离散型随机变量的数学期望(均值)
2.3.1离散型随机变量的数学期望

3 0.73
(2)因为,X~B(3,0.7),所以,X的数学期望为
E ( X ) 3 0.7 2.1
射手 甲
8环 0.3
9环 0.1
10环 0.6
乙 Bqr6401@
0.2
0.5
0.3
四、应用举例
普 通 高 中 课 程 标 准
Liangxiangzhongxue
例3.一次单元测验由20个选择题构成,每个选择题 有4个选项,其中有且仅有一个选项是正确答案, 每题选择正确答案得5分,不作出选择或选错不得 分,满分100分。学生甲选对任一题的概率为0.9, 学生乙则在测验中对每题都从4个选择中随机地选 择一个,求学生甲和乙在这次英语单元测验中的成 绩的期望。
引例1: 某人射击10次,所得环数分别是:1,1,1,1,2, 2,2,3,3,4;则所得的平均环数是多少? 1111 2 2 2 3 3 4 X 2 10 换个角度看问题,把环数看成随机变量的概率分布 列: 权数
X P
X 1 4 10
1
4 10
2
3 10
3
2 10
p1 p1 p 2 p i p n 1 n
n 这说明数学期望与平均值具有相同的含义。
Bqr6401@
E ( X ) ( x1 x 2 x i x n )
1
三、概念形成
普 通 高 中 课 程 标 准
Liangxiangzhongxue
Bqr6401@
五、课堂练习
普 通 高 中 课 程 标 准
Liangxiangzhongxue
课本第64页,习题2-3A,1,2,3,4,5,6,7
xn
四随机变量的数字特征-文档资料

考点与例题分析
考点一:数学期望和方差的计算 考点二:随机变量函数的数学期望与方差 考点三:协方差、相关系数,独立性与相关性
考点一:数学期望和方差的计算
1.对分布已知的情形,按定义求; 2.对由随机试验给出的随机变量,先求出分布, 再按定义计算; 3.利用期望、方差的性质以及常见分布的期望和 方差计算; 4.对较复杂的随机变量,将其分解为简单随机变量, 特别是分解为(0,1)分布的随机变量和进行计算.
例1 一台设备由三大部件构成,在设备运转中各
部件需要调试整的概率相应为0.1,0.2,0.3,假设各 部件的状态相互独立,以X表示同时需要调整的部
件数,试求X的E(X)和D(X).
(二)方差 1.定义 D(X)=E{[X-E(X)]2}
均方差或标准差:(X)D (X)
2.计算 (1) 离散型: D (X ) [x k E (X )2p ]k.
(2)连续型: D (X )k [xE (X )]2f(x)d x.
(3) 常用计算公式:D(X)=E(X2)-E2(X).
(5)(6) XY 1; (6)(7)XY 1 X与Y以概率1线性相关,即存在a,b
且a≠0,使 P (Y a X b ) 1 .
(8)
1 P (Ya X b ) 1 (a0 ), XY
1 P (Ya X b ) 1 (a0 ), XY
(四)矩与混合矩
3.随机变量函数的数学期望
(1)X为随机变量,y=g(x)为实变量x的函数.
离散型:E (Y)E [g(X )] g(xk)p k;
连续型:E (Y ) E [g (X )] k g (x )f(x )d x .
