材料拉伸与压缩试验报告

合集下载

材料拉伸与压缩试验报告

材料拉伸与压缩试验报告

材料的拉伸压缩实验【实验目的】1.研究低碳钢、铸铁的应力——应变曲线拉伸图。

2.确定低碳钢在拉伸时的机械性能(比例极限R p 、下屈服强度R eL 、强度极限R m 、延伸率A 、断面收缩率Z 等等)。

3. 确定铸铁在拉伸时的力学机械性能。

4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。

【实验设备】1. 微机控制电子万能试验机;2. 游标卡尺。

3、记号笔4、低碳钢、铸铁试件 【实验原理】 1、拉伸实验低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-∆l 曲线,即低碳钢拉伸曲线,见图1。

对于低碳钢材料,由图1曲线中发现OA 直线,说明F 正比于∆l ,此阶段称为弹性阶段。

屈服阶段(B-C )常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。

其中,B '点为上屈服点,它受变形大小和试件等因素影响;B 点为下屈服点。

下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。

测定屈服载荷Fs 时,必须缓慢而均匀地加载,并应用σs =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。

图1低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b 后,在试件的*一局部发生显著变形,载荷逐渐减小,直至试件断裂。

应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。

根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。

2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-∆l 曲线,即铸铁压缩曲线,见图2。

拉伸压缩实验报告

拉伸压缩实验报告

一、实验目的1. 了解材料力学中拉伸和压缩的基本原理及实验方法。

2. 通过实验观察材料的弹性、屈服、强化等力学行为。

3. 测定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。

4. 掌握电子万能试验机的使用方法及工作原理。

二、实验原理1. 拉伸实验:将试样放置在万能试验机的夹具中,缓慢施加轴向拉伸载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。

2. 压缩实验:将试样放置在万能试验机的夹具中,缓慢施加轴向压缩载荷,通过力传感器和位移传感器实时采集力与位移数据,绘制F-Δl曲线,分析材料的力学性能。

三、实验设备1. 电子万能试验机2. 力传感器3. 位移传感器4. 游标卡尺5. 计算机及数据采集软件四、实验材料1. 低碳钢拉伸试样2. 铸铁压缩试样五、实验步骤1. 拉伸实验:1. 将低碳钢拉伸试样安装在万能试验机的夹具中。

2. 设置试验参数,如拉伸速率、最大载荷等。

3. 启动试验机,缓慢施加轴向拉伸载荷,实时采集力与位移数据。

4. 绘制F-Δl曲线,分析材料的力学性能。

2. 压缩实验:1. 将铸铁压缩试样安装在万能试验机的夹具中。

2. 设置试验参数,如压缩速率、最大载荷等。

3. 启动试验机,缓慢施加轴向压缩载荷,实时采集力与位移数据。

4. 绘制F-Δl曲线,分析材料的力学性能。

六、实验结果与分析1. 低碳钢拉伸实验:1. 通过F-Δl曲线,确定材料的屈服极限、强度极限、延伸率、断面收缩率等力学性能指标。

2. 分析材料在拉伸过程中的弹性、屈服、强化等力学行为。

2. 铸铁压缩实验:1. 通过F-Δl曲线,确定材料的强度极限等力学性能指标。

2. 分析材料在压缩过程中的破坏现象。

七、实验结论1. 通过本次实验,我们掌握了拉伸和压缩实验的基本原理及实验方法。

2. 通过实验结果,我们了解了低碳钢和铸铁的力学性能。

3. 实验结果表明,低碳钢具有良好的弹性和塑性,而铸铁则具有较好的抗压性能。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。

它是由试验来测定的。

工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。

关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理一.拉伸实验1.低碳钢拉伸实验拉伸实验试件 低碳钢拉伸图在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:低碳钢拉伸应力-应变曲线(1)弹性阶段(Ob段)在拉伸的初始阶段,σ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。

