高中数学答题模板
高中数学答题模板

一、选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题方法选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法。
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
二、解答题专题一、三角变换与三角函数的性质问题1.解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2.构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1.解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2.构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1.解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2.构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法高中数学解答题是每一位学生都要面对的考试难题,要想在考场上取得好成绩,就需要掌握一些答题模板和技巧。
本文将为大家分享一些高中数学解答题的8个答题模板以及做大题的方法。
一、直接套公式有些题目只需要把已知条件代入公式求解即可。
例如:已知正方形的一条对角线长度为10,求正方形面积。
解答:根据正方形对角线公式可知,正方形的边长等于对角线长度的平方除以2,即$a=\frac{\sqrt{2}}{2} \times 10=5\sqrt{2}$正方形面积为$a^2=50$。
二、代数相加减有些题目需要转换成代数式,通过相加减化简后求解。
例如:已知$\frac{x+2}{a}=\frac{4}{x-2}$,求$\frac{x^2+2x}{a^2}$的值。
解答:将已知条件转换为代数式,得到$x+2=\frac{4a}{x-2}$将$x^2+2x$用$x+2$和$x-2$表示出来,可得:$x^2+2x=(x+2)(x-2)+6$代入上式可得:$\frac{x^2+2x}{a^2}=\frac{(x+2)(x-2)+6}{a^2}=\frac{4a^2+6}{ a^2}=4+\frac{6}{a^2}$三、代数移项有些题目需要进行代数移项以消去未知量,例如:已知2x-3y=9,求y。
解答:将未知量y移至等式左侧,可得$2x-9=3y$将等式两侧同时除以3,即得y的值:$y=\frac{2x-9}{3}$。
四、因式分解有些题目需要通过因式分解来求解,例如:已知$x^2+3x-10=0$,求x。
解答:将$x^2+3x-10$进行因式分解,可得$(x+5)(x-2)=0$因此,$x=-5$或$x=2$。
五、有理化有些题目涉及分数,需要进行有理化操作,例如:已知$\frac{1}{\sqrt{3}-1}+\frac{2}{\sqrt{3}+1}=a+b\sqrt{3}$,求a和b的值。
解答:分别对两个分数进行有理化,可得:$\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{2}$,$\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$将上式代入原式,可得:$a+b\sqrt{3}=\frac{\sqrt{3}+1}{2}+\sqrt{3}-1=2\sqrt{3}-\frac{ 1}{2}$因此,a= -1/2,b= 2。
高中试卷试题模板及答案

高中试卷试题模板及答案一、选择题(本大题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一个是正确的,请将正确选项的字母填入题后的括号内。
)1. 下列关于细胞结构的描述,正确的是()A. 细胞壁是所有细胞的共同结构B. 细胞膜具有选择透过性C. 细胞核是细胞内所有物质的储存场所D. 线粒体是细胞内唯一的能量转换器2. 光合作用中,光能被转化为化学能的场所是()A. 叶绿体B. 细胞质C. 线粒体D. 核糖体3. 下列关于遗传物质的描述,错误的是()A. DNA是主要的遗传物质B. 遗传信息储存在DNA的碱基序列中C. RNA是遗传物质的一种D. 所有生物的遗传物质都是DNA4. 人体免疫系统中,负责识别和攻击外来病原体的是()A. 红细胞B. 白细胞C. 血小板D. 淋巴细胞5. 根据牛顿第二定律,下列说法正确的是()A. 力是改变物体运动状态的原因B. 物体的质量越大,加速度越小C. 物体的加速度与作用力成正比D. 所有选项都是正确的6. 化学中,下列物质属于非电解质的是()A. 硫酸B. 氯化钠C. 乙醇D. 氢氧化钠7. 地球大气层中,对生物生存至关重要的层是()A. 对流层B. 平流层C. 臭氧层D. 电离层8. 在物理学中,下列哪项不是能量守恒定律的内容()A. 能量既不能被创造也不能被消灭B. 能量可以在不同形式之间转换C. 能量的总量在封闭系统中是恒定的D. 能量可以无限增加9. 根据热力学第一定律,下列说法错误的是()A. 能量守恒B. 能量可以无损失地从一种形式转换为另一种形式C. 能量转换过程中总能量保持不变D. 能量转换过程中有能量损失10. 在生物进化过程中,自然选择是()A. 随机发生的B. 由环境变化引起的C. 由生物自身的需要引起的D. 由生物的遗传变异引起的二、填空题(本大题共5小题,每小题4分,共20分。
