流体物性参数表

合集下载

流体力学实验报告

流体力学实验报告

实验一 柏努利实验一、实验目的1、通过实测静止和流动的流体中各项压头及其相互转换,验证流体静力学原理和柏努利方程。

2、通过实测流速的变化和与之相应的压头损失的变化,确定两者之间的关系。

二、基本原理流动的流体具有三种机械能:位能、动能和静压能,这三种能量可以互相转换。

在没有摩擦损失且不输入外功的情况下,流体在稳定流动中流过各截面上的机械能总和是相等的。

在有摩擦而没有外功输入时,任意两截面间机械能的差即为摩擦损失。

流体静压能可用测压管中液柱的高度来表示,取流动系统中的任意两测试点,列柏努利方程式:∑+++=++f h p u g Z P u g Z ρρ2222121122对于水平管,Z 1=Z 2,则 ∑++=+f h p u p u ρρ22212122若u 1=u 2, 则P 2<P 1;在不考虑阻力损失的情况下,即Σh f =0时,若u 1=u 2, 则P 2=P 1。

若u 1>u 2 , p 1<p 2;在静止状态下,即u 1= u 2= 0时,p 1=p 2。

三、实验装置及仪器图2-2 伯努利实验装置图装置由一个液面高度保持不变的水箱,与管径不均匀的玻璃实验管连接,实验管路上取有不同的测压点由玻璃管连接。

水的流量由出口阀门调节,出口阀关闭时流体静止。

四、实验步骤及思考题3、关闭出口阀7,打开阀门3、5,排出系统中空气;然后关闭阀7、3、5,观察并记录各测压管中的液压高度。

思考:所有测压管中的液柱高度是否在同一标高上?应否在同一标高上?为什么?4、将阀7、3半开,观察并记录各个测压管的高度,并思考:(1)A、E两管中液位高度是否相等?若不等,其差值代表什么?(2)B、D两管中,C、D两管中液位高度是否相等?若不等,其差值代表什么?5、将阀全开,观察并记录各测压管的高度,并思考:各测压管内液位高度是否变化?为什么变化?这一现象说明了什么?五、实验数据记录.液柱高度 A B C D E阀门关闭半开全开实验二 雷诺实验一、实验目的1、 观察流体在管内流动的两种不同型态,加强层流和湍流两种流动类型的感性认识;2、掌握雷诺准数Re 的测定与计算;3、测定临界雷诺数。

