2019年中考数学试题分类汇编28:圆的基本性质
2019中考数学考试知识点分析:圆

2019中考数学考试知识点分析:圆圆的初步理解一、圆及圆的相关量的定义(28个)1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。
二、相关圆的字母表示方法(7个)圆--⊙ 半径—r 弧--⌒ 直径—d扇形弧长/圆锥母线—l 周长—C 面积—S三、相关圆的基本性质与定理(27个)1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。
圆的基本性质练习(含答案)

圆的基本性质练习(含答案)圆的基本性质考点1 对称性圆既是__________ ①______ 对称图形,又是 _________ ②____ 对称图形。
任何一条直径所在的直线都是它的 _____ ③。
它的对称中心是_ ④ _____________________ 。
同时圆又具有旋转不变性。
温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。
考点2 垂径定理定理:垂直于弦的直径平分_________ ⑤______ 并且平分弦所对的两条__⑥ __________ 。
常用推论:平分弦(不是直径)的直径垂直于__________ ⑦ _______ ,并且平分弦所对的两条 _______ ⑧ ___________ 。
温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。
在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④ 平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧___________ ⑨ _____ ,所对的弦也______ ⑩_________ o常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—a ______________ ,所对的弦____ J2 __________ o(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 _______ 13 _____________ ,所对的弧 __________ 14方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。
中考数学复习之圆的基本性质,考点过关与基础练习题

32.圆的有关性质➢ 知识过关1. 圆有相关概念(1)圆:在一个平面内,线段OA 绕它固定的一个端点O 旋转_____,另一个端点A 所于形成的图形叫做圆,圆心为O ,半径为r 的圆可以看成是所有到定点O 的距离等于____r 的点的集合.(2)弧、弦、等圆、等弧①弧:圆上任意_____的部分叫做弧,大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧; ①弦:连接圆上任意两点的____叫做弦,经过_____的弦叫做直径. ①等圆:能够_____的两个圆叫做等圆;①等弧:在_____或等圆中,能够互相重合的弧叫做等弧. 2. 垂径定理及其推论 (1) 对称性:①圆是中心对称图形,其对称中心是圆心 ①圆是轴对称图形,其对称轴是_______. (2) 垂径定理及其推论①垂径定理:垂直于弦的直径______这条弦,并且平分这条弦所对的______; ①推论:平分弦(非直径)的直径______于弦,并且平分这条弦所对的两条弧.➢ 考点分类考点1 圆心角、弧、弦之间的关系例1如图所示,圆O 通过五边形OABCD 的四个顶点,若D AB=150°,A=65°,D=60°,则的度数为( )A.25°B.40°C.50°D.55°考点2垂径定理及简单应用例2如图所示,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB 为0.8m,则排水管内水的深度为_______m.考点3垂径定理与其他知识的综合运用例3如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是弧CBD 上任意一点,AH =2,CH =4.(1)求⊙O 的半径r 的长度; (2)求sin ∠CMD ;(3)直线BM 交直线CD 于点E ,直线MH 交⊙O 于点N ,连接BN 交CE 于点F ,求HE •HF 的值.➢ 真题演练1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,连接AO 并延长,交⊙O 于点E ,连接BE ,DE .若DE =3DO ,AB =4√5,则△ODE 的面积为( )A .4B .3√2C .2√5D .2√62.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 的长的最小值为( )A .3B .4C .6D .83.在正方形网格中,以格点O 为圆心画圆,使该圆经过格点A ,B ,并在点A ,B 的右侧圆弧上取一点C ,连接AC ,BC ,则sin C 的值为( )A .√32B .12C .1D .√224.如图,半径为5的⊙A 与y 轴交于点B (0,2)、C (0,10),则点A 的横坐标为( )A .﹣3B .3C .4D .65.如图,在⊙O 中,直径AB =10,CD ⊥AB 于点E ,CD =8.点F 是弧BC 上动点,且与点B 、C 不重合,P 是直径AB 上的动点,设m =PC +PF ,则m 的取值范围是( )A .8<m ≤4√5B .4√5<m ≤10C .8<m ≤10D .6<m <106.在⊙O 中内接四边形ABCD ,其中A ,C 为定点,AC =8,B 在⊙O 上运动,BD ⊥AC ,过O 作AD 的垂线,垂足为E ,若⊙O 的直径为10,则OE 的最大值接近于( )A .52B .5√23C .4D .57.如图,点A ,B ,C 都在⊙O 上,B 是AC ̂的中点,∠OBC =50°,则∠AOB 等于 °.8.如图,将半径为rcm 的⊙O 折叠,弧AB 恰好经过与AB 垂直的半径OC 的中点D ,已知弦AB 的长为4√15cm ,则r = cm .9.如图,AB是⊙O的直径,∠BOD=120°,C为弧BD的中点,AC交OD于点E,DE =1,则AE的长为.10.如图,AB为⊙O的直径,AE为⊙O的弦,C为优弧ABÊ的中点,CD⊥AB,垂足为D.若AE=8,DB=2,则⊙O的半径为.11.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.➢课后练习1.