离散型随机变量的均值、方差和正态分布

10.9 离散型随机变量的均值、方差和正态分布[知识梳理]1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2D(X )(a ,b为常数).3.两点分布与二项分布的均值、方差4.正态曲线(1)正态曲线的定义 函数φμ,σ(x )=12π·σe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线(μ是正态分布的期望,σ是正态分布的标准差).(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.5.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x (即x=a ,x =b ,正态曲线及x 轴围成的曲边梯形的面积),则称随机变量X 服从正态分布,记作X ~N (μ,σ2).(2)正态分布的三个常用数据 ①P (μ-σ<X <μ+σ)=0.6826; ②P (μ-2σ<X <μ+2σ)=0.9544; ③P (μ-3σ<X <μ+3σ)=0.9974.[诊断自测] 1.概念思辨(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数.( )(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(选修A2-3P 68T 1)已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73 B .4 C .-1 D .1 答案 A解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.故选A. (2)(选修A2-3P 75A 组T 1)正态分布密度函数为 φμ,σ(x )=18πe -x 28,x ∈(-∞,+∞),则总体的平均数和标准差分别为()A .0和8B .0和4C .0和2D .0和 2答案 C解析 根据已知条件可知μ=0,σ=2,故选C.3.小题热身(1)(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 答案 B解析 P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,则P (3<ξ<6)=12×(95.44%-68.26%)=13.59%.故选B.(2)(2018·张掖检测)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75 答案 B解析 设涂0个面的小正方体有x 个,涂1个面的小正方体有y 个,涂2个面的小正方体有z 个,涂3个面的小正方体有w 个,则有0·x +1·y +2·z +3·w =25×6=150,所以E (X )=0·x 125+1·y 125+2·z125+3·w 125=150125=65.故选B.题型1 与二项分布有关的期望与方差典例(2017·山西太原模拟)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种,方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖?解 (1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝ ⎛⎭⎪⎫3,110.设所得奖金为w 1元,则E (w 1)=3×110×30=9. 即顾客A 所奖资金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎪⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎪⎫1,310,设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5. 若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝⎛⎭⎪⎫2,310.设所得奖金为w3元,则E(w3)=2×310×15=9.结合(1)可知,E(w1)=E(w3)<E(w2).所以顾客A应该按方案a抽奖两次,按方案b抽奖一次.方法技巧与二项分布有关的期望、方差的求法1.求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B(n,p),则用公式E(ξ)=np,D(ξ)=np(1-p)求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).冲关针对训练(2014·辽宁高考)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216.分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72.题型2 离散型随机变量的均值与方差角度1 求离散型随机变量的均值与方差典例(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×( 14×23×34×23+34×13×34×23 )=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×( 34×13×14×13+14×23×14×13 )=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×( 34×23×34×13+34×23×14×23 )=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 角度2 均值与方差的应用问题典例(2016·全国卷Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16、17、18、19、20、21、22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n =19.方法技巧1.求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ可能的全部值.(2)求ξ取每个值的概率.(3)写出ξ的分布列.(4)由均值的定义求E(ξ).(5)由方差的定义求D(ξ).2.由均值与方差情况求参数问题的求解思路先根据题设条件将均值、方差用待求参数表示,再由已知均值与方差构建关于参数的方程(组),然后求解.3.利用均值、方差进行决策的方法:均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两个随机变量均值相同或相差不大,则可通过分析两个变量的方差来研究随机变量的离散程度或者稳定程度,方差越小,则偏离均值的平均程度越小,进而进行决策.提醒:均值E(X)由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值的平均水平.冲关针对训练(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×0.4+(1200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.题型3正态分布典例(2015·湖南高考)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为() (附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544) A.2386 B.2718 C.3413 D.4772答案 C解析由曲线C为正态分布N(0,1)的密度曲线可知题图中阴影部分的面积为P(0<X≤1)=12×0.6826=0.3413,又题图中正方形面积为1,故它们的比值为0.3413,故落入阴影部分的点的个数的估计值为0.3413×10000=3413.故选C.[条件探究]若将本典例中条件“曲线C为正态分布N(0,1)的密度曲线”变为“曲线C为正态分布N(-1,1)的密度曲线”,则结果如何?解对于正态分布N(-1,1),可知μ=-1,σ=1,正态曲线关于直线x=-1对称,故题图中阴影部分的面积为12×[P(-3<X≤1)-P(-2<X≤0)]=12×[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12×(0.9544-0.6826)=0.1359,所以点落入题图中阴影部分的概率P=0.13591=0.1359,投入10000个点,落入阴影部分的个数约为10000×0.1359=1359.方法技巧正态分布下两类常见的概率计算1.利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,曲线与x轴之间的面积为1.2.