请将答案填在题后的横线上。
)1. 细胞膜的主要组成成分是__________和__________。
高中各科考技指导——强化考技指导,规范考试程序

班会主题
1、数学考试规范与技巧 2、语文考试规范与技巧 3、英语考试规范与技巧 4、理科倾向考试规范与技巧 5、文科倾向考试规范与技巧
一、数学考试规范与技巧
1.时间分配及处理技巧
猜,单选有25%正确,多选猜一个得部分分可的能性更大。
一、数学考试规范与技巧
• 填空题:最简形式,要全面,比如解析式别 忘定义域,单调区间别用不等式,别用并集 符号等;
不带内伤——观点不可偏激和错误;内容重心把握不当;观 点过于晦涩和情感混乱等。结构混乱,思路不清。
从结构到题材熟记三至五篇作文,认真翻看作文讲座写作指 导材料以及印发的作文素材。
二、语文考试规范与技巧
【作文高分要领】: 1.时间分配要合理,要有时间观念,要留出充裕时间进行 充足的思考。(确保5—8分钟的审题时间) 2.题目拟写力争新颖恰当,但又不能晦涩难懂,务必要突 出主旨,涵盖关键词。尤其不能缺漏文题。 3.开头、结尾要尽量出彩,开头联系材料,简明扼要亮明 题旨,态度要鲜明。结尾再回扣材料,再明题旨,首尾呼应, 或发出呼吁,提出希望。开头结尾忌讳冗长、拖沓,废话太 多。 4.段落设置合理,坚决摒弃“三段式”,全篇以4-6段为宜, 每段尽量不要超过12行(180字)。 5、如何让你的作文主旨突出?用篇中心句、段中心句、观 点句交待文脉。在标题、首尾、行文反复出现关键词。
• 一快一慢,审题要慢,做题要快; • 不能小题难做,也不能大题小做,难小题要
巧做(特值法、验证法、估值法、排除法、 筛选法等),解答题要按步骤列全知识点, 写全推导计算过程,尤其是含高中重要知识 点的环节;
一、数学考试规范与技巧
• 规范步骤,切忌对而不全,会而不对; • 基础题做慢做稳,中档题拿足分,难题力争
初中历史答题模板

初中历史答题模板一、选择题1、抓住关键词语,找出相关信息。
2、再读选项,找出与题意不符的。
3、注意选项中相似的概念。
4、一题多问时,要考虑题目中所问的多个问题。
5、选项中如果含有“均”等绝对化的词语,要特别注意。
二、列举题1、根据题目要求,仔细阅读材料,把符合题目要求的句子画出来。
2、如果没有给定范围,就仔细阅读材料,把可能符合题目要求的句子画出来。
3、如果给定了范围,就在给定的范围内画出来。
4、画句子时,要特别注意一些关键词语,如“也”、“都”、“还”、“再”、“首先”等。
5、列举时,要注意按照一定的顺序,如时间顺序、空间顺序等。
三、材料解析题1、仔细阅读题目,找出关键词语和限制条件。
2、仔细阅读材料,找出与题目相关的信息。
3、根据材料信息,结合所学知识回答问题。
4、如果问的是对材料的认识或启示,要结合材料和所学知识回答。
5、如果问的是史实问题,要在材料中找出答案。
6、如果问的是年代问题,要注意材料的上下文和题目所问的年代范围。
7、如果问的是人物问题,要注意材料的上下文和人物的国籍等信息。
8、如果问的是事件问题,要注意材料的上下文和事件的时间、地点等信息。
9、如果问的是意义或影响问题,要注意材料的上下文和事件的意义或影响等信息。
10、如果问的是其他问题,要根据材料和所学知识回答。
四、问答题1、仔细阅读题目,找出关键词语和限制条件。
2、根据题目的要求,结合所学知识回答问题。
3、回答问题时,要注意条理清晰、层次分明、要点准确、语言简练。
初中历史答题模板一、选择题1、抓住关键词语,找出相关信息。
2、再读选项,找出与题意不符的。
3、注意选项中相似的概念。
4、一题多问时,要考虑题目中所问的多个问题。
5、选项中如果含有“均”等绝对化的词语,要特别注意。
二、列举题1、根据题目要求,仔细阅读材料,把符合题目要求的句子画出来。
2、如果没有给定范围,就仔细阅读材料,把可能符合题目要求的句子画出来。
3、如果给定了范围,就在给定的范围内画出来。
高中数学高考专题(5)立体几何的高考解答题型及求解策略

高中数学高考专题(5)立体几何的高考解答题型及求解策略立体几何的解答题型主要采用“论证与计算”相结合的模式,即首先是利用定义、定理、公理等证明空间的线线、线面、面面平行或垂直,再计算几何体的体积.试题背景有折叠问题、探索性问题等,考查空间想象能力、逻辑思维能力及转化与化归思想的应用能力.题型一线面位置关系的证明题型概览:空间中线面的平行与垂直的证明有两种思路:一是利用相应的判定定理和性质定理去解决;二是利用空间向量法来论证,应用向量证明线、面的位置关系的关键是把空间线面位置关系的判定定理和性质定理与空间向量建立对应关系,把空间位置关系的证明转化为空间向量的运算,通过运算解决证明问题.这里以传统方法为例建立审题程序与答题模板,向量方法参照本专题题型二.