理论力学(第二版)参考答案上部
理论力学 第二版 (金尚年 马永利 著) 高等教育出版社 课后答案 1-4章答案

G F
课
w.
θ
cos − − cos
kh
运动方程为 ̇ 2 Fr 0 ̈ − r mr ̈ 2r ̇ F ̇ mr 由径向方程 ̇ ̈ r 2 r 方程的解为 r Ae t Be −t 带入初始条件
da
x
R2 z2 r2
课
2.9 体系的动能为
后
̇ sin cos 0 ̈ sin 2 2mr 2 ̇ mr 2
网
−
∂L ∂
ww
w.
kh
da
w.
co
m
5
d ∂L − ∂L ̇ dt ∂ ∂ 2 ̈ ̇ 0 ̇ mr 2mrr 2.11 体系的动能为 T 势能为 V mgz mg R 2p 该体系只有一个自由度,取R为广义坐标,拉各朗日函数为 ̇2 2 ̇ 2 R22 R L m R R − mg R 2 2p p2 相应的拉各朗日方程为 d ∂L − ∂L ̇ dt ∂R ∂R ̇2 mg ̈ 1 R 2 2m R mR R − mR 2 2 2p p p2 ̇ 0,R ̈ 0则 对于平衡点R g R 2p 2 m R ̇ 2 R2 ̇2 z ̇ 2 2 ̇2 2 m R ̇ 2 R22 R R 2 p2
课
后
答 案
网
Chap3
7
ww
w.
kh
da
w.
co
m
3.1 tanh
L r2
dr
a r2
2mE
L r2
−
L r2
dr
2ma−L 2 r2
E
金尚年版理论力学第二版答案

v E v E = 0 er R
v v 和均匀磁场 B = B 0 k
v &v v v & & v = R e r + R ϕ eϕ + z e z
qE && & & mR − mRϕ 2 − 0 − qB0 Rϕ = 0 R 化简得: d qB & (mR2ϕ + 0 R2 ) = 0 2 dt d & dt (mz) = 0
4R 2 & 2 m &2 mg 2 2 &2 ( R + R θ + 2 R )− R L = T −V = 2 a a 代入完整保守体系的拉格朗日方程,并化简得
4 R 2 && 8 R & 2 2 gR 1 + R + 2 R − R θ& 2 + = 0 2 a a a && && R θ + 2θ R = 0
M R o'
m 2 & & T = ( r + r 2ϕ 2 ) 2
由几何关系:
∴
V =0
θ ωt
o
x
r = cos θ , ϕ = θ + ω t 2R m L = T −V = ( − 2 R sin θ ⋅ θ& ) 2 + (θ& + ω ) 2 ⋅ ( 2 R cos θ ) 2 2 = 2 mR 2 ⋅ (θ& 2 + 2ω θ& cos 2 θ + ω 2 cos 2 θ )
α
2.7 用拉格朗日方程写出习题1.21的运动微分方程 解:建立柱坐标系,取R,ϕ 为广义坐标
陈世民理论力学简明教程(第二版)课后答案-精选.pdf

。
解:建立自然坐标系有:
a
d e
dt
2
en
且: d
dt d
2
2k
2kd
ds 2k
dt
ds 2k
ds dt
d
d 2k
dt
积分得: ue 2k (代入 0 u ) 又因为: y 2 2px 在 (p 2 ,p) 点处斜率:
k 1 dy1
d 2px
dx
x
p 2
dx
在 ( p 2 , p) 点处斜率:
p 1
水平线之间的夹角又为 角度时所需时间。
解:依牛顿第二运动定律有: m x mk x , m y mg mk y
积分并代入初始条件: t 0 时: 0x 0 sin , 0 y
解得: x 0 cos e kt , y ( 0 sin
g )e
kt
g
k
k
当再次夹角为 时: y tan
x
0 cos
可解出: t
无滑动地滚动,如图所示,求圆盘边上 M点的深度 υ和加速度 α(用
参量 θ,Ψ表示)。
解:依题知:
Байду номын сангаас
r Rr
r Rr
且 O点处: ek cos( )er sin( )e
则:
rM rO O rOM
(R r)eR rer
[(R r)cos(
) r]er (R r)sin(
)e
rM
rM (
)sin(
)er [(R r)cos(
由 r e t,
t 得: r e t ,
且设: rer r e
则: 得: e
en
r2
2
华科理论力学教材(第2版2020年7月第4次印刷)课后习题解答(z2)