利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.冲关针对训练(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)=0.6826,P(μ-2σ<Z≤μ+2σ)=0.9544.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B (100,0.6826),所以E (X )=100×0.6826=68.26.1.(2017·浙江高考)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2) 答案 A解析 ∵E (ξ1)=0×(1-p 1)+1×p 1=p 1, 同理,E (ξ2)=p 2,又0<p 1<p 2, ∴E (ξ1)<E (ξ2).D (ξ1)=(0-p 1)2(1-p 1)+(1-p 1)2·p 1=p 1-p 21,同理,D (ξ2)=p 2-p 22.D (ξ1)-D (ξ2)=p 1-p 2-(p 21-p 22)=(p 1-p 2)(1-p 1-p 2).∵0<p 1<p 2<12,∴1-p 1-p 2>0, ∴(p 1-p 2)(1-p 1-p 2)<0. ∴D (ξ1)<D (ξ2).故选A.2.(2015·湖北高考)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t ) 答案 C解析 由题图可知μ1<0<μ2,σ1<σ2,∴P (Y ≥μ2)<P (Y ≥μ1),故A 错误;P (X ≤σ2)>P (X ≤σ1),故B 错误;当t 为任意正数时,由题图可知P (X ≤t )≥P (Y ≤t ),而P (X ≤t )=1-P (X ≥t ),P (Y ≤t )=1-P (Y ≥t ),∴P (X ≥t )≤P (Y ≥t ),故C 正确,D 错误.故选C.3.(2018·安徽模拟)某小区有1000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .46 答案 B解析 P (ξ>320)=12×[1-P (280<ξ≤320)] =12×(1-95.44%)=0.0228, 0.0228×1000=22.8≈23,∴用电量在320度以上的户数约为23.故选B.4.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.答案 1.96解析由题意得X~B(100,0.02),∴D(X)=100×0.02×(1-0.02)=1.96.[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝⎛⎭⎪⎫-1+132×12+⎝⎛⎭⎪⎫0+132×13+⎝⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a = -2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =a b 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B.10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.故选B. 二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元).故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x、y的值,并补全频率分布直方图;(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.解(1)由题意知,[25,30)内的频率为0.01×5=0.05,故x=100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y=100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7.X可取0,1,2,P(X=0)=C213C220=78190,P(X=1)=C113C17C220=91190,P(X=2)=C27C220=21 190,故X的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar 评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分, 评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar 评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X 表示抽到评分不低于9分的新生儿数,求X 的分布列及数学期望.解 (1)设A i 表示所抽取的3名新生儿中有i 名的评分不低于9分, “至多有1名新生儿的评分不低于9分”记为事件A ,则由表格中数据可知P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=14,由题意知随机变量X 的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164. 所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710. (2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35,方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974. 解 (1)由频率分布直方图可知[125,135)的频率为 1-10×(0.01+0.024+0.03+0.016+0.008)=0.12, 该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分). (2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13, 所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12,P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130,X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。
数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
离散型随机变量的均值与方差

(1)均值
称 E(X)=x1p1+x2p2+…+xipi+…+xnpn 为
随机变量 X 的均值或 数学期望 ,它反映了离
散型随机变量取值的 平均水平 .
(2)方差 n
称
D(X)=
∑
i=1
(xi-E(X))2pi 为随机变量 X 的
方差,它刻画了随机变量 X 与其均值 E(X) 的 平均偏离程度 ,其算术平方根 DX 为
2.方差的意义 D(X)表示随机变量 X 对 E(X)的平均偏离程 度,D(X)越大表明平均偏离程度越大,说 明 X 的取值越分散,反之 D(X)越小,X 的 取值越集中,由方差定义知,方差是建立 在期望这一概念之上的.在 E(X)附近,统 计中常用 DX来描述 X 的分散程度.
基础自测
1.随机变量 ξ 的分布列如下:
=E(ξ2)+4E(ξ)+4=11+12+4=27.
D(2ξ-1)=4D(ξ)=8,
Dξ-1= Dξ= 2.
探究提高 ξ 是随机变量,则 η=f(ξ)一般仍是 随机变量,在求 η 的均值和方差时,熟练应用 均值和方差的性质,可以避免再求 η 的分布列 带来的繁琐运算.
变式训练 2 袋中有 20 个大小相同的球,其中 记上 0 号的有 10 个,记上 n 号的有 n 个(n =1,2,3,4).现从袋中任取一球,ξ 表示所取 球的标号. (1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 例 1(2010·福建)设 S 是不等式 x2-x-6≤0 的解集,
整数 m,n∈S. (1)记“使得 m+n=0 成立的有序数组(m,n)” 为事件 A,试列举 A 包含的基本事件; (2)设 ξ=m2,求 ξ 的分布列及其均值 E(ξ).
高中数学同步教学 离散型随机变量的数学期望

的同一线性函数.特别地:
(1)当a=0时,E(b)=b,即常数的数学期望就是这个常数本身.
(2)当a=1时,E(X+b)=E(X)+b,即随机变量X与常数之和的数学期
望等于X的期望与这个常数的和.
(3)当b=0时,E(aX)=aE(X),即常数与随机变量乘积的数学期望等
E(X)= .
