操作系统线程的同步

操作系统线程的同步
操作系统线程的同步

《操作系统原理》实验报告

实验序号:5 实验项目名称:线程的同步

五、分析与讨论

操作系统OS报告读者与写者问题(进程同步问题)

目录 一、课程设计目的及要求 (1) 二、相关知识 (1) 三、题目分析 (2) 四、概要设计 (4) 五、代码及流程 (5) 六、运行结果 (11) 七、设计心得 (12) 八、参考文献 (12)

一、课程设计目的及要求 读者与写者问题(进程同步问题) 用n 个线程来表示n个读者或写者。每个线程按相应测试数据文件的要求,进行读写操作。请用信号量机制分别实现读者优先和写者优先的读者-写者问题。 读者-写者问题的读写操作限制: 1)写-写互斥; 2)读-写互斥; 3)读-读允许; 写者优先的附加限制:如果一个读者申请进行读操作时已有另一写者在等待访问共享资源,则该读者必须等到没有写者处于等待状态后才能开始读操作。 二、相关知识 Windows API: 在本实验中涉及的API 有: 1线程控制: CreateThread 完成线程创建,在调用进程的地址空间上创建一个线程,以执行指定的函数;它的返回值为所创建线程的句柄。 HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, // SD DWORD dwStackSize, // initial stack size LPTHREAD_START_ROUTINE lpStartAddress, // thread function LPVOID lpParameter, // thread argument DWORD dwCreationFlags, // creation option LPDWORD lpThreadId // thread identifier ); 2 ExitThread 用于结束当前线程。 VOID ExitThread( DWORD dwExitCode // exit code for this thread ); 3Sleep 可在指定的时间内挂起当前线程。 VOID Sleep( DWORD dwMilliseconds // sleep time ); 4信号量控制: WaitForSingleObject可在指定的时间内等待指定对象为可用状态; DWORD WaitForSingleObject( HANDLE hHandle, // handle to object DWORD dwMilliseconds // time-out interval );

操作系统第二章进程和线程复习题

第二章练习题 一、单项选择题 1.某进程在运行过程中需要等待从磁盘上读入数据,此时该进程的状态将( C )。 A. 从就绪变为运行; B.从运行变为就绪; C.从运行变为阻塞; D.从阻塞变为就绪2.进程控制块是描述进程状态和特性的数据结构,一个进程( D )。 A.可以有多个进程控制块; B.可以和其他进程共用一个进程控制块; C.可以没有进程控制块; D.只能有惟一的进程控制块。 3.临界区是指并发进程中访问共享变量的(D)段。 A、管理信息 B、信息存储 C、数据 D、 程序 4. 当__ B__时,进程从执行状态转变为就绪状态。 A. 进程被调度程序选中 B. 时间片到 C. 等待某一事件 D. 等待的事件发生 5. 信箱通信是一种( B )通信方式。 A. 直接通信 B. 高级通信

C. 低级通信 D. 信号量 6. 原语是(B)。 A、一条机器指令 B、若干条机器指令组成 C、一条特定指令 D、中途能打断的指令 7. 进程和程序的一个本质区别是(A)。 A.前者为动态的,后者为静态的; B.前者存储在内存,后者存储在外存; C.前者在一个文件中,后者在多个文件中; D.前者分时使用CPU,后者独占CPU。 8. 任何两个并发进程之间存在着(D)的关系。 A.各自完全独立B.拥有共享变量 C.必须互斥D.可能相互制约 9. 进程从运行态变为等待态可能由于(B )。 A.执行了V操作 B.执行了P 操作 C.时间片用完 D.有高优先级进程就绪 10. 用PV操作管理互斥使用的资源时,信号量的初值应定义为(B)。 A.任意整数 B.1 C.0 D.-1

操作系统 实验 五 线程间的互斥与同步

实验五线程间的互斥与同步 实验学时:2学时 实验类型:验证、设计型 一、实验目的 理解POSIX线程(Pthread)互斥锁和POSIX信号量机制,学习它们的使用方法;编写程序,实现多个POSIX线程的同步控制。 二,实验内容 创建4个POSIX线程。其中2个线程(A和B)分别从2个数据文件(data1.txt和data2.txt)读取10个整数. 线程A和B把从文件中读取的逐一整数放入一个缓冲池. 缓冲池由n个缓冲区构成(n=5,并可以方便地调整为其他值),每个缓冲区可以存放一个整数。另外2个线程,C和D,各从缓冲池读取10数据。线程C、D每读出2个数据,分别求出它们的和或乘积,并打印输出。 提示:在创建4个线程当中,A和B是生产者,负责从文件读取数据到公共的缓冲区,C和D是消费者,从缓冲区读取数据然后作不同的计算(加和乘运算)。使用互斥锁和信号量控制这些线程的同步。不限制线程C和D从缓冲区得到的数据来自哪个文件。 在开始设计和实现之前,务必认真阅读课本6.8.4节和第6章后面的编程项目——生产者-消费者问题。

