、不等式 3x - 5 < 2x + 1 的解集是:A. x < 6B. x < 4C. x > 6D. x > 45、若不等式(3x−7<2x+5)成立,则(x)的取值范围是:A.(x<12)B.(x>12)C.(x<2)D.(x>2)6、设(a<b),下列哪个不等式一定成立?A.(−a<−b)B.(2a<2b)C.(a−3<b−3)D.(a−5<b−5)7、已知不等式 -2x + 3 > 5,解得 x 的取值范围是:A. x < -1B. x > -1C. x ≤ -1D. x ≥ -18、若不等式 3(x - 2) < 2x + 4 成立,则 x 的取值范围是:A. x < 4B. x ≤ 4C. x > 4D. x ≥ 49、若不等式 -3x + 4 > 2x - 1,那么x的取值范围是:A. x < 1B. x > 1C. x < 3D. x > 3 10、不等式组[{2x+3<7x−4>−5]的解集是:A. -4 < x < 2B. -3 < x < 3C. -2 < x < 6D. -1 < x < 5二、计算题(本大题有3小题,每小题5分,共15分)第一题:已知不等式(3x−2<4x+1),求解不等式。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案

人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学 不等式与不等式组练习一、填空题1. 不等式325x +≥的解集是.2. 关于x 的方程xkx 21=-的解为正实数,则k 的取值范围是3. 不等式23x x >-的解集为 .4. 把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 .5.不等式组40320x x ->⎧⎨+>⎩的解集是 .6. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .7. 甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)8.不等式5(1)31x x -<+的解集是 .9. 不等式5(1)31x x -<+的解集是 . 10. 不等式组103x x +>⎧⎨>-⎩,的解集是 .11. 不等式组6020x x -<⎧⎨->⎩的解是 .12. 不等式组210x ox -≤⎧⎨>⎩的解是 13. 不等式组23732x x +>⎧⎨->-⎩,的解集是 .14. 如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)15. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .16. 不等式组6020x x -<⎧⎨->⎩的解是 .17. 某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 . 18.关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .19.已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.20. 如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .21. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .22. 若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += . 23. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .24.函数y =中,自变量x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤25. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个二、选择题 26. 不等式组2131x x -<⎧⎨≥-⎩ 的解集是A.2x <B.1-≥xC.12x -≤< D .无解27. 已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm28.不等式260x -<的解集是( )A .3x >B .3x <C .3x >-D .3x <-29.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤30. 不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )31. 不等式组2410x x <⎧⎨+>⎩,的解集在数轴上表示正确的是( )32. 不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )A B .C .D .1 2 A .B .1 2C .1 2 D .1 233. 不等式﹣2x <4的解集是 ( )A .x >﹣2 B.x <﹣2 C. x >2 D. x <234. 不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )35. 下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩36. 如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <37. 如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<-C .20x -<<D .10x -<<38. 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.yOxB A A .B .C .D .39. 若01x <<,则21x x x,,的大小关系是( ) A.21x x x << B .21x x x << C .21x x x << D .21x x x<< 40. 不等式组⎪⎩⎪⎨⎧≤<-15112x xx 的解集在数轴上表示正确的是 ( )41. 不等式26x ≤的解集为( )A .3x ≥B . 3x ≤C . 13x ≥D . 13x ≤42. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .43.不等式组103x x +>⎧⎨>-⎩,的解集是 .44. 不等式2x ≥的解集在数轴上表示为( )45. 不等式组1021x x +>⎧⎨-<⎩,的解集是( )A .1x >-B .3x <C .13x -<<D .31x -<<1 1- 02 3A .1 1- 02 3B .1 1- 02 3C .1 1- 02 3D .46. 若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )A .1a >-B .1a -≥C .1a ≤D .1a <47. 不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是()A .1,2B .1,2,3C .331<<xD .0,1,248. 一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )49. 若b a <,则下列各式中一定成立的是( )A .11-<-b aB .33ba >C . b a -<-D . bc ac <50. 已知三角形的两边长分别为4cm和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cm B .6cm C .5cm D .4cm51. 不等式325x +≥的解集是 .52. 不等式组1024x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .无解53. 不等式组13x x ⎧-⎪⎨⎪⎩<≤,的解集在数轴上可以表示为( )A .B .C .D .54. 如果ab <0,那么下列判断正确的是( ).ABCDA .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0 D. a <0,b >0或a >0,b <0 55. 不等式组260,58x x x +>⎧⎨+⎩≤ 的解集在下列数轴上表示正确的是( )56. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .57. 下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩58. 已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是 ( )59. 如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <60. 若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-B . D .A .C .C .32x y +>+D .33x y >61. 据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤62. 若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 63. 不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )64. 不等式组⎪⎩⎪⎨⎧≤<-15112x x x 的解集在数轴上表示正确的是 ( )65. 不等十足⎩⎨⎧--≥-81312 x x 的解集在数轴上可表示为 ( )ABCD66. 不等式组⎩⎨⎧≤-31<x x 的解集在数轴上可以表示为( )67. 不等式20x -≤的解集在数轴上表示正确的是( )A .B .C .D .68.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )69. 不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为( )A .B .C .D .ABCDABCD70. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个三、解答题71. 解下列不等式组,并把解集在数轴上表示出来.⎩⎨⎧≥+-<- x x x )2(33)1(2)1(0272. 解不等式组3(2)8,1.23x x x x ++⎧⎪-⎨⎪⎩<≤73. 解不等式组⎩⎨⎧≥--1232x x x ,并把解集在数轴上表示出来.74. 解不等式:13x -1<0,并把它的解集在数轴上表示出来;75. (1)化简:2211x x x x +-÷; (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤76. 解不等式:5x –12≤2(4x -3)77. 解不等式组⎩⎨⎧->+<-.)1(215,02x x x78.解不等式组:303(1)21x x x +>⎧⎨--⎩,①≤.②79. 解不等式:322x x -≥-80. 解不等式组:351(1)13(2)2x x x +-⎧⎪⎨->⎪⎩≥81. 解不等式组20537x x x -<⎧⎨+≤+⎩;并写出它的整数解。