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为BĈ上一点(点P不与点B,C重合),连接AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,CFAP−BP的值始终等于√32.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错2.如图,在半径为5的⊙O 内有两条互相垂直的弦AB 和CD ,AB =8,CD =8,垂足为E .则tan ∠OEA 的值是( )A .1B .√63C .√156D .2√1593.如图,四边形ABCD 内接于半径为5的⊙O ,AB =BC =BE ,AB ⊥BE ,则AD 的长为( )A .5B .5√2C .5√3D .104.如图,点A ,B ,C 在⊙O 上,∠AOC =90°,AB =√2,BC =1,则⊙O 的半径为( )A .√3B .√52C .√102D .√2+125.下列说法正确的是( )A .同弧或等弧所对的圆心角相等B .所对圆心角相等的弧是等弧C .弧长相等的弧一定是等弧D .平分弦的直径必垂直于弦6.如图,A ,B 为圆O 上的点,且D 为弧AB 的中点,∠ACB =120°,DE ⊥BC 于E ,若AC =√3DE ,则BE CE的值为( )A .3B .2C .√33+1D .√3+17.如图所示,在⊙O 中,BC 是弦,AD 过圆心O ,AD ⊥BC ,E 是⊙O 上一点,F 是AE 延长线上一点,EF =AE .若AD =9,BC =6,设线段CF 长度的最小值和最大值分别为m 、n ,则mn =( )A .100B .90C .80D .708.如图,A ,B 是⊙O 上的点,∠AOB =120°,C 是AB̂的中点,若⊙O 的半径为5,则四边形ACBO 的面积为( )A .25B .25√3C .25√34D .25√329.如图,AB 是⊙O 的直径,点C 是半圆上的一个三等分点,点D 是AĈ的中点,点P 是直径AB 上一点,若⊙O 的半径为2,则PC +PD 的最小值是 .10.如图,一下水管道横截面为圆形,直径为260cm ,下雨前水面宽为100cm ,一场大雨过后,水面宽为240cm ,则水位上升 cm .11.如图,在⊙O 中,点C 在弦AB 上,连接OB ,OC .若OB =5,AC =1,BC =5,则线段OC 的长为 .12.如图,以G(0,3)为圆心,半径为6的圆与x轴交于A,B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,点E在⊙G的运动过程中,线段FG的长度的最大值为.13.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为.14.如图,射线PE平分∠CPD,O为射线PE上一点,以O为圆心作⊙O,与PD边交于点A、点B,连接OA,且OA∥PC.(1)求证:AP=AO.(2)若⊙O的半径为10,tan∠OPB=12,求弦AB的长.15.如图,在⊙O中,直径AB与弦CD相交于点E,OF⊥CD,垂足为F.设已知BE=5,AE=12OE,OF=1,求CD的长.➢冲击A+在Rt①ABC中,①BAC=90°,(1)如图1,D、E分别在BC、BA的延长线上,①ADE=2①CAD,求证:DA=DE;(2)如图2,在(1)的条件下,点F在BD上,①AFB=①EFD,求证:①FAD=①FED(3)如图3,若AB=AC,过点C作CN||AB,连接AN,在AN上取一点G,使GA=AC,连接BG交AC于点H,连接CG,试探究CN、CH、GN之间满足的数量关系式,并给出证明;。
中考数学题型热点汇析:圆

2019中考数学题型热点汇析:圆本专题包括圆的有关性质、直线和圆的位置关系、圆和圆的位置关系、正多边形和圆四方面内容,它们是初中数学中最核心的内容之一.2019年各省、市的考题中反映出的考点主要有:1.准确理解与圆有关的概念及性质,能正确辨别一类与圆有关的概念型试题.2.既会从距离与半径的数量关系确定点与圆、直线与圆、•圆与圆的位置关系,又能从点与圆、直线与圆、圆与圆的位置关系探索相应半径与距离的数量关系.3.利用圆心角、圆周角、弦切角的定义及它们之间特有的关系,解证与角、•线段相关的几何问题.4.会运用垂径定理、切线长定理、相交弦定理、切割线定理、•割线定理证明一类与圆相关的几何问题.5.会利用圆内接正多边形的性质,圆的周长、扇形的弧长、圆、扇形、•弓形的面积公式,解决一类与圆柱、圆锥、圆台展开图有关的计算问题,并会借助分割与转化的思想方法巧求阴影部分的面积.6.会准确表述有关点的轨迹问题,会用分析法证明一类简单的几何问题.7.会用T形尺找出圆形工件的圆心,会选用作垂直平分线的方法寻找在实际背景中的圆心问题,会作满足题设条件的圆和圆的切线、圆内接正多边形,并会以圆弧和圆的基本元素设计各种优美图案.8.充分利用圆中的有关知识解决一类与圆有关的实际应用问题、•动态型问题、探索型问题,并会探索平面图形的镶嵌问题,且能用几种常见的图形进行简单的镶嵌设计.9.综合运用圆、方程、函数、三角、•相似形等知识解决一类与圆有关的中考压轴题.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观察过程中指导。
我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。
备战2019年中考初中数学一轮复习考点精准导练测40讲第29讲圆的基本性质(讲练版)

11. (苏州中考)如图,AB 是圆 O 的直径,D,E 为圆 O 上位于 AB 异侧的两点,连接 BD 并延 长至点 C,使得 CD=BD.连接 AC 交圆 O 于点 F,连接 AE,DE,DF. (1)求证:∠E=∠C; (2)若∠E=55°,求∠BDF 的度数.
解:(1)证明:连接 AD. ∵AB 是⊙O 的直径, ∴∠ADB=90°,即 AD⊥BC. ∵CD=BD,∴AD 垂直平分 BC.∴AB=AC.∴∠B=∠C. 又∵∠B=∠E,∴∠E=∠C. (2)∵四边形 AEDF 是⊙O 的内接四边形, ∴∠AFD=180°-∠E. 又∵∠CFD=180°-∠AFD, ∴∠CFD=∠E=55°. ∵∠E=∠C=55°, ∴∠BDF=∠C+∠CFD=110°.
考点 5: 关于圆的基本性质的综合探究 【典例】(2018 包头)(10.00 分)如图,在 Rt△ACB 中,∠ACB=90°,以点 A 为圆心,AC 长为半径的圆交 AB 于点 D,BA 的延长线交⊙A 于点 E,连接 CE,CD,F 是⊙A 上一点,点 F 与点 C 位于 BE 两侧,且∠FAB=∠ABC,连接 BF. (1)求证:∠BCD=∠BEC; (2)若 BC=2,BD=1,求 CE 的长及 sin∠ABF 的值.
(1)图 2 中,弓臂两端 B1,C1 的距离为
cm.
(2)如图 3,将弓箭继续拉到点 D2,使弓臂 B2AC2 为半圆,则 D1D2 的长为
cm.