1.4.2. 构架整体、AB 部分、弯杆 BC。 P A
B
C
解:2.
1.4.3. 三铰拱整体、AB 部分、BC 部分。 P
F
B
A
C
解:3.
F A
B
F' CBy
FCBy
P
F' CBx
FA
FCBx
FCy
C FCx
目录
1.4.4. A 形构架整体、AB 杆、BC 杆、DE 杆及销钉 B(力 P 作用在销钉 B 上)。
的大小。
FR
F2 60
F1
60
F3
题 2.3 图
目录
解:(1) R F1 F2 F3 上式向 F2 所在方向投影得:
1 2
R
F2
F1
cos
30
∴ R 2F2 2F1
3 100 2173 2
3 200N 2
∴ R 的大小为 200N,指向与假设相反。
( 2 ) Z 0 , ( 设 Z ' 为 F2 的 正 方 向 ) F2 F1 cos 30 0
上的 G 通过三力汇交法得到 O 处的合力为 45 度,则本次作业也认为是正确的
1.4.9.上题中,若销钉 A、C 均与 AC 杆固连,画出 AC 杆受力图。又若销钉 A、B 均与 AB 杆固连,画出 AB 力图。 解:[9.1]若销钉 A、C 均与 AC 杆固连,画出 AC 杆受力图
F
' A
A
F地
题第一步,只要求真解在受力图的可能范围内,通过以后计算可知,销钉 B 对构件 BA 的作
用力为 0,故可假设为任何方向。 1.4.11. 机构整体、连杆 AB、圆盘 O、滑块 B。
理论力学(周衍柏第二版)思考题习题答案

为常数。我们对②式两边求导 ④
由于③=④,所以 ⑤
对⑤式两边积分 ⑥ ⑦
以雨滴下降方向为正方向,对①式分析 ⑧
( 为常数)
当 时, ,所以
第三章习题解答
长为 的均质棒,一端抵在光滑墙上,而棒身则如图示斜靠在与墙相距为 的光滑棱角上。求棒在平衡时与水平面所成的角 。
解 如题3.2.1图所示,
均质棒分别受到光滑墙的弹力 ,光滑棱角的弹力 ,及重力 。由于棒处于平衡状态,所以沿 方向的合力矩为零。即 ①
由①②式得: 所
一均质的梯子,一端置于摩擦系数为 的地板上,另一端则斜靠在摩擦系数为 的高墙上,一人的体重为梯子的三倍,爬到梯
的顶端时,梯尚未开始滑动,则梯与地面的倾角,最小当为若干
解之得
微积分常数,取 ,故
令
所以
第二章习题
求均匀扇形薄片的质心,此扇形的半径为 ,所对的圆心角为2 ,并证半圆片的质心离圆心的距离为 。
解 均匀扇形薄片,取对称轴为 轴,由对称性可知质心一定在 轴上。
有质心公式
设均匀扇形薄片密度为 ,任意取一小面元 ,
又因为
所以
对于半圆片的质心,即 代入,有
如自半径为 的球上,用一与球心相距为 的平面,切出一球形帽,求此球形冒的质心。
直线 在一给定的椭圆平面内以匀角速 绕其焦点 转动。求此直线与椭圆的焦点 的速度。已知以焦点为坐标原点的椭圆的极坐标方程为
式中 为椭圆的半长轴, 为偏心率,常数。
解:以焦点 为坐标原点
则 点坐标
对 两式分别求导
故
如图所示的椭圆的极坐标表示法为
对 求导可得(利用 )又因为
即
所以
故有
陈世民理论力学简明教程(第二版)课后答案

第零章 数学准备一 泰勒展开式 1 二项式的展开()()()()()m23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时, ()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线>性问题的转化。
在理论力问题的简单处理中,一般只需近似到三阶以内。
二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。
2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 ,4 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。
非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。
解出特解为1λ,2λ。
*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) "(3) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。
理论力学(周衍柏 第二版)第2章习题解答