三,实验要求 按照要求编写程序,放在相应的目录中,编译成功后执行,并按照要求分析执行结果,并写出实验报告。 四,实验设计 1,功能设计 根据实验要求,主程序需要创建四个线程,两个线程负责从文件读取数据到缓冲区,两个线程负责将缓冲区的数据做数学运算。由于同一个进程中的各个线程共享资源,可以用一个二维数组的全局变量作为公共缓冲区,同时还需要一个整形全局变量size用来做数组的索引。读线程的运行函数打开不同的文件并从中读取数据到二维数组中,每次写入数组后size加一。运算线程从二维数组中读数并做运算,每次读数之前size减一。本题的关键在于如何使用信号量保证进程的同步与互斥。在运算线程从缓冲区读取之前缓冲区里必须有数,即任意时刻运算操作的执行次数必须小于等于读取操作的执行次数。同时应该保证两个读线程和两个运算线程两两互斥。由于以上分析,使用了四个信号量sem1,sem2,sem3和sem4。sem1保证线程1和线程2互斥,sem2保证线程3和线程4互斥,sem3保证线程3和线程4互斥,sem4保证线程4和线程1互斥。即这四个信号量使四个线程循环进行,从而保证了运行结果的正确性。 源代码及注释: #include #include #include #define NUM 200

不同操作系统下Java线程的区别

java的线程概念与操作系统的线程概念是不同的,java的线程概念差不多与windows线程概念一致,但是java既然目标是跨平台语言,那么它的线程机制概念是在所有平台上都是一样的,但是实际实现又不是如此,这要从进程与线程的概念中谈起: 首先在windows系列系统中,进程所拥有的内存空间都是独立的,此进程所持有的内存其它进程是不可以直接访问的,而且在windows系统内部一个进程就是一个运行的运用程序,而为了解决应用程序内部的并行问题便有了线程的概念,线程没有自我独立的内存空间,在一个进程中所有的线程共享这个进程所持有的内存空间。 而在某些Unix系统当中,进程所持有的内存空间是可以被其他进程进行访问的,而且一个运用程序可能不止一个进程,这样的系统没有线程的概念,运用的并行问题有多个进程协调来解决。 java为了实现平台无关性,必须解决这样一个问题,因此java建立了一套自己的进程与线程机制,这套机制与windows系统的颇为相似,但是底层实现确实根据不同平台的机制进行实现,比如windows下的线程机制就是利用windows本身的线程机制加上某些改进进行处理的,而某些没有线程的Unix系统则是用进程来替代线程进行实现的,然后在其中确立一个主进程来替代自身进程。虽然这样的实现解决了大部分的线程平台无关性,但是也有些无法解决的,比如线程优先级,windows下线程是有优先级的,但是某些Linux系统,某些Unix系统,进程与线程直接不区分优先级,因此优先级在每个系统下的表现形式就不一样,例如低优先级的进程可能在windows下被饿死,但是在linux下,根本就无法感觉它优先级较低,还有,在建立一个线程与杀死一个线程运用所带来的开销也会不同,在windows下建立或杀死线程可能是不需要什么开销的,但是在没有线程概念的进程行操作系统中,杀死或者建立线程可能带来巨大开销

OS中的进程线程同步机制

OS中的进程/线程同步机制 1 常用并发机制 1.1 信号量(Semaphore) 用于进程间传递信号的一个整数值,在信号上只可以进行三种操作,即初始化、递减和递增,这三种操作都是原子操作。递减操作用于阻塞一个进程,递增操作用于解除一个进程的阻塞。信号量也称为计数信号量或一般信号量 1.2 二元信号量(Binary Semaphore) 只取0值和1值的信号量。 1.3 互斥量(Mutex) 类似于二元信号量。关键在于为其加锁(设定值为0)的进程和为其解锁(设定值为1)的进程必须为同一个进程。 1.4 条件变量(Cond) 一种数据类型,用于阻塞进程或线程,直到特定的条件为真。 1.5 管程(Monitor) 一种编程语言结构,它在一个抽象数据类型中封装了变量、访问过程和初始化代码。管程的变量只能由管程自身的访问过程访问,每次只能有一个进程在其中执行,访问过程即临界区。管程可以有一个等待进程队列。 1.6 事件标志(Event Sign) 用作同步机制的一个内存字。应用程序代码可为标志中的每个位关联不同的事件。通过测试相关的一个或多个位,线程可以等待一个或多个事件。在全部所需位都被设定(AND)或至少一个位被设定(OR)之前,线程会一直被阻塞。 1.7 信箱/消息(Mailbox) 两个进程间交换信息的一种方法,也可用于同步。 1.8 自旋锁(Spin Lock) 一种互斥机制,进程在一个无条件循环中执行,等待锁变量的值可用。