【做一做2】 同时掷两枚均匀的硬币100次,设两枚硬币都出现正
面的次数为ξ,则E(ξ)=
.
1
解析:掷两枚均匀的硬币,两枚硬币正面都向上的概率为4 ,根据
1
二项分布的期望公式得E(ξ)=100 × 4 =25.
答案:25
1.离散型随机变量的期望有哪些性质?
剖析若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b,
25
3
2
由 p>q,可得 p= ,q= .
5
5
3 )= (1-p)·(1-q)=
5
题型一
题型二
题型三
题型四
(3)由题意知 a=P(ξ=1)=P(A12
4
1
1
3 )+P(1 A23 )+P(1
37
2 A3)=5(1-p)(1-q)+5p(1-q)+5(1-p)q=125.
58
b=P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=125,
2
1
1
3a=2b=2时取等号,即 ab 的最大值为24.
答案:B
1
= 24,当且仅当
1
2
2.常见的数学期望
新人教A版高中数学《7.3.1 离散型随机变量的均值》教学设计

7.3.1 离散型随机变量的均值教学设计一、内容与内容解析1.内容:离散型随机变量均值的定义,随机变量的均值与样本均值的联系与区别,离散型随机变量均值的性质,利用组合数解决实际问题.2.内容解析:(1)离散型随机变量均值的定义:我们的目的是构造一个数值,用来描述随机变量取值的平均水平.设取有限个值的离散型随机变量X ,它的分布列为p i =P(X=x i ),i=1,2,…,n.可以直接构造以p i 为x i 的权重的加权平均数∑x i p i n i=1,来描述X 取值的平均水平.由于随机变量的均值和方差都是度量性的概念,而度量因比较而产生,因此教科书并未直接给出均值的定义,而是以比较两名运动员的射箭水平为问题情境,以频率稳定到概率为依据,由X 观测值的频率分布稳定到X 的分布列,观测值的平均数(样本均值)稳定到∑x i p i n i=1,将样本均值的稳定值定义为随机变量的均值.这种方法揭示了样本均值与随机变量均值(总体均值)的关系,为用样本均值估计随机变量均值提供了依据. 随机变量的均值(数学期望)是样本均值的稳定值,它是客观存在的.如果随机变量的分布列已知,期望值唯一确定;如果随机变量的分布列未知,可由样本均值进行估计.(2)随机变量的均值与样本均值的联系与区别:了解随机变量均值与样本均值的关系,可以进一步深入理解随机变量均值的意义.为此教科书设置了一个观察栏目,以掷骰子为例,已知出现点数X 的均值为3. 5,利用计算机模拟掷骰子重复60次和300次的试验各进行6组,用图形表示掷出点数的平均数.观察图形可以看到掷出点数的平均数具有随机性,但随着试验次数的增大,点数的平均数逐渐稳定到3. 5实际上,频率稳定到概率是样本均值稳定到随机变量均值的特殊情形.在教学中,还可以再多进行几次模拟试验,类比事件的频率稳定到概率,了解样本均值的特点及其与随机变量均值的关系.(3)离散型随机变量均值的性质:随机变量的均值有许多性质,我们主要研究其线性运算性质E(aX+b)=aE(X)+b. 该性质根据定义不难直接证明.在教学中,可引导学生类比平均数的性质或根据均值的意义,先猜出结果再计算证明.在后面的学习中,包括求随机变量的均值、方差及探究方差的性质,都可以进行这方面的训练,这是培养学生直观想象素养的重要途径.在教学中,教师可根据学情向学生提出以下问题:设X,Y 都是离散型随机变量,如何求E(X 十Y )?让学生根据均值的意义,猜出结果.也可以进行掷两枚般子的试验,通过求点数之和X十Y的均值,发现结论.一般地,有E(X +Y)=E(X)+E(Y).(4)利用均值解决实际问题:本节课是前面学习完随机变量分布列的基础上进行研究的,知识上具有着承前启后的作用.随机变量的均值和方差是概率论和数理统计的重要概念,本节课是从实际出发,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程.3.教学重点:离散型随机变量均值的意义、性质及应用.二、目标与目标解析1.目标:(1)理解离散型随机变量的均值的意义和性质.(2)能够根据离散型随机变量的分布列求出均值.(3)运用离散型随机变量的均值解决一些相关的实际问题.2.目标解析:达成上述目标的标志是:(1)能根据定义求解离散型随机变量的均值.