垂直 x 轴方向有:
mv0 = mv1 cosθ1 + mv2 cosθ2 ①
可知
0 = mv1 sinθ1 − mv2 sinθ2 ②
( ) v02 = v12 + v22 + 2v1v2 cos θ1 + θ2 ③
整个碰撞过程只有系统内力做功,系统机械能守恒:
由③④得
1 2
mv02
=
1 2
mv12
求绕此轴的动量矩。
2.6 一炮弹的质量为 M1 + M 2 ,射出时的水平及竖直分速度为U 及V 。当炮弹达到最高点 时,其内部的炸药产生能量 E ,使此炸弹分为 M1 及 M2 两部分。在开始时,两者仍沿原方
向飞行,试求它们落地时相隔的 距离,不计空气阻力。
2.7 质量为 M ,半径为 a 的光滑半球,其低面放在光滑的水平面上。有一质量为 m 的 质点 沿此半球面滑下。设质点的初位置与球心的连线和竖直向上的直线间所成之角为α ,并且 起始时此系统是静止的,求此质点滑到它与球心的连线和竖直向上直线间所成之角为θ 时θ
机枪后退的速度为
M ′ u − (M + M ′)2 − M 2 μg
M
2mM
2.16 雨滴落下时,其质量的增加率与雨滴的表面积成正比例,求雨滴速度与时间的关系。
2.17 设用某种液体燃料发动的火箭,喷气速度为 2074 米/秒,单位时间内所消耗的燃料为
原始火箭总质量的 1 。如重力加速度 g 的值可以认为是常数,则利用此种火箭发射人造太 60
竖直方向
vx = u cosθ − V ③
vy = usiaθ ④ 在 m 下滑过程中,只有保守力(重力)做功,系统机械能守恒: (以地面为重力零势能面)
《工程力学(第2版)》课后习题及答案—理论力学篇

第一篇理论力学篇模块一刚体任务一刚体的受力分析(P11)一、简答题1.力的三要素是什么?两个力使刚体平衡的条件是什么?答:力的三要素,即力的大小、力的方向和力的作用点。
两个力使刚体处于平衡状态的必要和充分条件:两个力的大小相等,方向相反,作用在同一直线上。
2.二力平衡公理和作用与反作用公理都涉及二力等值、反向、共线,二者有什么区别?答:平衡力是作用在同一物体上,而作用力与反作用力是分别作用在两个不同的物体上。
3.为什么说二力平衡公理、加减平衡力系公理和力的可传性都只适用于刚体?答:因为非刚体在力的作用下会产生变形,改变力的传递方向。
例如,软绳受两个等值反向的拉力作用可以平衡,而受两个等值反向的压力作用就不能平衡。
4.什么是二力构件?分析二力构件受力时与构件的形状有无关系。
答:工程上将只受到两个力作用处于平衡状态的构件称为二力构件。
二力构件受力时与构件的形状没有关系,只与两力作用点有关,且必定沿两力作用点连线,等值,反向。
5.确定约束力方向的原则是什么?活动铰链支座约束有什么特点?答:约束力的方向与该约束阻碍的运动方向相反。
在不计摩擦的情况下,活动铰链支座只能限制构件沿支承面垂直方向的移动。
因此活动铰链支座的约束力方向必垂直于支承面,且通过铰链中心。
6.说明下列式子与文字的意义和区别:(1)12=F F ,(2)12F F =, (3)力1F 等效于力2F 。
答:若12=F F ,则一般只说明两个力大小相等,方向相反。
若12F F =,则一般只说明两个力大小相等,方向是否相同,难以判断。
若力1F 等效于力2F ,则两个力大小相等,方向和作用效果均相同。
7.如图1-20所示,已知作用于物体上的两个力F1与F2,满足大小相等、方向相反、作用线相同的条件,物体是否平衡?答:不平衡,平衡是指物体相对于惯性参考系保持静止或匀速直线运动的状态,而图中AC 杆与CB 杆会运动,两杆夹角会在力的作用下变大。
二、分析计算题1.试画出图1-21各图中物体A 或构件AB 的受力图(未画重力的物体重量不计,所有接触均为光滑接触)。