线性段的最高点则称为材料的比例极限(σp),线性段的直线斜率即为材料的弹性摸量E。

线性阶段后,σ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全消失。

卸载后变形能完全消失的应力最大点称为材料的弹性极限(σe),一般对于钢等许多材料,其弹性极限与比例极限非常接近。

(2)屈服阶段(bc段)超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。

使材料发生屈服的应力称为屈服应力或屈服极限(σs)。

当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。

这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。

(3)强化阶段(ce段)经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。

若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。

当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告

金属材料的拉伸与压缩实验报告
一、前言
拉伸与压缩实验是金属材料力学性能测试中常用的方法之一。

通过实验可以得到金属材料的抗拉强度、屈服强度、延伸率等性能参数。

本实验旨在通过对不同金属材料的拉伸与压缩实验,探索金属材料的力学特性。

二、实验原理
拉伸与压缩实验的原理是将金属样本放入拉力机中,通过施加相应的拉伸或压缩力,在不同的应变下测量样本的力学性能。

应变可以通过求解样本的伸长量与原始长度的比值得到。

三、实验步骤
1. 将金属样本放置在拉力机上,并调整夹具使样本稳固;
2. 开始拉伸实验,慢慢增加加载量,记录下载荷和伸长量;
3. 当样本出现明显的变形时停止拉伸,记录此时的载荷和伸长量;
4. 根据记录数据计算拉力与伸长量之间的比值,得到材料的抗拉强度和延伸率;
5. 进行压缩实验,步骤同拉伸实验;
6. 根据实验数据计算压力与压缩量之间的比值,得到材料的抗压强度和压缩率。

四、实验结果分析
本实验对不同金属材料进行了拉伸与压缩实验。

实验结果表明,不同材料的力学
性能存在较大的差异。

其中,钢材的抗拉强度最高,铝材的延伸率较高。

对于同一材料,在拉伸和压缩实验中得到的结果存在差异,这是由于材料在不同的加载形式下会表现出不同的力学特性。

五、实验总结
拉伸与压缩实验是研究金属材料力学性能的重要手段。

通过实验可以得到材料的抗拉强度、屈服强度、延伸率等性能参数,有助于了解不同材料的应用范围和性能要求。

在实验中需要注意样本的选择和制备,以及试验过程中的操作规范和数据记录精确。

不同温度下橡胶材料拉伸压缩试验结论

不同温度下橡胶材料拉伸压缩试验结论

不同温度下橡胶材料拉伸压缩试验结论下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言在工程设计和材料科学领域中,了解材料在不同温度下的性能变化对于确保产品质量和性能至关重要。