如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E、F分别为MA、DC的中点,求证:(1)EF∥平面MNCB;(2)平面MAC⊥平面BND.[审题程序]第一步:利用中位线、平行四边形的性质在四边形MNCB内确定与EF平行的直线;第二步:在平面MAC和平面BND中寻找与另一平面垂直的直线;第三步:应用面面垂直、菱形的性质,由线线垂直解决.[规范解答](1)如图,取NC的中点G,连接FG,MG.因为ME∥ND且ME=12ND,F、G分别为DC、NC的中点,FG∥ND且FG=12ND,所以FG与ME平行且相等,所以四边形MEFG是平行四边形,所以EF∥MG,又MG⊂平面MNCB,EF⊄平面MNCB,所以EF∥平面MNCB.(2)如图,连接BD、MC.因为四边形MADN是矩形,所以ND⊥AD.因为平面MADN⊥平面ABCD,平面ABCD∩平面MADN=AD,DN⊂平面MADN,所以ND⊥平面ABCD,所以ND⊥AC.因为四边形ABCD是菱形,所以AC⊥BD.因为BD∩ND=D,所以AC⊥平面BDN.又AC⊂平面MAC,所以平面MAC⊥平面BDN.[答题模板]解决这类问题的答题模板如下:1.(2016·北京西城区高三期末)如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G,H分别是CE,CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH∥平面AEF;(3)求多面体ABCDEF的体积.[解](1)证明:因为四边形ABCD是正方形,所以AC⊥BD.又平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,所以AC⊥平面BDEF.(2)证明:在△CEF中,因为G,H分别是CE,CF的中点,所以GH∥EF.又GH⊄平面AEF,EF⊂平面AEF,所以GH∥平面AEF.设AC∩BD=O,连接OH.在△ACF中,因为OA=OC,CH=HF,所以OH∥AF.因为OH⊄平面AEF,AF⊂平面AEF,所以OH∥平面AEF.因为OH∩GH=H,OH,GH⊂平面BDGH,所以平面BDGH∥平面AEF.(3)由(1)得AC⊥平面BDEF.因为AO=2,四边形BDEF的面积S▱BDEF=3×22=62,=4.所以四棱锥A-BDEF的体积V1=13×AO×S▱BDEF同理,四棱锥C-BDEF的体积V2=4.所以多面体ABCDEF的体积V=V1+V2=8.题型二求空间几何体的体积题型概览:计算几何体的体积,关键是根据条件找出相应的底面和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题.(1)直接法:对于规则几何体,直接利用公式计算即可.(2)割补法:当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体.(3)等体积法:一般利用三棱锥的“等积性”求三棱锥体积,可以把任何一个面作为三棱锥的底面.注意两点:一是求体积时,可选择“容易计算”的方式来计算;二是利用“等积性”可求“点到面的距离”,关键是在面中选取三个点,与已知点构成三棱锥.(2016·全国卷Ⅲ)如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求四面体N-BCM的体积.[审题程序]第一步:由线线平行或面面平行证明(1);第二步:由N 为PC 中点,推证四面体N -BCM 的高与P A 的关系; 第三步:利用直接法求四面体的体积.[规范解答] (1)由已知得AM =23AD =2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形, 于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. [答题模板] 解决这类问题的答题模板如下:2.(2016·深圳一模)如图所示,在四棱锥S-ABCD中,底面ABCD是平行四边形,侧面SBC是正三角形,E是SB的中点,且AE⊥平面SBC.(1)证明:SD∥平面ACE;(2)若AB⊥AS,BC=2,求点S到平面ABC的距离.[解](1)证明:连接BD,交AC于点F,连接EF.∵四边形ABCD是平行四边形,∴F是BD的中点,又∵E是SB的中点,∴EF∥SD.∵SD⊄平面ACE,EF⊂平面ACE,∴SD∥平面ACE.(2)∵AB⊥AS,BC=BS=2,且E是SB的中点,∴AE=1.∵AE⊥平面SBC,BS、CE⊂平面SBC,∴AE⊥BS,AE⊥CE.∴AB=AE2+BE2= 2.又侧面SBC 是正三角形,∴CE =3, ∴AC =AE 2+CE 2=2,∴△ABC 是底边长为2,腰长为2的等腰三角形, ∴S △ABC =12×2×4-12=72.设点S 到平面ABC 的距离为h .由V 三棱锥S -ABC =V 三棱锥A -SBC ,得13h ·S △ABC =13AE ·S △SBC ,∴h =AE ·S △SBC S △ABC =237=2217.题型三 立体几何中的探索性问题题型概览:如果知道的是试题的结论,而要求的却是试题的某一个存在性条件(如存在某个定点、定直线、定值等),这种试题称为存在探索型试题.