第 29 讲 圆的基本性质(解析版)
【考题导向】
中考题型以选择题、填空题为主:
1.利用垂径定理及其推论来证明线段相等、角相等、弧相等、垂直关系,或者
利用圆的半径、弦长、圆心角、弦心距和弓形高与这几者之间的关系来设计计
2019年全国各地中考数学试题分类汇编(第二期)专题30圆的有关性质(含解析)

圆的有关性质.选择题1. (2019?江苏无锡?3分)如图,PA是O O的切线,切点为A, PO的延长线交O O于点B,若/ P= 40°则/ B的度数为(A. 20 ° B . 25 °C. 40 °D. 50 °【分析】连接0A,如图,根据切线的性质得 / PAO = 90°,再利用互余计算出 / AOP = 50°, 然后根据等腰三角形的性质和三角形外角性质计算/B的度数.【解答】解:连接OA,如图,•/ PA是O O的切线,••• 0A丄AP,:丄 FAO= 90°•••/ F= 40°•••/ AOF= 50°•/ OA= OB,•••/ B= / OAB,•••/ AOF= / B+ / OAB ,•••/ B= 1 / AOP = 1烦。
=25°2 2故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径•若出现圆的切线, 必连过切点的半径,构造定理图,得出垂直关系.2. (2019?浙江杭州?3分)如图,P为圆O外一点,PA, PB分别切圆O于A, B两点,若FA= 3,贝U PB =( )A . 2B . 3 C. 4 D. 5【分析】连接OA、OB、OF,根据切线的性质得出OA丄FA , OB丄PB,然后证得Rt△ AOP B Rt△ BOP,即可求得PB= PA= 3.【解答】解:连接OA、OB、OP ,••• PA, PB分别切圆O于A, B两点,••• OA丄PA, OB 丄PB,在Rt △ AOP 和Rt △ BOP 中,二OB〔OPRP’• Rt △ AOP 也Rt △ BOP (HL ),PB= PA= 3,故选:B.【点评】本题考查了切线长定理,三角形全等的判定和性质,作出辅助线根据全等三角形是解题的关键.3. (2019?浙江湖州?4分)已知一条弧所对的圆周角的度数是15 °则它所对的圆心角的度数是30°.【分析】直接根据圆周角定理求解.【解答】解::•一条弧所对的圆周角的度数是15°•它所对的圆心角的度数为2X15°= 30°故答案为30°【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半..填空题1. (2019?铜仁凶分)如图,四边形ABCD为O O的内接四边形,/ A= 100 °则/ DCE的【解答】解:•/四边形ABCD为O O的内接四边形,•••/ DCE = / A= 100°故答案为:100°2. (201 9?江苏宿迁?3分)直角三角形的两条直角边分别是5和12,则它的内切圆半径为2 .【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为'2(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边={八」「13,所以它的内切圆半径== 2.2故答案为2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为_,'2(其中a、b为直角边,c为斜边).3. (2 019江苏盐城3分)如图,点A、B、C、D、E在O O上,且弧AB为50 °则/ E +Z C = _________【答案】155【解析】如图,因为弧AB为50°则弧AB所对的圆周角为25° Z E+ Z C=180° -25 °=155° .4. (2019?广西北部湾经济区?3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉•在《九章算术》中记载有一问题今有圆材埋在壁中,不知大小•以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为______________ 寸. 【答案】26【解析】解:设O O的半径为r.在Rt A ADO 中,AD=5 , OD = r-1, OA=r, 则有r2=52+ (r-1) 2,解得r=13,•••O O的直径为26寸,故答案为:26.设O O 的半径为r .在Rt A ADO 中,AD=5 , OD=r-1, OA=r,则有r2=52+ (r-1) 2,解方程即可.本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5. (2019?广西贺州?10分)如图,BD是O O的直径,弦BC与OA相交于点E, AF与O O相切于点A,交DB的延长线于点F, / F = 30° / BAC= 120° BC = &(1)求/ ADB的度数;AF丄OA,由圆周角定理好已知条件得出/ F = Z DBC , 证出AF // BC,得出OA丄BC,求出Z BOA = 90°- 30°= 60°由圆周角定理即可得出结果;(2)由垂径定理得出BE = CE = —BC = 4,得出AB = AC,证明△ AOB是等边三角形,2得出AB = OB ,由直角三角形的性质得出OE = —OB , BE= 「OE= 4,求出OE =丄」,2 3即可得出AC= AB = OB= 2OE = ….3【解答】解:(1) ••• AF与O O相切于点A,• AF 丄OA,•/ BD是O O的直径,•••/ BAD = 90°•••/ BAC= 120°,•••/ DAC = 30°•••/ DBC = / DAC = 30°•••/ F = 30°•••/ F = / DBC ,• AF // BC,• OA丄BC,•••/ BOA= 90° - 30°= 60°•••/ ADB = --Z AOB = 30°2(2)•/ OA丄BC,• BE= CE =丄BC = 4,2• AB= AC,•••/ AOB= 60° OA = OB,•△ AOB是等边三角形,• AB= OB,•••/ OBE= 30°• OE= 1OB, BE = 7OE = 4,2• OE「",3• AC= AB= OB = 2OE =:3【点评】本题考查了切线的性质、圆周角定理、等边三角形的判定与性质、垂径定理、直角三角形的性质等知识;熟练掌握切线的性质和圆周角定理,证出OA丄BC是解题的关键.6. (2019?广东省广州市?12分)如图,O O的直径AB = 10,弦AC = 8,连接BC .(1 )尺规作图:作弦CD,使CD = BC (点D不与B重合),连接AD ;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.CB 为半径画弧,交 O O 于D ,线段CD 即为所求.(2)连接BD , OC 交于点E ,设0E = x ,构建方程求出x 即可解决问题.【解答】解:(1)如图,线段 CD 即为所求.