(2)能掌握两个随机变量的均值公式,并熟练求解.(3)可以快速有效的解决常见离散型随机变量的均值应用问题.三、教学问题诊断解析1.问题诊断:(1)让学生理解离散型随机变量均值的定义是教学的难点.实际上我们构造了一个数值,用来描述随机变量取值的平均水平.因为随机变量的均值(数学期望)是样本均值的稳定值,它是客观存在的,学生如果不能体会到为什么引入权重计算加权平均数,不明白为什么要学习离散型随机变量均值,可能会产生对定义公式的陌生感.解决方案:以比较两名运动员的射箭水平为具体的问题情境,通过比较两名运动员的射箭成绩均值,从而感知引入均值概念的必要性.(2)让学生体会随机变量的均值与样本均值的联系与区别是第二个教学问题,也是教学的难点.了解随机变量均值与样本均值的关系,可以进一步深入理解随机变量均值的意义.随机变量的均值(数学期望)是样本均值的稳定值,它是客观存在的.如果随机变量的分布列已知,期望值唯一确定;如果随机变量的分布列未知,可由样本均值进行估计.解决方案:在教学中,还可以多进行几次模拟试验,类比事件的频率稳定到概率,了解样本均值的特点及其与随机变量均值的关系.2.教学难点:对离散型随机变量均值的意义的理解.四、教学支持条件希沃白板软件五、教学过程 一、 问题导学对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率.但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征.例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差.本节课我们一起来认识离散型随机变量的均值.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性. 假设甲射箭n 次,射中7环、8环、9环和10环的频率分别为:甲n 次射箭射中的平均环数当n 足够大时,频率稳定于概率,所以x 稳定于7×0.1+8×0.2+9×0.3+10×0.4=9. 即甲射中平均环数的稳定值(理论平均值)为9, 这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65. 从平均值的角度比较,甲的射箭水平比乙高.1、离散型随机变量取值的平均值.一般地,若离散型随机变量X 的概率分布为:则称E(X)=x 1p 1+x 2p 2+⋯+x i p i +⋯+x n p n为随机变量X 的均值或数学期望,数学期望简称期望.均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.312478910.n n n nx n n n n=⨯+⨯+⨯+⨯三、典例解析例1. 在篮球比赛中,罚球命中1次得1分,不中得0分,如果某运动员罚球命中的概率为0.8,那么他罚球1次的得分X 的均值是多少?分析:罚球有命中和不中两种可能结果,命中时X =1,不中时X =0,因此随机变量X 服从两点分布,X 的均值反映了该运动员罚球1次的平均得分水平. 解:因为P(X =1)=0.8,P(X =0)=0.2,所以E(X )=1×P(X =1)+0×P(X =0)=1×0.8+0×0.2 =0.8 即该运动员罚球1次的得分X 的均值是0.8. 一般地,如果随机变量X 服从两点分布, 那么: E(X)=1×p +0×(1−p)=p .设计意图:例1的教学重点是通过教学活动使学生认识到,对于一般的0-1分布,均值就是事件A 的概率,样本均值是事件A 发生的频率. 例2.抛掷一枚质地均匀的骰子,设出现的点数为X,求X 的均值. 分析:先求出X 的分布列,再根据定义计算X 的均值. 解:X 的分布列为P (X=k)= 16,k=1,2,3,4,5,6 因此,E(X)= 16(1+2+3+4+5+6)=3.5. 求离散型随机变量X 的均值的步骤:(1)理解X 的实际意义,写出X 全部可能取值; (2)求出X 取每个值时的概率; (3)写出X 的分布列(有时也可省略); (4)利用定义公式E (X )=∑x i p i n i=1求出均值探究2. 已知X 是一个随机变量,且分布列如下表所示.设a,b 都是实数且a ≠0,,则Y =a X + b 也是一个随机变量,那么,这两个随机变量的均值之间有什么联系呢?P p 1p2…p i…p n离散型随机变量的均值的性质若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b,即随机变量X的线性函数的均值等于这个随机变量的均值E(X)的同一线性函数.