分式乘方的运算法则

合集下载

(完整版)分式加减乘除运算

(完整版)分式加减乘除运算

(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。

湘教版八年级数学 1.2 分式的乘法和除法(学习、上课课件)

湘教版八年级数学  1.2 分式的乘法和除法(学习、上课课件)
ab
a2 - b2 2 [( a + b)( a - b)]2 (a + b) 2( a - b) 2
解:(
) =
=
.
ab
( ab) 2
a2 b 2
感悟新知
知2-练
3y 2
3-1. 计算: (- ) 的结果是( B )

3y 2
A. 2
x
9y 2
6y 2
6y 2
B. 2 C. 2 D. - 2
x
x
.
g g▪
感悟新知
知1-讲
特别解读
分式乘法运算的基本步骤:
第一步:确定积的符号,写在积中分式的前面.
第二步:运用法则,将分子与分母分别相乘,多项式
要带括号.
第三步:约分,将结果化成最简分式或整式.
感悟新知
2. 法则的运用方法:
知1-讲
(1) 若分子、分母都是单项式,可直接利用乘法运算法则运算
- z2
2x2y 4 ( 2 x 2y) 4 16x 8y 4
解: (
) =
=
.
- z2
(- z 2) 4
z8
a4b2 3
(2) (
)
- 3c2
a4b2 3 (a 4b 2) 3
a12b 6
(
) =
=-
.
- 3c2
(- 3c 2) 3
27c 6
知2-练
感悟新知
知2-练
a2 - b2 2
(3) (
)
·( - 4xy2);
3y 4x
5y
ab + b2 6a2b
(3)
·
.
4ab2 a2 - b2
解题秘方:利用分式的乘法运算法则进行计算 .

整式,分式,因式分解,二次根式解题技巧

整式,分式,因式分解,二次根式解题技巧

1.整式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn n m a a =(n m ,都是正整数).积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的3.因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=;()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()c b a c b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++.1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4. 分式一般的,用B A ,表示两个整式,B A ÷就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--= 分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小. (1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+; (2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568yx y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是: n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x . 分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x ()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到.5.二次根式 式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x 1就不是最简二次根式.化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a ba b a 二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式; (3)再把同类二次根式分别合并.二次根式的乘法法则:两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则:两个二次根式相除,被开方数相除,根指数不变,即:b a ba=(0,0>≥b a ).此法则可以推广到多个二次根式的情况. 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--.分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()2131********+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+= 321+= 23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值.分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a . ()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=. 二次根式的化简技巧一、 巧用公式法例1计算b a ba b a ba b a +-+-+-2 分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a 与b 成立,且分式也成立,故有a >0,b >0,()0≠-b a 而同时公式:()b a -2=a 2-2ab +b 2,a 2-2b =()b a +()b a -,可以帮助我们将b ab a +-2和b a -变形,所以我们应掌握好公式可以使一些问题从复杂到简单。