换热器设计书

换热器设计书

目录1 设计条件及主要物性参数表设计题目某制药厂在生产工艺过程中,需将乙醇液体从 75℃冷却到 45℃ ,乙醇的流量为W kg/h;冷却介质采用 21℃的河水;要求换热器的管程和壳程压降不大于30 kPa,试设计并选择管壳式换热器;操作条件1乙醇:入口温度75℃出口温度45℃2冷却介质:河水入口温度21℃出口温度27℃3允许压降:不大于30 kPa2 概述与设计方案简介]1[换热器的选择涉及因素很多,如介质的腐蚀性及其它特性、操作温度与压力、换热器的热负荷、管程与壳程的温差、检修与清理要求等;具体选择时应综合考虑各方面因素;对每种特定的传热工况,通过优化选型会得到一种最适合的设备型号;如果将这个型号的设备应用到其他工况,则传热效果可能会改变很大;因此,针对具体工况选择换热器类型,是很重要和复杂的工作;对管壳是换热器的设计,应从下方面考虑;冷却剂出口温度的确定]2[在水作为冷却剂时,为便于循环操作、提高传热推动力、冷却水的进、出口温差一般控制在5℃~10℃左右;在本次设计中将出口温度设计为27℃;流动空间的选择]2,3[确定流动空间的基本原则:1不洁净和易结垢的流体宜走管程,因为管程清洗比较方便;2腐蚀性的流体宜走管程,以免管子和壳体同时被腐蚀,且管程便于检修与更换;3压力高的流体宜走管程,以免壳体受压,可节省壳体金属消耗量;4被冷却的流体宜走壳程,可利用壳体对外的散热作用,增强冷却效果;5饱和蒸汽宜走壳程,以便于及时排除冷凝液,且蒸汽较洁净,一般不需清洗; 6有毒易污染的流体宜走管程,以减少泄漏量;7流量小或粘度大的流体宜走壳程,因流体在有折流挡板的壳程中流动,由于流速和流向的不断改变,在低ReRe>100下即可达到湍流,以提高传热系数;8若两流体温差较大,宜使对流传热系数大的流体走壳程,因壁面温度与α大的流体接近,以减小管壁与壳壁的温差,减小温差应力;根据以上原则可以确定河水走管程,乙醇走壳程;管程和壳程数的确定]3[当换热器的换热面积较大而管子又不能很长,为提高流体在管内的流速,需将管束分程;但程数过多,导致管程流动阻力和动力能耗增大,同时使平均传热温差下降,设计时应权衡考虑;管壳式换热器系列标准中管程数有1、2、4、6四种;在本次设计选用了管程为2;当温差校正系数Φt △小于时应采用多壳程;然而在本次设计中Φt △=,采用了单壳程;设备结构的选择根据本次题目的要求应当选用管壳式换热器;3 工艺设计计算]4[乙 醇: 入口温度75℃ 出口温度45℃ 冷却介质:河水 入口温度21℃ 出口温度27℃ 允许压降:不大于30 kPa计算和初选换热器的规格(1)计算热负荷和冷却水流量:Q =)(21T T C W ph h =20000××103×75-45÷3600= W)(12c t t C QW ph -==)(21-271018.436007.4596663⨯⨯⨯= Kg/h (2)计算两流体的平均温度差;暂按单壳程,多管程计算,逆流时平均温度差为:1212/t t Int t t m ∆∆∆-∆=∆=6.3427-7521-45n 27-75-21-45=I )()( ℃而:P=11.0217521271112=--=--t T t t R 5212745751221=--=--=t t T T 由图4-19查得:t ∆Φ= 则:56.336.3497.0t m =⨯=∆℃ (3)假设K=300W/2m .℃ 则:S=m t ∆K Q=2m 7.4556.333007.459666=⨯实际传热面积:S 0=dL n π=256×××=2m若选择该型号的换热器,则要求过程的总传热系数为:W S Q K 25.30956.3329.447.459666t m 0=⨯=∆=选/2m .