特别地:(1)当a=0时,E(b)=b,即常数的均值就是这个常数本身.(2)当a=1时,E(X+b)=E(X)+b,即随机变量X与常数之和的均值等于X的均值与这个常数的和.(3)当b=0时,E(aX)=aE(X),即常数与随机变量乘积的均值等于这个常数与随机变量的均值的乘积.例3:猜歌名游戏是根据歌曲的主旋律制成的铃声来猜歌名.某嘉宾参加猜歌名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A,B,C歌名的概率及猜对时获得相应的公益基金如下表所示:规则如下:按照A,B,C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下一首,求嘉宾获得的公益基金总额X的分布列及均值.歌曲A B C猜对的概率0.80.60.4获得的公益基金额/元100020003000解:分别用A,B,C表示猜对歌曲A,B,C歌名的事件,A,B,C相互独立P(X=0)=P(A)=0.2, P(X=1000)=P(A B)=0.8×0.4=0.32,P(X=3000)=P(ABC)=0.8×0.6×0.6=0.288,(X=6000)=(ABC)=0.8×0.6×0.4=0.192.X的分布列如下表所示:X0100040006000P0.20.480.1280.192X的均值为E(X)=0×0.2+1000×0.32+3000×0.288+6000×0.192=2336.思考:如果改变猜歌的顺序,获得公益基金的均值是否相同?如果不同,你认为哪个顺序获得的公益基金均值最大?解:如果按ACB的顺序来猜歌,分别用A,B,C表示猜对歌曲A,B,C歌名的事件,A,B,C相互独立; (X=0)=(A)=0.2,(X =1000)=(A C )=0.8×0.4=0.32,P (X =3000)=P (A C B )=0.8×0.4×0.4=0.128, (X =6000)=(A CB)=0.8×0.4×0.6=0.192. X 的分布列如下表所示: X 0 1000 3000 6000 P 0.20.320.2880.192X 的均值为E(X)=0×0.2+1000×0.48+4000×0.128+6000×0.192=2144.按由易到难的顺序来猜歌,获得的公益基金的均值最大设计意图:通过解决实际问题,了解风险决策的原则及一般方法.对于例3,选择不同的猜歌顺序,X 的分布列是不同的,不能直接进行比较,所以决策的原则是选择期望值E(X)大的猜歌顺序,这称为期望值原则.猜对的概率大表示比较容易猜,猜对的概率小表示比较难猜.对于教科书边空中的问题,可以让学生列出所有不同的猜歌顺序,分别求出X 的分布列和均值,通过比较进行验证.实际上,猜3首歌有6 种不同的顺序,不同顺序及其E(X)如表所示.例4.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元.为保护设备,有以下三种方案: 方案1:运走设备,搬运费为3800元.方案2:建保护围墙,建设费为2000元,但围墙只能挡住小洪水. 方案3:不采取措施,希望不发生洪水. 工地的领导该如何决策呢?解:设方案1、方案2、方案3的总损失分别为X1,X2,X3. 采用方案1,无论有无洪水,都损失3800元.因此,P(X1=3800)=1.采用方案2,遇到大洪水时,总损失为2000+6000=62000元;没有大洪水时,总损失为2000元,猜歌顺序 E(X)/元 猜歌顺序 E(X)/元 ABC 2336 BCA 2112 ACB 2144 CAB 1904 BAC2256CBA1872因此,P(X2=62 000)=0.01,P(X2=2000)=0.99.采用方案3,P(X3=60 000)=0.01,P(X3=10000)=0.25,P(X3=0)=0.74.于是,E(X1)=3800,E(X2)=62 000×0.01+2 000×0.99=2 600,E(X3)=60 000×0.01+10 000×0.25+0×0.74=3 100.因此,从期望损失最小的角度,应采取方案2.如果问题中的天气状况多次发生,那么采用方案2能使总损失减到最小,不过,因为洪水发生的随机性,所以对于个别的一次决策,采用方案2也不一定是最好的.设计意图:例4也是利用期望值决策的问题.