解题策略一般是先假设结论成立,然后以该结论作为一个已知条件,再结合题目中的其他已知条件,逆推(即从后往前推),一步一步推出所要求的特殊条件,即要求的存在性条件.若能求出,则存在;若不能求出,则不存在.(2016·石家庄调研)如图,在三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,AC ⊥BC ,E 在线段B 1C 1上,B 1E =3EC 1,AC =BC =CC 1=4.(1)求证:BC ⊥AC 1;(2)试探究:在AC 上是否存在点F ,满足EF ∥平面A 1ABB 1?若存在,请指出点F 的位置,并给出证明;若不存在,请说明理由.[审题程序]第一步:由B 1E =3EC 1及EF ∥平面A 1ABB 1猜想点F 的位置;第二步:在平面A 1ABB 1内探求与EF 平行的直线或寻找经过EF 与平面A 1ABB 1平行的平面; 第三步:由线线平行或面面平行推理论证.[规范解答] (1)证明:∵AA 1⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥AA 1. 又∵BC ⊥AC ,AA 1∩AC =A ,∴BC ⊥平面AA 1C 1C . 又AC 1⊂平面AA 1C 1C ,∴BC ⊥AC 1.(2)解法一:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图1,在平面A1B1C1内过点E作EG∥A1C1交A1B1于点G,连接AG.∵B1E=3EC1,∴EG=34A1C1.又AF∥A1C1且AF=3,4A1C1∴AF∥EG且AF=EG,∴四边形AFEG为平行四边形,∴EF∥AG.又EF⊄平面A1ABB1,AG⊂平面A1ABB1,∴EF∥平面A1ABB1.解法二:当AF=3FC时,EF∥平面A1ABB1.证明如下:如图2,在平面BCC1B1内过点E作EG∥BB1交BC于点G,连接FG. ∵EG∥BB1,EG⊄平面A1ABB1,BB1⊂平面A1ABB1,∴EG∥平面A1ABB1.∵B1E=3EC1,∴BG=3GC,∴FG∥AB.又AB⊂平面A1ABB1,FG⊄平面A1ABB1,∴FG∥平面A1ABB1.又EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面A1ABB1.∵EF⊂平面EFG,∴EF∥平面A1ABB1.[答题模板]解决这类问题的答题模板如下:3.如图,三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱AA1⊥底面ABC,M为A1B1的中点.(1)证明:MC⊥AB;(2)若AA1=26,侧棱CC1上是否存在点P,使得MC⊥平面ABP?若存在,求PC的长;若不存在,请说明理由.[解](1)证明:取AB的中点N,连接MN,CN,则MN⊥底面ABC,MN⊥AB.因为△ABC是正三角形,所以NC⊥AB.因为MN∩NC=N,MN⊂平面MNC,NC⊂平面MNC,所以AB⊥平面MNC,所以AB⊥MC.(2)由(1)知MC⊥AB,若存在点P使得MC⊥平面ABP,则必有MC⊥BP.过M作MQ⊥B1C1,垂足为Q,连接QC,则QC是MC在平面BCC1B1内的射影,只需QC⊥BP即可,此时Rt△QC1C与Rt△PCB相似,QC1C1C =PCCB,所以PC=QC1·CBC1C=3×426=6,点P恰好是CC1的中点.。
高中数学案例分析模板 精选题库

考点1:教学目标的评析答题模板:【根据题目从以下7点中选择3~4点进行回答即可。
】①从课程目标切入。
课堂教学目标的内容范围与课程目标是一致的,即知识技能、数学思考、问题解决、情感态度。
题中的教学目标包含了__________(概括材料),符合/违背了这一要求。
②从学生特征切入。
学生特征主要包括学生的一般特征(学生学习的心理、生理及社会特点)、初始能力和学习风格。
题中的教学目标包含了_________(概括材料),符合/违背了这一要求。
③从学习内容切入。
课堂教学目标的确立取决于学习内容的类型、阶段、难易程度及教学的重点和难点。
题中的教学目标包含了_________(概括材料),符合/违背了这一要求。
④反映数学的学科特点,反映当前学习内容的本质。
题中的教学目标包含了_______(概括材料),符合/违背了这一要求。
⑤格式要规范,用词要考究。
题中的教学目标包含了_______(概括材料),符合/违背了这一要求。
⑥注意教学目标的层次性。
一般包含四基、四能和情感态度,题中的教学目标包含了__________(概括材料),符合/违背了这一要求。
⑦实在具体,不浮华。
要防止教学目标“高大全”,有的甚至是“假大空”,目标“远大”、空洞,形同虚设。
题中的教学目标包含了________(概括材料),符合/违背了这一要求。
考点2:教学过程的评析(宏观评析)从以下5方面着手作答:①导入:教学过程中导入方式的选择是否合理?优点和缺点各是什么,形成的课堂氛围如何。
②教学方式与作用体现:教师:教学方法、引导者、合作者、组织者③学习方式与作用体现:学生:学习方式、学生为主体④点评:学生的回答是否得到及时评价,评价的主体和评价的内容上是否多样化,评价结果和评价过程是否得到体现;⑤提问技巧:在数学教学活动中,教师的课堂提问是否层层递进,是否具有启发性。