2 常用进程/线程同步机制介绍 2.1 Windows OS中常用进程/线程同步机制 2.1.1 临界区(Critical Section) 可用于进程和线程同步。 保证在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。 临界区包含两个操作原语: EnterCriticalSection()进入临界区 LeaveCriticalSection()离开临界区 EnterCriticalSection()语句执行后代码将进入临界区以后无论发生什么,必须确保与之匹配的LeaveCriticalSection()都能够被执行到。否则临界区保护的共享资源将永远不会被释放。虽然临界区同步速度很快,但却只能用来同步本进程内的线程,而不可用来同步多个进程中的线程。 MFC提供了很多功能完备的类,我用MFC实现了临界区。MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是非常简单的。只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。Lock()后代码用到的资源自动被视为临界区内的资源被保护。UnLock后别的线程才能访问这些资源。 2.1.2 互斥量(Mutex) 进程和线程都可用的一种同步机制。互斥量跟临界区很相似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。互斥量比临界区复杂。因为使用互斥不仅仅能够在同一应用程序不同线程中实现资源的安全共享,而且可以在不同应用程序的线程之间实现对资源的安全共享。 互斥量包含的几个操作原语: CreateMutex()创建一个互斥量 OpenMutex()打开一个互斥量 ReleaseMutex()释放互斥量 WaitForMultipleObjects()等待互斥量对象 2.1.3 信号量(Semaphore) 进程和线程都可用的同步机制。 信号量对象对线程的同步方式与前面几种方法不同,信号允许多个线程同时使用共享资源,这与操作系统中的PV操作相同。它指出了同时访问共享资源的线程最大数目。它允许多个线程在同一时刻访问同一资源,但是需要限制在同一

实验2 线程同步机制

实验2 线程同步机制 一、实验目的: 通过观察共享数据资源但不受控制的两个线程的并发运行输出结果,体会同步机制的必要性和重要性。然后利用现有操作系统提供的同步机制编程实现关于该两个线程的有序控制,同时要求根据同步机制的Peterson软件解决方案尝试自己编程实现同步机制和用于同一问题的解决,并基于程序运行时间长短比较两种同步机制。 二、实验设计 I基于给定银行账户间转账操作模拟代码作为线程执行代码,在主线程中创建两个并发线程,编程实现并观察程序运行结果和予以解释说明。 II利用Windows互斥信号量操作函数解决上述线程并发问题,并分析、尝试和讨论线程执行体中有关信号量操作函数调用的正确位置。 III根据同步机制的Peterson软件解决方案尝试自己编程实现线程同步机制和用于上述线程并发问题的解决,并基于程序运行时间长短

将其与基于Windows互斥信号量的线程同步机制的效率展开比较。其间,可规定线程主体代码循环执行1000000次 三、源程序清单和说明 1未利用互斥信号量 #include #include #include int nAccount1 = 0, nAccount2 = 0; int nLoop = 0; int nTemp1, nTemp2, nRandom; DWORD WINAPI ThreadFunc(HANDLE Thread) { do { nTemp1 = nAccount1; nTemp2 = nAccount2; nRandom = rand(); nAccount1 = nTemp1 + nRandom; nAccount2 = nTemp2 - nRandom; nLoop++; } while ((nAccount1 + nAccount2) == 0); printf("循环次数为%d\n", nLoop); return 0; } int main() { HANDLE Thread[2]; Thread[0] = CreateThread(NULL,0,ThreadFunc,NULL,0,NULL); Thread[1] = CreateThread(NULL,0,ThreadFunc,NULL,0,NULL); WaitForMultipleObjects(2,Thread,TRUE,INFINITE); CloseHandle(Thread); return 0; }

用多线程同步方法解决生产者-消费者问题(操作系统课设)