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告

材料力学拉伸与压缩实验报告一、实验目的本实验旨在通过拉伸与压缩实验,探讨材料在受力下的力学性能,了解材料的强度、延展性和变形特点,为材料的工程应用提供理论依据。

二、实验原理1. 拉伸实验原理:拉伸试验是通过对试样施加拉力,使其发生长度方向的拉伸变形,以研究材料的强度、延展性和断裂特性。

在拉伸过程中,可以通过载荷和位移数据来绘制应力-应变曲线,从而得到材料的力学性能参数。

2. 压缩实验原理:压缩试验是通过对试样施加压力,使其产生长度方向的压缩变形,以研究材料在受压状态下的变形特性和抗压性能。

通过测量载荷和位移数据,可以得到材料的应力-应变关系,并分析其力学性能。

三、实验装置及试样1. 实验装置:拉伸试验机、压缩试验机、数据采集系统等。

2. 试样:常用的拉伸试样为标准圆柱形试样,常用的压缩试样为标准方形试样。

四、实验步骤1. 拉伸实验:a. 准备好拉伸试样,安装在拉伸试验机上。

b. 设置合适的加载速率和采样频率,开始施加拉力。

c. 记录载荷和位移数据,绘制应力-应变曲线。

d. 观察试样的变形情况,记录拉伸过程中的各阶段特征。

2. 压缩实验:a. 准备好压缩试样,安装在压缩试验机上。

b. 设置合适的加载速率和采样频率,开始施加压力。

c. 记录载荷和位移数据,得到应力-应变关系曲线。

d. 观察试样的变形情况,记录压缩过程中的各阶段特征。

五、实验结果及分析1. 拉伸试验结果分析:根据绘制的应力-应变曲线,分析材料的屈服点、最大强度、断裂点等力学性能参数,并观察材料的断裂形态和变形特点。

2. 压缩试验结果分析:根据得到的应力-应变关系曲线,分析材料在受压状态下的变形和抗压性能,并观察材料的压缩断裂形态。

六、实验结论通过拉伸与压缩实验,我们得到了材料在拉伸和压缩条件下的力学性能参数,并对其力学性能进行了分析。

实验结果表明,材料在拉伸状态下具有较好的延展性和韧性,而在受压状态下表现出良好的抗压性能。

这些结果为材料的工程应用提供了重要参考。

拉伸压缩实验

拉伸压缩实验

4)加载:缓慢加载,国标规定: 应力速率(弹性阶段):3 ~ 30MPa/sec
2、低碳钢拉伸时的力学性质
低碳钢:含碳量低于0.3﹪
1)拉伸图
2) 应力-应变图(σ-ε图)
克服拉伸图的尺寸效应

e s b p
强化阶段
颈缩阶段
σ= P/A0 名义应力 ε=⊿l / l0 名义应变
A0——初始横截面面积; l 0——原长
再进入计算页面,点击【计算】键,软 件自动计算并显示计算【结果】。 再次【保存】本试验。 19、打印报告:选择需打印的实验结果,打 印实验报告。
思考题 1、低碳钢拉伸图可分为几个阶段?每一阶段,力与 变形有何关系?出现什么现象?
2、低碳钢和铸铁在拉伸时可测得哪些力学性能指
标?
3、 金属材料的压缩实验能测得哪些力学性能指标?
下横梁
试验机三大部分: 1 加力——电机带动丝杠使下横梁移动;
压缩空间
2 测量——力传感器、横梁位移传感器、变形引伸计; 3 控制与计算——计算机、实验软件、信号采集系统。
6、拉伸实验软件简介
负荷传感器 引伸计传感器 下横梁位移传感器
下横梁操作界面
下横梁调速
下横梁动作按钮
实验报告打印选项
试验钮
曲 线 到 此处 可 以 摘除引伸计
4、 压缩实验时,为何要在试件两端面涂油?压缩试 件为何规定1< 坏?为什么? 5、 低碳钢压缩后为什么成鼓形?铸铁压缩时如何破
h <3? d
深入思考的问题—— 1. 为什么国标对拉伸压缩试样尺寸有要求?不同的 尺寸规格如:l =10d , l = 5d(圆),影响那个力 学指标? 2. 拉伸实验中为什么要控制应力、应变速率?对哪 些力学性能指标有影响?在何种阶段分别控制什 么速率?为什么? 3. 真应力、真应变的含义?什么力学概念?如何得 到? 4. 颈缩阶段中应力应变曲线下降的原因?应力真的 下降了吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料的拉伸压缩实验
【实验目的】
1 •研究低碳钢、铸铁的应力一一应变曲线拉伸图。

2•确定低碳钢在拉伸时的机械性能(比例极限R p、下屈服强度R eL、强度
极限R m、延伸率A、断面收缩率Z等等)。

3.确定铸铁在拉伸时的力学机械性能。

4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。

【实验设备】
1.微机控制电子万能试验机;
2.游标卡尺。

3、记号笔
4、低碳钢、铸铁试件
【实验原理】
1、拉伸实验
低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转
换和处理,并输入计算机,得到F「l曲线,即低碳钢拉伸曲线,见图1。

对于低碳钢材料,由图1曲线中发现0A直线,说明F正比于厶I,此阶段称为弹性阶段。

屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。

其中, B •点为上屈服点,它受变
形大小和试件等因素影响;B点为下屈服点。

下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。

测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用WF s/ A o (A o 为试件变形前的横截面积)计算屈服极限。

图1低碳钢拉伸曲线
屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段
当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小, 直至试件断裂。

应用公式c=F b /A o 计算强度极限(A o 为试件变形前的横截面积)
根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率 「•和端 面收缩率=即
2、压缩实验
铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集, A/D 转换
料,当承受压缩载荷达到最 然发生破裂。