℃核算压力降(1)管程压力降:p N F t 21i p p p )(∆+∆=∆∑ 其中25.1t ==P N F管程流通面积:m015.00226.02i ==i d m ARe i =)(1312710923.02.99781.0015.03湍流=⨯⨯⨯=-μρi i u d设管壁粗糙度mm 1.0=ε,007.0151.0d ==iε由第一章中e -R λ关系图中查得λ= 则: 所以:∑=⨯⨯+=∆Pa 1059925.19812552pi)((2)壳层压力降:S S N F p p p∑∆+∆=∆)(/2/10其中15.1=S F 1=S N取h= 913.031h =-=-=L N B 壳程流通面积为:2000418.0)019.0195.0(3.0)(m d n D h A c =⨯-⨯=-=所以:Pa p 538217.07.765)19(1964.04.02/1=⨯⨯+⨯⨯⨯=∆ 计算表明管程和壳程压力都能满住题设的要求;核算总传热系数1管程对流传热系数i α:./(8.383936.613127015.06064.0023.0Pr Re 023.024.08.04.08.0i m W d iii=⨯⨯⨯==λα℃(2)壳程对流传热系数0α: 取换热器列管之中心距mm t 25=则: 取95.0)(14.0=wu u 则:64895.024.105861023.01696.036.03155.00=⨯⨯⨯⨯=α (3)污垢热阻:参考附录管内外侧污垢热阻分别取:2si 00052.0m R =.℃/W 200017.0m R so =.℃/W(4)总传热系数0K :管壁热阻可忽略时,总传热系数为:370158.383919151900052.000017.064811110=⨯+⨯++=+++=ii o i o siso d d d d R R K ααW/m 2.℃则有:2.13093700==选K K 由此可得设计选型满足要求;4辅助设备的计算和选型管径初选初取水经济流速 s m u 5.1=由于125mm 不是标准管径,因此确定 mm d l 150= 符合经济流速范围故确定:s m u mm d l /04.1,150==压头He在水槽液面及压力表处列柏努利方程 取mm 15.0=ε,001.0/=d ε,查图得 局部阻力:流入换热器()()91.07.0/15.011222221=-=-=A A ξ流出换热器()()48.07.0/15.015.015.02212=-=-=A A ξ 故 64.2148.091.05.9375.05.8=+++⨯+=∆ξ 换热器压降根据v q 和He 以及IS 型离心泵系列特性曲线可以选择型号为IS100-80-125的离心泵;5设计结果汇总表1乙 醇: 入口温度75℃ 出口温度45℃ 2冷却介质:河水 入口温度21℃ 出口温度27℃3允许压降:不大于30 kPa6设计评述换热器是石油、化工中最重要的热工设备,对换热器进行科学计算,对换热器的结构进行合理的设计,是换热器性能的重要保证;换热器的热工计算是换热器的设计基础,也是换热器结构设计的前提,因此在换热器的设计中,只有经过对换热器结构参数的不断调整,反复计算,才能使换热器的性能更高,设计更加合理;另外,在换热器设计中要综合考虑多种因素,如介质流速,压力降、膜传热系数、以及面积余量等,并尽量选择标准换热器以减少投资;还应根据实际工程需要结合实际工作经验方可设计出经济合理的换热器;参考文献:1于风叶,史红刚,管壳式换热器的设计原则,石油化工设计,2009 26 19~212何潮洪,冯宵,化工原理M,北京,科学出版社,20013日尾花英郎着,徐中权译,热交换器手册M,北京,烃加工出版社,19874夏清,贾绍义,化工原理上册,天津大学出版社,2011。