在教学中,重点是使学生领悟利用期望值决策的思想方法,同时也要了解期望值决策的局限性.随机变量的期望是一个理论上的均值,如果是大量重复地就同样的问题进行决策,期望值原则是一个合理的决策原则.例如,保险公司面对众多的客户,每份保单需要理赔金额的期望值对制定合理的保险费率具有重要的参考意义.如果是一次性决策的话,可以采用期望值原则决策,也可以采用其他的决策原则.四、小结1. 期望的概念:E(X)=x1p1+x2p2+…+x i p i+…+x n p n2. 期望的意义:离散型随机变量的期望,反映了随机变量取值的平均水平.3. 期望的计算公式:E(aX+b)=aE(X)+b4.求离散型随机变量ξ的期望的基本步骤:(1)确定取值:理解X 的实际意义,写出X 全部可能取值; (2)求概率:求出X 取每个值时的概率; (3)写分布列:写出X 的分布列(有时也可省略); (4)求均值:利用定义公式∑x i p i n i=1求出均值 5.特殊随机变量的均值(两点分布的期望):E(X)=p.五、课后作业P66-67练习1、2、3题 P71习题7.3的2、3、4、6题六、教学反思本节课需要学生探究的内容比较多,由于学生的数学基础比较薄弱,所以在教学过程中教师不仅要耐心的指导,还要努力创设一个轻松和谐的课堂氛围,让每个学生都能大胆的说出自己的想法,保证每个学生都能学有所得.为了让每个学生在课上都能有话说,还需要学生做到课前预习,并且教师要给学生提出明确的预习目标.进一步发展学生直观想象、数学抽象、逻辑推理和数学运算的核心素养.。
数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
0 2
t 2et
1
dt
1
2
t 31etdt
0
1
1
2
2
2 (3) 2 (2 1) 2 (2) 2
x1exdx [( 1) ( ), (n) (n 1)!] 0
第九讲 均值与矩
四. 二维随机变量条件下的单变量数学期
1望.已知离散变量(X ,Y)的P( xi , y j ) :
k2 e E( X ) 2ee 2
k2 (k 2)!
例9-3-3 设X ~ e(),试求E( X 2 )
解
:
由
已
知
:f
x
e
x
,
0,
x 0;,Y g( X ) X 2 其 它.
E(Y )
yf ( y)dy
g( x) f ( x)dx
+ x2exdx
0
令t x, dx 1 dt,则E( X 2 )
第九讲 均值与矩
解
3
3
3
E(Y ) yi p( yi ) g( xi ) p( xi ) xi2 p( xi )
i 2
i 2
i 2
(2)2 0.10 (1)2 0.20 02 0.25 12 0.20 22 0.15 32 0.10
2.30
例9-3-2 已知X ~ P(),试求E( X 2 )
PX ( xi ) P( xi , y j ),由 均 值 定 义 :
j
E( X ) xi PX ( xi )
xi P( xi , y j )
i
ji
类似地,E(Y ) y j PY ( y j )
y j P( xi , y j ).
j
ji
2.已知连续变量(X ,Y)的f (x, y) :
λe -λt f (t)
0
t0 t0
( 0)
求:系统工作寿命 T 的数学期望.
第九讲 均值与矩
解: 因为X, Y 相互独立,所以
λ2e-λ( x+ y) f ( x, y)
0
x 0, y 0 其它
( 0),
由T
g(X,Y )
max(X ,Y )
解
X
的密度函数为:f
x
b
1
a
,
a x b;
0,
其 它.
b
E(X)
x
dx
ab.
a ba
2
E(X ) a b 2
例9-2-2 设随机变量服从指数分布 X ~ e 求数学期望 E( X )
解
X 的密度函数为:
f
x
e
x
,
0,
x 0; 其 它.
E( X ) x e x dx t x 1 tet dt 1 1 1 1
p)]2
1 p
X ~ B(n. p), E( X ) np;
X ~ P(), E(X ) ;
X ~ G( p),E(X ) 1 p
概括:离散变量乘概率,必然求和是均值;
泊松二np , 几何级数导概率。
第九讲 均值与矩
二. 连续型随机变量的数学期望 1.定义背景
因 为 连 续 型 随 机 变 量 是定 义 在 区 间 上 的 , 所 以须 要 利 用 区 间
zk g( xi , y j ), 其 中 :i 1,2,, j 1,2,.