(2)连接BD , 0C 交于点E ,设0E = x.•/ AB 是直径,•••/ ACB = 90°••• BC =「_6,•/ BC = CD , • :,= H, • 0C 丄 BD 于 E .• BE = DE ,2 2 2 2 2••• BE 2= BC 2- EC 2= OB 2-OE 2,^2 2 「2 2• 6 -( 5 - x )= 5 - x ,7 解得x =, 5•/ BE = DE , BO = OA ,14• AD = 2OE = ,5 14124 •四边形ABCD 的周长=6+6+10+ '. 55 【点评】本题考查作图-复杂作图,圆周角定理,解直角三角形等知识,解题的关键是c【分析】(1 )以C 为圆心,学会利用参数,构建方程解决问题.7. ( 2019?贵州省安顺市?12分)如图,在厶ABC中,AB = AC,以AB为直径的O O与边BC,AC分别交于D, E两点,过点D作DH丄AC于点H .(1)判断DH与O O的位置关系,并说明理由;(2)求证:H为CE的中点;【解答】(1)解:DH与O O相切.理由如下:连结OD、AD,如图,•/ AB为直径,•••/ ADB = 90° 即AD 丄BC ,•/ AB= AC,• BD = CD ,而AO = BO,• OD ABC的中位线,• OD // AC,•/ DH 丄AC,• OD 丄DH ,• DH为O O的切线;(2)证明:连结DE,如图,•••四边形ABDE为O O的内接四边形,• / DEC = / B,•/ AB= AC,• / B= / C,• / DEC = / C,•/ DH 丄CE ,••• CH = EH ,即H 为CE 的中点;(3)解:在 Rt A ADC 中,CD = _BC = 5,2•/ COSC = =^-L ,AC 5• - AC = 5 ~,• CE = 2CH = 2 匸,• - AE = AC — CE = 5■甘 3 — 2”;..:门j = 3 7.8. 如图,△ ABC 是O O 的内接三角形,AB 为O O 直径,AB = 6, AD 平分/ BAC ,交BC 于 点E ,交O O 于点D ,连接BD .【分析】(1)根据角平分线的定义和圆周角定理即可得到结论;(2)连接OD ,根据平角定义得到/ AEC = 55°,根据圆周角定理得到/ ACE = 90°,求得/ CAE = 35°,得到/ BOD = 2/ BAD = 70°,根据弧长公式即可得到结论.【解答】(1)证明:T AD 平分/ BAC ,•••/ CAD = Z CBD ,在 Rt A CDH 中,• CH =.,:cosC 「=I (1 )求证:/ BAD = Z CBD ;•••/ BAD = Z CBD ;(2 )解:连接OD ,•••/ AEB = 125° ,•••/ AEC= 55 ° ,••• AB为O O直径,•••/ ACE= 90 ° ,•••/ CAE= 35 ° ,•••/ DAB = Z CAE = 35°,•••/ BOD = 2/BAD = 70°,7=—n.69. (2019?广东省广州市?3分)平面内,O O的半径为1,点P到O的距离为2,过点P可作O O的切线条数为()A. 0条 B . 1条C. 2条 D .无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:vO O的半径为1,点P到圆心O的距离为2,• d > r,•••点P与O O的位置关系是:P在O O夕卜,•/过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.三•解答题1. (2019?江苏宿迁?10 分)在Rt A ABC 中,/ C = 90 °(1)如图①,点0在斜边AB上,以点0为圆心,0B长为半径的圆交AB于点D,交BC于点E,与边AC相切于点F .求证:/ 1=7 2;(2)在图②中作O M,使它满足以下条件:①圆心在边AB上;②经过点B;③与边AC相切.(尺规作图,只保留作图痕迹,不要求写出作法)【分析】(1)连接OF ,可证得OF // BC,结合平行线的性质和圆的特性可求得7 1=7 OFB =7 2,可得出结论;(2)由(1)可知切点是7 ABC的角平分线和AC的交点,圆心在BF的垂直平分线上,由此即可作出O M .【解答】解:(1)证明:如图①,连接OF ,••• OE丄AC,•••7 C= 90°• OE / BC,•7 1= 7 OFB ,•/ OF = OB,•7 OFB = 7 2,•7 1= 7 2.(2)如图②所示O M为所求.①②作BF的垂直平分线交AB于M,以MB为半径作圆,即O M为所求.证明:•/ M在BF的垂直平分线上,••• MF = MB ,•••/ MBF = / MFB ,又••• BF 平分/ ABC,•••/ MBF = / CBF ,•••/ CBF = / MFB ,• MF // BC,•••/ C= 90°• FM 丄AC,•O M与边AC相切.【点评】本题主要考查圆和切线的性质和基本作图的综合应用.掌握连接圆心和切点的半径与切线垂直是解题的关键,2. (2019?贵阳?10分)如图,已知AB是O O的直径,点P是O O上一点,连接OP,点A 关于OP的对称点C恰好落在O O 上.(1)求证:OP // BC;(2)过点C作O O的切线CD,交AP的延长线于点 D .如果/ D= 90° DP = 1,求O O的直径.二/AOC ,再根据同弧所对的圆心角和圆周角的关系得出/ ABC = 2_/AOC ,利用同位角2 2相等两直线平行,可得出 PO 与BC 平行;(2)由CD 为圆O 的切线,利用切线的性质得到 OC 垂直于CD ,又AD 垂直于CD ,利 用平面内垂直于同一条直线的两直线平行得到OC 与AD 平行,根据两直线平行内错角相等得到/ APO = Z COP ,由/AOP = Z COP ,等量代换可得出 / APO = Z AOP ,再由OA =OP ,利用等边对等角可得出一对角相等,等量代换可得出三角形 AOP 三内角相等,确定出三角形 AOP 为等边三角形,根据等边三角形的内角为 60°得到Z AOP 为60°,由OP 平行于BC ,利用两直线平行同位角相等可得出Z OBC =Z AOP = 60。
连线中考数学一轮复习系列专题19圆的基本性质