空气物性参数表

空气物性参数表

物性参数:物性参数主要是材料在制工方面能否达到要求的数据。

不同材料有不同的物性参数。

比如尼龙,就有很多数据要求,有冲击强度,拉伸强度,融溶指数等等。

传热学中的参数:工程热力学研究的对象是热能转化成机械能的规律和方法,以及提高转化效率的途径。

热力学第一定律说明了能量在传递和转化时的数量关系,即某一物体失去的热量必然等于另一物体所得到的热量。

热力学第二定律是研究能量传递和转移过程进行的方向、条件和深度等规律问题,其中最根本的是关于方向的问题。

热不可能自发地、不付代价地、从低温物体传至高温物体。

1. 导热:也称热传导,是指物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递现象。

例如,物体内部热量从温度较高的部分传递到温度较低的部分,以及温度较高的物体把热量传递给与之接触的温度较低的另一物体都是导热现象。

2. 热对流:简称对流,是指流体内部各部分之间发生相对位移,冷热流体相互掺混而引起的热量传递现象。

热对流现象仅能发生在流体内部,而且必然伴随有导热现象。

3. 热辐射:物体通过电磁波来传递能量的方式称为辐射。

物体会因各种原因发出辐射能,其中因热的原因而发出辐射能的现象称为热辐射。

(由物体表面直接向外界发射可见和不可见射线,在空间传递能量的现象称为热辐射。

它是一种非接触传递能量的方式。

)4. 温度:是指物体冷热的程度。

是指物质微观粒子(分子、电子等)热运动激烈程度的衡量。

5. 导热系数λ(导热率):它表示物质导热能力的大小。

由实验取得。

单位:W/m.℃6. 换热系数α(放热系数、给热系数):表示当流体与壁面间的温差为1℃时,在单位时间内,通过单位面积的热量。

放热系数的大小反映出对流换热过程的强烈程度。

单位:W/m2.℃,但是与导热系数不同,它不是物性参数。

7. 传热系数k:传热温差为1℃时,在单位时间内,通过单位面积的热量。

它反映传热过程的强烈程度。

单位:W/m2.℃8. 导温系数α(热扩散率):表示物体中热扩散的快慢程度。

换热器换热面积选型计算方法

换热器换热面积选型计算方法
数下降。
系列标准中,采用的h(mm)值为: • 固定管板式:150,300,600; • 浮头式:150,200,300,480和600.
七、外壳直径的确定
要求:壳体内径等于或稍大于管板的直径。
单程管壳体内径:
D t(nc 1) 2b' 式中: t—管心距,m;nc —横过管束中心线的管数; b’—管束中心线上最外层管的中心至壳体内壁的距离.
的原则,决定壳程数。 ⑤ 依据总传热系数的经验值范围,或按生产实际情况,
选定总传热系数K值。 ⑥ 由传热速率方程,初步算出传热面积,并确定换热器
的基本尺寸。
2、计算管程、壳程压强降
根据初定的设备规格,计算管程、壳程流体的流速和压 强降。验算结果是否满足工艺要求。若压强降不符合要求, 要调整流速,再确定管程数或折流板间距,或选择另一规 格的换热器,重新计算压强降直至满足要求。
管程数m计算: m u u'
u——管程内流体的适宜流速;u’——管程内流体的实际流体。
2.壳程数
当温差校正系数 t 低于0.8,可采用壳方多程。
如:在壳体内安装一块与管束平行的隔板,流体在壳体 内流经两次,称为两壳程。
但由于隔板在制造、安装和检修等方面都有困难,故一 般不采用壳方多程的换热器,而是几个换热器串联使用
介质
植物油 井水
性质
热流体 冷流体
主要物性参数表
密度 kg/m3
950 995.7
比热 kJ//(kg·℃)
2.261 4.174
粘度 Pa·s
0.742× 10-3 0.801× 10-3
热导率 W/(m·
℃)
0.172
0.618
三、估算传热面积
1.热流量

化工原理第四章 1-2

化工原理第四章 1-2

③床层比表面
aB
=
S V床
=
S(1 Vp
e
)
=
a(1 - e )
3.流体通过固定床的压降
几何边界复杂,无法解析解,要靠实验 数学模型法主要步骤:
3.1 简化模型(数模思想) 过程特征: ①爬流,表面剪切力为主,
形体力(压差力)为次 ②空隙中实际速度与空隙大小有关
简化原则: 模型与原型①表面积要相等
e3
e
)2
µu
=
K
a2 (1 -
e3
e
)2
µu
DP L
=
a2 (1 -
5 e3
e
)2
µu
适用范围:Re’<2
床层雷诺数
4e
u
宽范围:
a(1 - e ) e
Re'= deu1r = ru 4µ a(1 - e )µ
细管
hf
=
DP
r
= l Le
de
u12 2
DP L
=
l
Le L
ru12
2de
=
l
Le a(1 -
第四章 流体通过颗粒层的流动
(1)
化工定床—由许多固体颗粒堆积成的静止颗粒层
1.2 固定床阻力的影响因素
①流体物性:ρ,µ ②操作因素: u ③设备因素: 颗粒直径,
颗粒大小分布, 空隙大小
2 颗粒床层的特性
2.1 单颗粒的特性
球形颗粒,只需一个参数dp
颗粒特性:体积
L
u=0.9m/s时 DP = 2300Pa / m 。
L
求:CO以u=0.5m/s通过时的 DP 。
L

(化工原理 谭天恩 第五章

(化工原理     谭天恩        第五章

x2 1 .2 ~ 5 d
2.流体在列管式换热器壳程的流动
3 1 2 3 6 5 4
4 5 6 7
当管外装有割去25%直径的圆缺形折流挡板时: 可由图5-30计算α。当Re=2×(103~106)时,亦可用下式计算
Nu 0.36 Re
t1 t 2 t 定性温度: m 2
0.55
Pr W
3.圆形直管中的过渡区范围
当(2000<Re<10000)时,可用式(5-63)算出α值, 然后再乘校正系数f2
6 105 f2 1 1.8 Re
4.弯曲管道内
(5-67)
d 1 1.77 R
(5-68)
5.非圆形直管强制湍流 当量直径法 对于套管环隙,有专用的关联式
第四节 给热系数
一、影响给热系数α 的因素
1、引起流动的原因(自然对流、强制对流)
自然对流:由于流体内部密度差而引起流体的流动。
强制对流:由于外力和压差而引起的流动。
强 自
2、流体的物性
ρ,μ,λ,cp
3、流动形态——层流和湍流
4、传热面的形状,大小和位置
湍 层
•形状:如管、板、管束等; •大小:如管径和管长等;
•位置:如管子的排列方式(管束走正四方形和三角形排 列);管或板是垂直放置还是水平放置。 5、是否发生相变——蒸汽冷凝、液体沸腾
相变 无相变
二、给热系数经验关联式的建立
1、因此分析
f (u, l, , , c p , , gt )
式中l——特性尺寸; u——特征流速。 基本因次:长度L,时间T,质量M,温度θ 总变量数:8个 由π定律:8-4=4,可知有4个无因次数群。