分式的概念、性质及运算

分式的概念、性质及运算

分式的概念和性质要点一、分式的概念一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子A B叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式不能先化简,如2x y x是分式,与xy 有区别,xy 是整式,即只看形式,不能看化简的结果. 要点二、分式有意义,无意义或等于零的条件1.分式有意义的条件:分母不等于零.2.分式无意义的条件:分母等于零.3.分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A M B B M B B M⨯÷==⨯÷,(其中M 是不等于零的整式). 要点诠释:在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化.例如:,在变形后,字母x 的取值范围变大了. 要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变其中任何一个或三个,分式成为原分式的相反数.要点诠释:根据分式的基本性质有b b a a -=-,b b a a-=-.根据有理数除法的符号法则有b b b a a a -==--.分式a b 与a b-互为相反数.分式的符号法则在以后关于分式的运算中起着重要的作用.要点五、分式的约分,最简分式与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.如果一个分式的分子与分母没有相同的因式(1除外),那么这个分式叫做最简分式.要点诠释:(1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分母再没有公因式.(2)约分的关键是确定分式的分子与分母的公因式.分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子与分母是不能再分解的因式积的形式,然后再进行约分. 要点六、分式的通分与分数的通分类似,利用分式的基本性质,使分式的分子和分母同乘适当的整式,不改变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分.要点诠释:(1)通分的关键是确定各分式的最简公分母:一般取各分母所有因式的最高次幂的积作为公分母.(2)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数与相同字母的最高次幂的乘积;如果各分母都是多项式,就要先把它们分解因式,然后再找最简公分母.(3)约分和通分恰好是相反的两种变形,约分是对一个分式而言,而通分则是针对多个分式而言.【典型例题】1. 下列各式中,m 取何值时,分式有意义?(1)2m m +;(2)1||2m -;(3)239m m --.2. 若分式6522+--x x x 的值为0,则x 的值为___________________.3. 当x 取何值时,分式226x x -+的值恒为负数?4. 填写下列等式中未知的分子或分母.(1)22?x y x y x y +-=-; (2)()()?()()()b a c b a c a b b c a c --=----.【变式1】将下列各式约分:(1)23412ax x ;(2)243153n n x y x y+-;(3)211a a --;(4)321620m m m m -+-.【变式2】将下列各式通分:(1)4b ac ,22a b c ;(2)22x x +,211x -.(3)232a b 与2a b ab c -;(4)12x +,244x x -,22x -.5. 若2x y =-,求22222367x xy y x xy y----的值.要点七、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点八、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a ba b a bb b b---⎛⎫=≠⎪⎝⎭.6、计算:(1)422449158a b xx a b;(2)222441214a a aa a a-+--+-.7、计算:(1)222324a b a bc cd-÷;(2)2222242222x y x yx xy y x xy-+÷+++.8、计算:(1)432xy⎛⎫⎪-⎝⎭;(2)323a bc⎛⎫⎪-⎝⎭.9、计算:(1)23422x y yy x x⎛⎫⎛⎫⎛⎫--÷-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)222223()a b aba abb b a⎛⎫-⎛⎫÷+⎪ ⎪-⎝⎭⎝⎭.。

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案

初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。

二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。

2. 能够运用约分与通分的方法对分式进行运算。

3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。

三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。

难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、练习本、计算器。

五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。

2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。

(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。

(3)通过例题讲解,演示如何运用基本性质简化分式。

3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。

4. 例题讲解:(1)分式的乘除法运算。

(2)分式的乘方运算。

(3)含有绝对值的分式简化。

5. 课堂小结:六、板书设计1. 分式的定义与结构。

2. 分式的基本性质。

3. 分式的约分与通分。

4. 分式的乘除法及乘方运算。

5. 例题及解题步骤。

七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。

(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。

(3)计算分式的乘方:(x^24)/(x+2)^2。

2. 答案:(1)1/(2x4)。

(2)3x(x2)/(2(x+2)(x2))。

(3)(x2)^2/(x+2)^2。

八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。

八年级数学上册分式知识点

八年级数学上册分式知识点

八年级数学上册分式知识点八年级数学上册分式知识点在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。

哪些才是我们真正需要的知识点呢?下面是店铺帮大家整理的八年级数学上册分式知识点,仅供参考,欢迎大家阅读。

八年级数学上册分式知识点1分式知识点1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。

2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。

3.分式值为零的条件:分式AB=0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。

)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为(其中A、B、C是整式),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是确定几个式子的最简公分母。

几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。

求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。

6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。

八年级数学上册《分式的乘方及乘方与乘除的混合运算》教案、教学设计

八年级数学上册《分式的乘方及乘方与乘除的混合运算》教案、教学设计
(2)运用启发式教学,引导学生自主探究分式乘方及乘除混合运算的规律,培养学生发现问题、解决问题的能力。
(3)采用分组合作学习,让学生在交流互动中,共同探讨解决问题的方法,提高团队协作能力。
2.教学步骤:
(1)导入:通过一个简单的实际问题,引出分式乘方及乘除混合运算的概念。
(2)新课:讲解分式乘方的定义、运算规则,结合实例进行分析,让学生理解并掌握分式乘方的运算方法。
(3)激发学生学习兴趣,为后续学习打下基础。
2.教学过程:
(1)引导学生回顾本节课所学内容,总结知识点。
(2)强调重难点,提醒学生注意运算顺序和简化方法。
(3)鼓励学生积极参与课堂,培养良好的学习习惯和兴趣。
五、作业布置
为了巩固学生对分式乘方及乘除混合运算的理解和应用,特布置以下作业:
1.基础练习题:设计一些具有代表性的基础题目,让学生掌握分式乘方的定义、运算规则以及分式乘除混合运算的顺序和简化方法。旨在巩固学生的基本知识,提高运算能力。
例题:计算以下分式的乘方及乘除混合运算:
(1)(3/4)^2 ÷ (2/3)^3
(2)(5x^2/6y) × (3y/4x^3) ÷ (9/2x^2y^2)
2.提高题:布置一些具有一定难度的题目,旨在培养学生分析问题、解决问题的能力,同时拓展学生的思维。
例题:已知a、b、c为实数,且a^2 - b^2 = 4,b^2 - c^2 = 3,c^2 - a^2 = 2,求代数式(a+b+c)^2 ÷ (a-b-c)^2的值。
(3)实物教具:准备一些实物教具,帮助学生形象地理解分式乘方及乘除混合运算的概念。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
在课堂开始时,我将以一个与学生生活息息相关的问题作为导入:假设我们班要组织一次秋游,已知一辆大客车的租金是每人100元,如果租用的时间是原来的平方,那么租金是多少?通过这个问题,引导学生思考如何计算原来的租金的平方,从而引出分式乘方的概念。