基础知识知识点一、圆的有关概念1. 圆的定义①(动态定义)在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点叫做圆心,线段OA叫做半径.以点O为圆心的圆记做“⊙O”.②(静态定义)圆是到定点的距离等于定长的点的集合.即:圆上各点到圆心的距离都等于定长(半径),反之到圆心距离等于半径的点一定在圆上;2.等圆:能够完全重合的圆叫等圆.同圆或等圆的半径相等.3.确定圆的条件确定一个圆有两个基本条件①圆心(定点)——用来确定圆的位置;②半径(定长)——用来确定圆的大小.经过不在同一直线上的三点确定一个圆.知识点二、弦、弧、圆心角等相关概念1. 弦与直径:①弦:连接圆上任意两点的线段叫做弦,记做:弦AB,弦CD等.②直径:经过圆心的弦叫做直径,直径等于半径的2倍.直径是圆中最长的弦.2. 弧与半圆①弧:圆上任意两点之间的部分叫做圆弧,简称弧,用符号“”表示,如以A、B为端点的弧记做AB,②半圆:圆上任意一条直径的两个端点把圆分成两条弧,其中的每条弧都叫做半圆.③劣弧、优弧:小于半圆的弧叫做劣弧,用弧上的两点表示;大于半圆的弧叫做优弧,用弧上三点表示.④等弧:能够完全重合的弧叫等弧.知识点三、弧、弦、圆心角之间的关系1. 圆的旋转不变性把圆绕着圆心旋转任意一个角度,都与原来的图形重合,我们把这种性质称为圆的旋转不变性.圆是中心对称图形,圆心是它的对称中心.2. 弧、弦、圆心角之间的关系定理:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.圆心角的度数与它所对的弧的度数相等.知识点四、垂径定理1. 圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是它的对称轴.2. 垂径定理垂直于弦的直径平分弦,并且平分弦所对的两条弧.如图,用符号语言叙述为:∵ CD为⊙O的直径,CD⊥AB于点E∴ AE=EB,AC BC,AD DB3. 垂径定理基本图形的性质:(1)有4对全等的直角三角形:Rt△CAD与Rt△CBD;Rt△CAM与Rt△CBM;Rt△OAM与Rt△OBM;Rt△MAD与Rt△MBD;特别在Rt△CAD与Rt△CBD中,直径CD是它们公共的斜边,AM、BM是CD上的高.(2)有3个等腰三角形;△CAB、△OAB、△DAB.弦AB是它们的公共底边,直径CD是它们的顶角平分线和底边AB的垂直平分线.(3)有3对弧相等:AC BC,AD BD,CAD CBD.(4)添加辅助线的方法:连接半径或作垂直于弦的直径,是两种重要的添线方法.知识点五.圆周角定理1. 定义:顶点在圆上,并且两边都与圆相交的角叫圆周角.2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半,同弧或等弧所对的圆周角相等,3. 圆周角定理的推论①半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.②圆内接四边形的对角互补.典型例题解析例1.(菏泽)如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则BD弧的度数为_____.例2. (山西)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为( )A.30° B.40° C.50° D.80°例3. (绍兴)把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图,⊙O与矩形ABCD边BC,AD分别相切和相交(E,F是交点).已知EF=CD=8,则⊙O的半径为___________.例4. (黑龙江)直径为10cm的⊙O中,弦AB=5cm,则弦AB所对的圆周角是.例5. (济南) 如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2. 3 C. 32D.3例6. (安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.例7. 如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.巩固练习1. (湖州)如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A. 35 °B.45°C. 55°D.65°2. 如图所示,在⊙O中,,那么()A.AB>2CD B.AB<2CD C.AB=2CD D.无法比较3. (嘉兴)如图,○O的直径CD垂直弦AB于点E,且CE=2,DE=8则AB的长为()(A)2 (B)4 (C)6 (D)84. (钦州)如图,等圆⊙O1和⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,连接AO1并延长交⊙O1于点C,则∠ACO2的度数为()A.60° B.45° C.30° D.20°5. (南通)如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=_______度.6. (广元)若⊙O的弦AB所对的圆心角∠AOB=50°,则弦AB所对的圆周角的度数为 .7 . (龙岩) 如图,A、B、C是半径为6的⊙O上三个点,若∠BAC=45°,则弦BC= 。
2019年中考数学圆

2019年中考数学圆·初中数学圆知识点“圆”作为初中几何知识点中的一部分,几乎年年都会出现在中考数学试卷中,但得分率却依然很低,原因很简单,就是因为这部分的知识点复杂且难。
圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
圆的垂径定理解读由上图可见,圆的部分要掌握知识点实在是多且杂,为了帮助同学们在解答与圆相关的试题时能够游刃有余,小编搜集了圆的知识运用中关键的定理—垂径定理,这条定理于圆的运用来说,使用频率不亚于多边形中的勾股定理。
1、垂径定理定义:垂直于弦的直径平分弦且平分弦所对的弧。
2、推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:学霸必备—圆的常用知识点解读圆的概念有很多,其中圆的有关性质和计算是必须掌握的,这时你必须要弄懂弦弧圆心角三者之间的转化和关系,为以后的计算打下坚实的基础,这是除开垂径定理之外另一重要的知识点。
点与圆的关系相对比较简单,用两点间的距离和圆的半径比较就知道属于三种关系中的哪种。
如下:关于圆的知识点总结关于圆的知识点总结:1.不在同一直线上的三点确定一个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1. (2019山东滨州,6,3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【答案】B【解析】如图,连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠A和∠BCD都是弧BD所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.【知识点】圆周角定理及其推论2. (2019山东聊城,8,3分)如图,BC是半圆O的直径,D,E是BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为A.35°B.38°C.40°D.42°第8题图【答案】C【解析】∵∠A=70°,∴∠B+∠C=110°,∴∠BOE+∠COD=220°,∴∠DOE=∠BOE+∠COD-180°=40°,故选C.