P(zk )
P( xi , y j ),由 函 数 的 均 值 定 义
ij
Eg( X ,Y ) E(Z ) zk P(zk ) zk p( xi , y j )
k
ki j
g( xi , y j ) p( xi , y j )
i 1
i 1
i 1
xi
P( xi
X xi
xi
x) xi
i 1
xi
f ( xi )xi
第九讲 均值与矩
根 据 离 散 变 量 数 学 期 望定 义 :
E( X )
由定积
xi P( xi )
i 1
分 定 义 ,lim x 0
lim
n i
xi f
i 1
xi f ( xi )x
1
( xi )x
x ydy 1
D
0
0
3
第九讲 均值与矩
+
E(XY ) =
xyf ( x, y)dxdy
1
x
1
2xydxdy
D
0 2xdx0
ydy
4
例9-4-2 一个系统由两个子系统并联而成,若只有一个子系统发生故障,
系统还能正常工作,设两个子系统的工作寿命分别为:X,Y,
且相互独立,并服从相同的指数分布:
f X ( x)
f ( x, y)dy,由均值定义:
E(X )
xf X ( x)dx
x( f ( x, y)dy)dx
xf ( x, y)dxdy
同理:E(Y )
yfY ( y)dy
yf ( x, y)dxdy
第九讲 均值与矩
3.已知离散变量(X ,Y)的P( xi , y j )和函数Z g( X ,Y ) :
E( X ) m m e e m1
m0 m!
m1 m 1 !
e
m1
e x xk x
m10 (m 1)!
k0 k!
e e
E(X )
例8-3-4:几何分布 G(P) 试求几何分布G(P)的数学期望
解:P( X m) p(1 p)m1, m 1,2,
x
X
的分布密度为 f x,则定义随机变量函数
Y
gX
的数学期望为:
E(Y
)
EgX
gx
f
xdx
[注]:假定积分
g
x
f
x
dx
绝对收敛。
例9-3-1 设随机变量 X 的概率分布为:
X
-2 -1 0 1 2 3
PX xi 0.10 0.20 0.25 0.20 0.15 0.10
求随机变量函 数 Y X 2的数学期望.
0
x1exdx
0
[( 1) ( ), (n) (n 1)!]
概括:0 连续概率换密度,求和变成样本积;
均匀一半a加 b,指数系数分之一。
第九讲 均值与矩
三、随机变量函数的数学期望
1.离散型一维变量函数的均值定义
设 离 散 随 机 变 量X的 函 数Y gX , 则yi { xij / yi g( xij )}
X
x1 x2 xi
p( X xi ) p1 p2 pi
当级数 E( X ) xi pi 绝对收敛时。 称 E( X ) xi pi
i
i
为随机变量 X 的数学期望,又称均 值
2.均值背景与说明
(1)期望源自平均值之意:例如,某班20名学生,英语成 绩按照5分计,该班学生成绩分布为
第九讲 均值与矩
D
x
y
g(
x,
y)
f
(
x,
y
)D
Eg(X ,Y )
g( x, y) f ( x, y)dxdy
第九讲 均值与矩
概括:二维要用一维推,两次求和二重积
概括各类情况的均值公式
定义:E( X ) xi P( xi ) xP( x)
i 1
x
若X连续,则令P( xi X xi x) P( xi ) f ( xi )xi ,
P( yi ) P[g( xij )].则 由 均 值 定 义 :
j
E(Y ) E[g(X )] yi P( yi )
g( xij )P( xij ) g( x)P( x)
i
ij
x
即g( X )取 遍 所 有 的X的 值 的 概 率
则定义随机变量函数Y gX 的数学期望为:
E(Y ) E[g( X )] g( x)P( x)
解:实际上Y X 2求E(Y )
E( X ) k k e e k1 ee
k0 k!
k0 (k 1)!
E(X 2 ) g(k)P(k) k2 k e
k0
k0 k!
(k 2
k
k
k)
e
k(k 1) k e
k k e
k0
k!
k0
k!
k0 k!
第九讲 均值与矩
2
i
改变,要求 xi P(xi )绝对收敛,E( X )才有意义,由于常见
i
的 随 机 变 量 都 满 足 这 一要 求 , 因 此 一 般 不 去 验证 绝 对 收 敛 性
3.例题讲解
第九讲 均值与矩
例9-1-1 设随机变量 X 服从“0—1”分布,求数学期望
解
E( X ) 0q 1 p p.
xf
(
x
)dx
即:E( X
)
xf
( x)dx
2.定义:
设X为连续型随机变量, 其概率密度为 f x, 则X的数学期望为:
E( X )
xf
x
dx
[注] 假定广义积分绝对收敛, 即 x f xdx存在.
3.例题讲解:
第九讲 均值与矩
例9-2-1 设随机变量 X ~ U[a, b] , 求数学期望 E(X ).
m 1
m
n 1!
1!n 1
m
1!
pm1q nm
n
np
C
m 1 n1
p
m 1 q
nm
m 1
n1
np
C p q m1 m1 n1(m1) n1