第一篇 第三章 储层流体的物理特性

第一篇 第三章  储层流体的物理特性

第三章储层流体的物理特性所谓储层流体,这里指的是储存于地下的石油、天然气和地层水。

其特点是处于地下的高压、高温下,特别是其中的石油溶解有大量的气体,从而使处于地下的油气藏流体的物理性质与其在地面的性质有着很大的差别。

例如,当储层流体从储层流至井底,再从井底流至地面的过程中,流体压力、温度都会不断降低,此时会引起一系列的变化—原油脱气、体积收缩、原油析蜡;气体体积膨胀、气体凝析出油;油田水析盐—即离析和相态转化过程,而这一系列变化过程对于油藏动态分析、油井管理、提高采收率等都有重要的影响。

又如,进行油田开发设计和数值模拟时,必须掌握有关地下流体的动、静态物理参数,如石油和天然气的体积系数、溶解系数、压缩系数、粘度等;在进行油气田科学预测方面,如在开采初期及开采过程中,油田有无气顶、气体是否会在地层中凝析等,都需要对油气的物理化学特性及相态变化有深刻的认识,才能作出判断。

因此可以毫不夸张地说,不了解石油、天然气和水的性质及其问的相互关系,不掌握它们的高压物性参数,那么,科学地进行油田开发、采油及油气藏数值模拟等便无从讲起。

第一节油气藏烃类的相态特征石油和天然气是多种烃类和非烃类所组成的混合物。

在实际油田开发过程中,常常可以发现:在同一油气藏构造的不同部位或不同油气藏构造上同一高度打井时,其产出物各不相同,有的只产纯气,有的则油气同产。

在油气藏条件下,有的烃是气相,而成为纯气藏;有的是单一液相的纯油藏;也有的油气两相共存,以带气顶的油藏形式出现。

在原油从地下到地面的采出过程中,还伴随有气体从原油中分离和溶解的相态转化等现象。

那么,油藏开采前烃类究竟处于什么相态,为什么会发生一系列相态的变化,其主要原因是什么?用什么方式来描述烃类的相态变化?按照内因是事物变化的根据,外因则是事物变化的条件,可以发现油藏烃类的化学组成是构成相态转化的内因,压力和温度的变化是产生相态转化的外部条件。

因此,我们从研究油藏烃类的化学组成人手,然后再进一步研究压力温度变化时对相态变化的影响。

流体力学总结

流体力学总结

流体力学总结第一章流体及其物理性质1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用,流体就将继续变形,直到外力停顿作用为止。

流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。

4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。

稀薄空气和激波情况下不适合。

5. 密度0limV m m V V δδρδ→==重度0lim V G Gg V Vδδγρδ→===比体积1v ρ=6. 相对密度:是指*流体的密度与标准大气压下4︒C 时纯水的密度〔1000〕之比w wS ρρρ=为4︒C 时纯水的密度13.6Hg S = 7. 混合气体密度1ni ii ρρα==∑8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。

体积压缩系数的倒数为体积模量1P PK β=9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。

10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不可压缩流体。

气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律:du dyτμ=黏度du dyτμ=流体静止粘性无法表示出来,压强对黏度影响较小,温度升高,液体黏度降低,气体黏度增加μυρ=。

满足牛顿内摩擦定律的流体为牛顿流体。

12. 理想流体:黏度为0,即0μ=。

完全气体:热力学中的理想气体第二章流体静力学1. 外表力:流体压强p 为法向外表应力,内摩擦τ是切向外表应力〔静止时为0〕。

2. 质量力〔体积力〕:*种力场对流体的作用力,不需要接触。

重力、电磁力、电场力、虚加的惯性力 3. 单位质量力:x y z Ff f i f j f k m==++,单位与加速度一样2m s 4. 流体静压强:1〕流体静压强的方向总是和作用面相垂直且指向该作用面,即沿着作用面的内法线方向2〕在静止流体内部任意点处的流体静压强在各个方向都是相等的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档