(从要求的角度进行评析)类型一:仅从“导入”角度进行评析(优点)案例中X 老师采用了情境导入/故事导入/图片导入,该种导入方式打破数学传统枯燥的学习模式,激发学生学习兴趣,进一步让学生体会数学源于生活和生活有着密切的联系。
高中数学人教A版必修3《概率与统计》中的高考热点问题

上一页
图2
返回首页
下一页
高三一轮总复习
(1)求频率分布直方图中 a 的值; (2)估计该企业的职工对该部门评分不低于 80 的概率; (3)从评分在[40,60)的受访职工中,随机抽取 2 人,求此 2 人的评分都在[40,50) 的概率. [规范解答] (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以 a =0.006.3 分 (2)由所给频率分布直方图知,50 名受访职工评分不低于 80 的频率为(0.022 +0.018)×10=0.4,所以该企业职工对该部门评分不低于 80 的概率的估计值为 0.4.6 分
上一页
返回首页
下一页
高三一轮总复习
[规律方法] 1.本题(1)中,指针连续地变化,是几何概型,第(2)问是顾客获 得优惠券的各种可能,是有限的可以一一列举的离散问题,满足古典概型.
2.题目以“市场销售手段”为背景,认真审题,实现知识迁移,恰当选择 概型是解题的关键.
上一页
返回首页
下一页
高三一轮总复习
下一页
高三一轮总复习
[温馨提示] 1.本题的易失分点: (1)不能利用频率分布直方图的频率求出 a 值. (2)求错评分落在[50,60),[40,50)间的人数. (3)没有指出基本事件总数与事件 M 包含的基本事件个数,或者只指出事件 个数,没有一一列举出 10 个基本事件及事件 M 包含的基本事件,导致扣 3 分或 2 分.
18
30
总计
36
24
60
2分
在患“三高”疾病人群中抽 9 人,则抽取比例为396=14,
所以女性应该抽取 12×14=3(人).5 分
上一页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学答题模板
选择填空题
1、易错点归纳:
九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2、答题方法:
选择题十大速解方法:
(十大解题技巧你会了没)
排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;
填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题
专题一、三角变换与三角函数的性质问题
1、解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
2、构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规性。
专题二、解三角形问题
1、解题路线图
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求围;③确定角的取值围。
2、构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题
1、解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规。
专题四、利用空间向量求角问题
1、解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
专题五、圆锥曲线中的围问题
1、解题路线图
①设方程。
②解系数。
③得结论。
2、构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得围:通过求解含目标变量的不等式,得所求参数的围。
④再回顾:注意目标变量的围所受题中其他因素的制约。
专题六、解析几何中的探索性问题
1、解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
2、构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。
定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规性。
专题七、离散型随机变量的均值与方差
1、解题路线图
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
2、构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
专题八、函数的单调性、极值、最值问题
1、解题路线图
(1)①先对函数求导;②计算出某一点的斜率;③得出切线方程。
(2)①先对函数求导;②谈论导数的正负性;③列表观察原函数值;④得到原函数的单调区间和极值。
2、构建答题模板
①求导数:求f(x)的导数f′(x)。
(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规性。