【知识点】三角形内角和定理,圆周角定理3. (2019山东省潍坊市,11,3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD.过点D作DE⊥AB于点E.连接AC交DE于点F.若sin∠CAB=35,DF=5,则BC的长为()A.8 B.10 C.12 D.16 【答案】C【思路分析】连接BD,先证明∠DAC=∠ACD=∠ABD=∠ADE,从而可得AF=DF=5,根据sin∠CAB=35,求得EF和AE的长度,再利用射影定理求出BE的长度从而得到直径AB,根据sin∠CAB=35求得BC的长度.【解题过程】连接BD.∵AD=CD,∴∠DAC=∠ACD.∵AB为直径,∴∠ADB=∠ACB=90°.∴∠DAB+∠ABD=90°.∵DE⊥AB,∴∠DAB+∠ADE=90°.∴∠ADE=∠ABD.∵∠ABD=∠ACD,∴∠DAC=∠ADE.∴AF=DF=5.在Rt△AEF中,sin∠CAB=35 EFAF∴EF=3,AE=4.∴DE=3+5=8.由DE2=AE▪EB,得228164DEBEAE===.∴AB=16+4=20.在R t△ABC中,sin∠CAB=35 BC AB=∴BC=12.【知识点】圆周角,锐角三角比4. (2019四川省凉山市,7,4)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数(▲)A. 1 B. 2 C. 3 D. 4【答案】A【解析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;两点之间线段最短;在同圆或等圆中,相等的圆心角所对的弧相等;平分弦(不是直径)的直径垂直于弦,所以只有①是对的,故选A.【知识点】点到直线的距离概念;线段基本事实;在同圆或等圆中圆心角与弧的关系;垂径定理的推论5. (2019四川省眉山市,10,3分)如图,⊙O的直径AB垂直于弦CD.垂足是点E,∠CAO=22.5°,OC=6,则CD的长为A.62B.32C.6 D.12【答案】A【思路分析】【解题过程】解:∵∠A=22.5°,∴∠COE=45°,∵⊙O的直径AB垂直于弦CD,OC=6,∴∠CEO=90°,∵∠COE=45°,∴CE=OE=22OC=32,∴CD=2CE=62 D.【知识点】三角形的外角的性质,垂径定理,锐角三角形函数6.(2019浙江省衢州市,8,3分)一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8dm,DC=2dm,则圆形标志牌的半径为(A)A.6dmB.5dmC.4dmD.3dm【答案】B【解析】连接OD,OB,则O,C,D三点在一条直线上,因为CD垂直平分AB,AB=8dm,所以BD=4dm,OD=(r-2)dm,由勾股定理得42+(r-2)2=r2,r=5dm,故选B。
【知识点】垂径定理勾股定理7. (2019山东泰安,9题,4分) 如图,△ABC是O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为A.32 °B.31°C.29°D.61°第9题图【答案】A【解析】连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°,∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.【知识点】圆的内接四边形,圆周角定理,直角三角形两锐角互余8. (2019四川南充,6,4分)如图,四边形ABCD 内接于O ,若40A ∠=︒,则(C ∠= )A .110︒B .120︒C .135︒D .140︒【答案】D【解析】解:四边形ABCD 内接于O ,180C A ∴∠+∠=︒,18040140C ∴∠=︒-︒=︒.故选:D .【知识点】圆内接四边形的性质9.(2019甘肃天水,9,4分)如图,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于点E ,连接AC 、AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°【答案】C【解析】解:∵四边形ABCD 是菱形,∠D =80°,∴∠ACB ∠DCB (180°﹣∠D )=50°, ∵四边形AECD 是圆内接四边形,∴∠AEB =∠D =80°,∴∠EAC =∠AEB ﹣∠ACE =30°,故选:C .【知识点】菱形的性质;圆周角定理10. (2019甘肃武威,9,3分)如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( )A .22.5︒B .30︒C .45︒D .60︒【答案】C【解析】解:设圆心为O ,连接OA 、OB ,如图,∵弦AB 的长度等于圆半径的2倍, 即2AB OA =,∴222OA OB AB +=,∴OAB ∆为等腰直角三角形,90AOB ∠=︒, ∴1452ASB AOB ∠=∠=︒, 故选C .【知识点】圆周角定理11. (2019甘肃省,8,3分)如图,AB 是O 的直径,点C 、D 是圆上两点,且126AOC ∠=︒,则(CDB ∠= )A .54︒B .64︒C .27︒D .37︒【答案】C 【解析】解:∵126AOC ∠=︒,∴18054BOC AOC ∠=︒-∠=︒,∴1272CDB BOC ∠=∠=︒,故选C . 【知识点】圆的有关概念及性质12.(2019湖北宜昌,12,3分)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°【答案】A【解析】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A∠BOC=50°.故选:A.【知识点】圆周角定理13.(2019江苏连云港,8,3分)如图,在矩形ABCD中,22AD AB=.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①CMP∆是直角三角形;②点C、E、G不在同一条直线上;③6PC MP=;④2BP AB=;⑤点F是CMP∆外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】B【解析】解:∵沿着CM折叠,点D的对应点为E,∴DMC EMC∠=∠,∵再沿着MP折叠,使得AM与EM重合,折痕为MP,AMP EMP∴∠=∠,180AMD ∠=︒,1180902PME CME ∴∠+∠=⨯︒=︒, CMP ∴∆是直角三角形;故①正确;∵沿着CM 折叠,点D 的对应点为E ,90D MEC ∴∠=∠=︒,∵再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,90MEG A ∴∠=∠=︒,180GEC ∴∠=︒,∴点C 、E 、G 在同一条直线上,故②错误; 2AD =,∴设AB x=,则AD =,∵将矩形ABCD 对折,得到折痕MN ;12DM AD ∴=,CM ∴==, 90PMC ∠=︒,MN PC ⊥,2CM CN CP ∴=,2CP ∴==,2PN CP CN x ∴=-=,PM ∴==,∴PC PM ==PC ∴=,故③错误; 2PC =,2PB ∴==,∴2AB xPBx=,2PB AB∴=,故④,CD CE=,EG AB=,AB CD=,CE EG∴=,90CEM G∠=∠=︒,//FE PG∴,CF PF∴=,90PMC∠=︒,∵CF PF MF==,∴点F是CMP∆外接圆的圆心,故⑤正确;故选B.