铸铁试件破坏 横截面大约成45〜55的倾 由于脆性材料的抗剪强度低 试件被剪断。

的力学性质可以由压缩时的 线表示。

铸铁受压时曲线上
没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。

由于试
件承受压缩 时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍, 故压缩后试件呈鼓形。

铸铁压缩实验的强度极限:
-b =F b /A o (A o 为试件变形前的横截面积)。

【实验步骤及注意事项】
1、拉伸实验步骤
(1) 试件准备:在试件上划出长度为 I o 的标距线,在标距的两端及中部三 个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值 中取最小值作为试件的直径d o 。

(2) 试验机准备:按试验机 '计算机 '打印机的顺序开机,开机后须预热 十分钟才可使用。

按照“软件使用手册”,运行配套软件。

(3) 安装夹具:根据试件情况准备好夹具,并安装在夹具座上。

若夹具已 安装好,对夹具进行检查。

(4) 夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消 除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下 夹头上,力清零消除试件自重后再夹持试件的另一端。

(5) 开始实验:点击主机小键盘上的试样保护键,消除夹持力;位移清零; 按运行命令按钮,按照软件设定的方案进行实验。

¥
100
%,
上 A 1 100%
A o
式中,I o 、l i 为试件拉伸前后的标距长度, A i 为颈缩处的横截面积
和处理,并输入计算机,得到 F :l 曲线,即铸铁压缩曲线,见图2
材料压缩时 力与变形关系曲
对铸铁材 大载荷F b 时,突 后表明出与试件 斜断裂面,这是 于抗压强度,使
(6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l i及断口处的最小直径d i (—般从相互垂直方向测量两次后取平均值)。

2压缩实验步骤
(1)试件准备:用游标卡尺在试件中点处两个相互垂直的方向测量直径d o, 取其算术平均值,并测量试件高度h o。

(2)试验机准备:按试验机 '计算机 '打印机的顺序开机,开机后须预热十分钟才可使用。

按照“软件使用手册”,运行配套软件。

(3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。

若夹具已安装好,对夹具进行检查。

(4)放置试件:试验力清零;把试件放在压盘中间,通过小键盘调节横梁
位置,通过肉眼观察,到上压盘离试件上平面还有一定缝隙时停止。

(注意:尽量将试件放在压盘中心,如放偏的话对试验结果甚至是试验机都有影响。


(5)开始实验:位移清零;按运行命令按钮,按照软件设定的方案进行实验。

(6)记录数据:试件压断后,取下试件;记录强度载荷F b。

二.铸铁F-A I压缩曲线
1铸铁的极限强度:二b二F b/A。

2铸铁断口呈不平整状,是典型的脆性断裂;低炭钢断口外围光滑,是塑性变形区域,中部区域才呈现脆性断裂的特征。

这表明,铸铁在超屈服应力下,瞬时断开;而低碳钢在超应力的时候,有塑性形变过程,发生颈缩,直到断面面积减小到一定程度时,才瞬时断裂。

【实验数据记录及处理结果】
越压越扁,横截面积不断增大,试样抗压能力也继 续增强,所以无压缩时的强度极限
前:截面面积
2
A o / mm
压成铁饼,越压越扁,横截面积不断增大,试样抗 压能力也继续增
强。

强度极限
压缩
低碳钢压缩
铸铁压缩 79.49
74.20
断面 45°斜面 625
1铸铁作为脆性材料,抗拉强度很低,不宜作为抗拉材料。

但是其抗压能力强,宜于作为抗压构件的材料。

2低碳钢压缩时的弹性模量和屈服极限与拉伸时大致相同,进入屈服阶段后,试样越压越扁,横截面积不断增大,抗压能力也继续增强,因而得不到压缩时的强度极限。

3低碳钢抗压抗拉能力都很高。

适宜于抗压抗拉。

【实验感想】
1通过实验,把课本知识与实践结合起来,更加深刻的理解了材料在拉伸压缩时的性能。

2本次实验锻炼了小组内成员的分工合作与协调能力。

较好的锻炼了我们的实践动手能力。

3力学实验中注意安全是非常重要的,这要求我们实验前把该实验的注意事项搞清楚,做好试验的预习。

相关文档
最新文档