例谈不完全归纳法在初中数学中的运用

例谈不完全归纳法在初中数学中的运用

例谈不完全归纳法在初中数学中的运用郧西县城关镇城北中学 徐华进不完全归纳法是指从一个或几个(但不是全部)特殊情况作一般性的结论的归纳推理。

这种归纳法是用一定数量数值为基础,进行分析探究,从中找出规律,并将此规律推广应用到一般情况下的计算和证明.在初中数学教材中,经常会用这种方法进行定义、公式、法则、定理的推导.学生在学习中,若能正确运用不完全归纳法,可提高分析、解决问题能力,发现、探索问题的能力。

下面略举几例说明它的运用;一. 在推导法则、定理中的运用1.利用不完全归纳法推导分式乘方的运算法则 根据乘方的意义和分式乘法法则,可得:①222)(b a bb aa b a == ②bbb aaa b a =3)(=33b a ③777)(b a bbbbbbb aaaaaaa b a ==……由此可推出,当n 为正整数时,=nba)( ban b a b a b a 个···⋯⋯=nn bn a n ba b bb a aa =⋯⋯⋯⋯ 个个····(b ≠0)即分式乘方要把分子、分母分別乘方2.利用不完全归纳法推导凸多边形内角和定律 将教材的推导过程整理成下表:通过引导学生填写上表内容,分析概括,总结归纳出多边形内角和定理:n 边形内角和等于1800×(n-2). 说明:本定理的推导,还可以在多边形内(或一边上)取任一点,分别连接多边形的顶点,也可仿照上述方法,得到同样的结论,可让学有余力的学生在课外去探讨。

二.在解题中的应用1 . 从计算结果中探究规律例 计算:⑴211- = 3 ⑵221111-=33 ⑶222111111-=333 ⑷222211111111-=3333 请根据上述规律写出下式的结果:21222....222211......11111个个n n -=______________. 分析:①从⑴至⑵式的左边可以看出:被开方数中被减数1的个数是减数2的二倍,其结果中3的个数是减数2的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
n
b
an bn
n是正整数
题型演练一
要求:独立思考,学友展示,学师给予点评、补充。
例1、计算:
1
3bc 2a
2
2
2
3b a
2
练习: • 课本13页练习1
题型演练二
要求:独立思考,学友展示,学师给予点评、补充。
例2、计算:
1
3n 2m
2

m
3
n
2
3c 2
3
4ab

2a
2
3c
练习:
• 课本13页练习2 • 习题:基础4
能力提升:
要求:师友简单交流,学友展示,学师给予点评、补充。
课堂小结:
• 1.这节课你有什么收获? • (1)知识方面 • (2)师友互助方面 • 2.班长点评、评选最佳学师
学友。
• 必做: • 选做:
作业:
分式乘方的运算法则
学习目标:
要求:全班齐读。
• 1、理解分式乘方的运算法则。 • 2、能熟练运用这一法则进行计算。
互助探究一
要求:师友交流,学友展示,学师给予点评、补充。
• 课本12页: • 根据乘方的意义和分式乘法的运算
法则,你能推出分式乘方的运算法 则吗?
• 分式乘方的运算法则:
• 分式的乘方是把分式的分子、分母 分别乘方。用式子表示为
相关文档
最新文档