【知识点】翻折变换(折叠问题);三角形的外接圆与外心;矩形的性质;直角三角形的性质14.(2019山东德州,9,4分)如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若40ABC∠=︒,则ADC∠的度数是()A.130︒B.140︒C.150︒D.160︒【答案】B【解析】解:由题意得到OA OB OC OD===,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,180ABC ADC ∴∠+∠=︒,40ABC ∠=︒,140ADC ∴∠=︒,故选B .【知识点】圆内接四边形的性质15. (2019山东菏泽,6,3分)如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,且BC 平分∠ABD ,AD分别与BC ,OC 相交于点E ,F ,则下列结论不一定成立的是( )A .OC ∥BDB .AD ⊥OC C .△CEF ≌△BED D .AF =FD【答案】C【解析】解:∵AB 是⊙O 的直径,BC 平分∠ABD ,∴∠ADB =90°,∠OBC =∠DBC ,∴AD ⊥BD ,∵OB =OC ,∴∠OCB =∠OBC ,∴∠DBC =∠OCB ,∴OC ∥BD ,选项A 成立;∴AD ⊥OC ,选项B 成立;∴AF =FD ,选项D 成立;∵△CEF 和△BED 中,没有相等的边,∴△CEF 与△BED 不全等,选项C 不成立,故选C .【知识点】圆周角定理16.(2019台湾省,24,3分)如图表示A 、B 、C 、D 四点在O 上的位置,其中180AD =︒,且AB BD =,BC CD =.若阿超在AB 上取一点P ,在BD 上取一点Q ,使得130APQ ∠=︒,则下列叙述何者正确?A .Q 点在BC 上,且BQ QC >B .Q 点在BC 上,且BQ QC <C .Q 点在CD 上,且CQ QD > D .Q 点在CD 上,且CQ QD <【答案】B【解析】解:连接AD ,OB ,OC ,180AD =︒,且AB BD =,BC CD =,45BOC DOC ∴∠=∠=︒,在圆周上取一点E 连接AE ,CE ,167.52E AOC ∴∠=∠=︒,122.5130ABC ∴∠=︒<︒,取BC 的中点F ,连接OF ,则67.5AOF ∠=︒,123.25130ABF ∴∠=︒<︒,Q ∴点在BC 上,且BQ QC <,故选:B .【知识点】圆心角,弧,弦的关系;圆内接四边形的性质;圆周角定理二、填空题1. (2019四川省凉山市,15,4)如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于H ,∠A =30°,CD 3,则⊙O 的半径是 .第15题图【答案】2【解析】连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°,∵OB⊥CD,CD=23,∴CH=3,∴OH=1,∴OC=2.第15题答图【知识点】等腰三角形性质;三角形外角性质;垂径定理;勾股定理2.(2019天津市,18,3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A在格点上,B是小正方形边的中点,∠ABC=50°,∠BAC=30°,经过点A,B的圆的圆心在边AC上,(1)线段AB的长等于;(2)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足∠PAC=∠PBC=∠PCB,并简要说明点P的位置是如何找到的(不需要证明)【答案】(1)(2)如图,取圆与网格线的交点E,F连接EF与AC相交,得圆心O;AB与网格线相交于点D,连接DO并延长,交O于点Q,连接QC并延长,与点B,O的连线BO相交于点P,连接AP,则点P满足∠PAC=∠PBC=∠PCB【解析】(1)如图,Rt △ABD 中,AD=2,BD=21,由勾股定理可得AB=(2)由于点A 在格点上,可得直角,根据圆周角是直角所对的弦是直径可以作出直径,又因为圆心在AC 上,所以取圆与网格线的交点E,F 连接EF 与AC 相交,得圆心O ;AB 与网格线相交于点D ,则点D 为AB 的中点,连接DO 并延长,根据垂径定理可得则DO 垂直平分AB ,连接BO ,则∠OAB=∠OBA=30°,因为∠ABC=50°,所以∠OBC=20°,DO 的延长线交O 于点Q ,连接QC 并延长,与点B,O 的连线BO 相交于点P ,连接AP ,则点P 满足∠PAC=∠PBC=∠PCB【知识点】勾股定理,圆周角的性质,垂径定理3. (2019浙江湖州,12,4)已知一条弧所对的圆周角的度数为15°,则它所对的圆心角的度数是 .【答案】30°.【解析】根据在同圆或等圆中,同弧或等弧所对圆心角的度数是该弧所对圆周角的度数的2倍,可知答案为30°.【知识点】圆周角定理.4. (2019浙江台州,14题,5分)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE,若∠ABC =64°,则∠BAE 的度数为________.第14题图【答案】52°【解析】∵圆内接四边形ABCD,∴∠B+∠D =180°,∵∠B =64°,∴∠D =116°,又∵点D 关于AC 的对称点是点E,∴∠D =∠AEC =116°,又∵∠AEC =∠B+∠BAE,∴∠BAE =52°.【知识点】圆内接四边形,三角形外角定理,对称性5. (2019安徽省,13,5分)如图,ABC ∆内接于O ,30CAB ∠=︒,45CBA ∠=︒,CD AB ⊥于点D ,若O 的半径为2,则CD 的长为 .【答案】2【解析】解:连接CO 并延长交O 于E ,连接BE ,则30E A ∠=∠=︒,90EBC ∠=︒,O 的半径为2,4CE ∴=,122BC CE ∴==, CD AB ⊥,45CBA ∠=︒,22CD BC ∴==. 故答案为2.【知识点】圆周角定理6.(2019江苏连云港,13,3分)如图,点A、B、C在O上,6∠=︒,则O的半径BACBC=,30为.【答案】6【解析】解:260∠=∠=︒,又OB OC=,BOC BAC∴∆是等边三角形BOCOB BC∴==,6故答案为6.【知识点】圆周角定理7.(2019江苏泰州,16,3分)如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为.【答案】y x.【解析】解:连接PO并延长交⊙O于D,连接BD,则∠C=∠D,∠PBD=90°,∵P A⊥BC,∴∠P AC=90°,∴∠P AC=∠PBD,∴△P AC∽△PBD,∴,∵⊙O的半径为5,AP=3,PB=x,PC=y,∴,∴y x ,故答案为:yx .【知识点】圆周角定理;相似三角形的判定和性质8. (2019江苏盐城,14,3分)如图,点A 、B 、C 、D 、E 在O 上,且AB 为50︒,则E C ∠+∠= °.【答案】155【解析】解:连接EA ,AB 为50︒,25BEA ∴∠=︒,四边形DCAE 为O 的内接四边形,180DEA C ∴∠+∠=︒,18025155DEB C ∴∠+∠=︒-︒=︒,故答案为:155.【知识点】圆周角定理;圆内接四边形的性质9.(2019山东德州,17,4分)如图,CD 为O 的直径,弦AB CD ⊥,垂足为E ,AB BF =,1CE =,6AB =,则弦AF 的长度为 .【答案】485【解析】】解:连接OA 、OB ,OB 交AF 于G ,如图,AB CD ⊥,132AE BE AB ∴===, 设O 的半径为r ,则1OE r =-,OA r =,在Rt OAE ∆中,2223(1)r r +-=,解得5r =,AB BF =,OB AF ∴⊥,AG FG =,在Rt OAG ∆中,2225AG OG +=,①在Rt ABG ∆中,222(5)6AG OG +-=,②解由①②组成的方程组得到245AG =, 4825AF AG ∴==. 故答案为485. 【知识点】垂径定理;勾股定理 10. 15. (2019四川宜宾,15,3分)如图,O 的两条相交弦AC 、BD ,60ACB CDB ∠=∠=︒,23AC =则O 的面积是 .【答案】16π【解析】】解:A BDC ∠=∠,而60ACB CDB ∠=∠=︒,60A ACB ∴∠=∠=︒,ACB ∴∆为等边三角形,23AC =,∴圆的半径为4,O ∴的面积是16π,故答案为:16π.【知识点】圆周角定理11. (2019浙江嘉兴,14,4分)如图,在O 中,弦1AB =,点C 在AB 上移动,连结OC ,过点C 作CD OC ⊥交O 于点D ,则CD 的最大值为 .【答案】12【解析】解:连接OD ,如图,CD OC ⊥,90COD ∴∠=︒,2222CD OD OC r OC ∴=-=-,当OC 的值最小时,CD 的值最大,而OC AB ⊥时,OC 最小,此时221()2OC r AB =-, CD ∴的最大值为2221111()14222r r AB AB --==⨯=, 故答案为:12. 【知识点】垂径定理;勾股定理三、解答题1. (2019浙江宁波,26,14分)如图1,O 经过等边三角形ABC 的顶点A,C(圆心O 在△ABC 内),分别与AB,CB 的延长线交于点D,E,连接DE,BF ⊥EC 交AE 于点F.(1)求证:BD =BE;(2)当AF:EF =3:2,AC =6时,求AE 的长;(3)设AF EF=x,tan ∠DAE =y. ①求y 关于x 的函数表达式;②如图2,连接OF,OB,若△AEC 的面积是△OFB 面积的10倍,求y 的值.第26题图【思路分析】(1)利用等边三角形的性质和圆周角定理,得到∠BED =∠BDE,由等角对等边,得到结论;(2)由三线合一求出AG ,BG 长,利用平行线分线段成比例,求得EB,进而通过勾股定理得到AE 的长;(3)①构造直角三角形,利用比例关系,写出EH,AH 的代数式,进而求得y 关于x 的表达式;②构造相似,得到比例式,表示出两个三角形的面积,根据10倍关系,得到方程,即可解得y 的值.【解题过程】(1)∵△ABC 为等边三角形,∴∠BAC =∠C =60°,∠DEB =∠BAC =60°,∠D =∠C =60°,∠DEB =∠D,BD =BE.(2)如图,过点A 作AG ⊥EC 于点G,∵△ABC 为等边三角形,AC =6,∴BG =12BC =12AC =3,在Rt △ABG 中,AG =3=33∵BF ⊥EC,∴BF ∥AG,∴=AF BG EF EB ,∵AF:EF =3:2,∴BE =23BG =2,∴EG =BE+BG =3+2=5,∴在Rt △AEG 中,AE 22213AG EG +;第26题答图(1) (3)①如图,过点E 作EH ⊥AD 于点H,∵∠EBD =∠ABC =60,在Rt △BEH 中,EH EB=sin60=3,EH =3BE,BH =12BE,=BG AF EB EF =x,BG =xBE,AB =BC =2BG =2xBE,AH =AB+BH =2xBE+12BE =(2x+12)BE,Rt △AHE 中,tanEAD =332=122BE EH AH x BE =⎛⎫+ ⎪⎝⎭,∴y =3;第26题答图(2)②如图,过点O 作OM ⊥EC 于点M,设BE =a,∵=BG AF EB EF=x,∴CG =BG =xBE =ax,∴EC =CG+BG+BE =a+2ax,∴EM =12EC =12a+ax,∴BM =EM -BE =ax -12a,∵BF ∥AG,∴△EBF ∽△EGA,∴1===1BF BE a AG EG a ax x ++,∵AG =3BG =3ax,∴BF =11x+AG =3ax ,△OFB 的面积=131222BF BM ax ax a ⋅⎫=-⎪⎝⎭,△AEC 的面积=()13222EC AG ax a ax ⋅=+,∵△OFB 的面积是△AEC 的面积的10倍,∴1311022ax ax a ⎫⨯-⎪⎝⎭=()1322ax a ax +,∴2x 2-7x+6=0,解之,得x 1=2,x 2=32,y 33.第26题答图(3)【知识点】等边三角形的性质,圆周角定理,等角对等边,三线合一,平行线分线段成比例,勾股定理,三角函数,相似三角形,一元二次方程2.(2019四川省自贡市,21,8分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC,求证:(1);(2)AE=CE.【思路分析】(1)连接AO,BO,CO,DO,由AB=CD得到∠AOB=∠COD,从而证明出∠AOD=∠BOC即可得到;(2)试判定△ADE≌△CBE即可得出结论.【解题过程】解:(1)连接AO,BO,CO,DO,∵AB=CD,∴∠AOB=∠COD,∴∠AOD=∠BOC,∴.(2)∵,∴AD=BC,∵,∴∠ADC=∠ABC,又∵∠AED=∠CEB,∴△ADE≌△CBE,∴AE=CE.【知识点】圆的性质,圆周角定理,全等三角形判定.3. (2019四川攀枝花,24,12分)在平面直角坐标系xOy中,已知A(0,2),动点P在y 3x的图象上运动(不与O重合),连接AP,过点P作PQ⊥AP,交x轴于点Q,连接AQ。