. 题目用多线程同步方法解决生产者-消费 者问题(Producer-Consumer Problem) 学院计算机科学与技术学院 专业软件工程 班级 姓名 指导教师 年月日

目录 目录 (1) 课程设计任务书 (2) 正文 (2) 1.设计目的与要求 (2) 1.1设计目的 (2) 1.2设计要求 (2) 2.设计思想及系统平台 (2) 2.1设计思想 (2) 2.2系统平台及使用语言 (2) 3.详细算法描述 (3) 4.源程序清单 (5) 5.运行结果与运行情况 (10) 6.调试过程 (15) 7.总结 (15) 本科生课程设计成绩评定表 (16)

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:计算机科学与技术学院 题目: 用多线程同步方法解决生产者-消费者问题 (Producer-Consumer Problem) 初始条件: 1.操作系统:Linux 2.程序设计语言:C语言 3.有界缓冲区内设有20个存储单元,其初值为0。放入/取出的数据项按增序设定为1-20这20个整型数。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要 求) 1.技术要求: 1)为每个生产者/消费者产生一个线程,设计正确的同步算法 2)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的当前全部内容、当前指针位置和生产者/消费者线程的自定义标识符。 3)生产者和消费者各有两个以上。 4)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。 2.设计说明书内容要求: 1)设计题目与要求 2)总的设计思想及系统平台、语言、工具等。 3)数据结构与模块说明(功能与流程图) 4)给出用户名、源程序名、目标程序名和源程序及其运行结果。(要注明存储各个程序及其运行结果的主机IP地址和目录。) 5)运行结果与运行情况 (提示: (1)有界缓冲区可用数组实现。 (2)编译命令可用:cc -lpthread -o 目标文件名源文件名 (3)多线程编程方法参见附件。) 3. 调试报告: 1)调试记录 2)自我评析和总结 上机时间安排: 18周一~ 五 08:0 - 12:00 指导教师签名:年月日

操作系统课程设计用多进程同步方法解决生产者-消费者问题

操作系统课程设计 用多进程同步方法解决生产者-消费者问题 系别:计科系 专业: 计算机科学与技术 班级:04 级 4 班 学号:0410******* 姓名:苏德洪 时间:2006-7-7—2006-7-14

目录 一、题目: (3) 二、设计目的: (3) 三、总体设计思想概述: (3) 四、说明: (3) 五、设计要求: (3) 六、设计方案: (3) 七、流程图: (5) 八、运行结果 (7) 九、源程序 (11) 十、总结 (18) 十一、参考文献 (20)

一、题目: 用多进程同步方法解决生产者-消费者问题。 二、设计目的: 通过研究Linux 的进程机制和信号量实现生产者消费者问题的并发控制。 三、总体设计思想概述: 1、生产者—消费者问题是一种同步问题的抽象描述。 2、计算机系统中的每个进程都可以消费或生产某类资源。当系统中某一进程使用某一 资源时,可以看作是消耗,且该进程称为消费者。 3、而当某个进程释放资源时,则它就相当一个生产者。 四、说明: 有界缓冲区内设有20个存储单元,放入/取出的数据项设定为1-20这20个整型数。 五、设计要求: 1、每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的全部内容,当前 指针位置和生产者/消费者线程的标识符。 2、生产者和消费者各有两个以上。 3、多个生产者或多个消费者之间须有共享对缓冲区进行操作的函数代码。 六、设计方案: 通过一个有界缓冲区(用数组来实现,类似循环队列)把生产者和消费者联系起来。假定生产者和消费者的优先级是相同的,只要缓冲区未满,生产者就可以生产产品并将产品送入缓冲区。类似地,只要缓冲区未空,消费者就可以从缓冲区中去走产品并消费它。 应该禁止生产者向满的缓冲区送入产品,同时也应该禁止消费者从空的缓冲区中取出产品,这一机制有生产者线程和消费者线程之间的互斥关系来实现。 为解决生产者/消费者问题,应该设置两个资源信号量,其中一个表示空缓冲区的数目,用g_hFullSemaphore表示,其初始值为有界缓冲区的大小SIZE_OF_BUFFER;另一个表示缓冲区中产品的数目,用g_hEmptySemaphore表示,其初始值为0。另外,由于有界缓冲区是一个临界资源,必须互斥使用,所以还需要再设置一个互斥信号量g_hMutex,起初值为1。

操作系统课程设计之线程

/* 说明:本程序中,默认以tcb下标为就绪队列,即从tcb[0]~tcb[NTCB-1]为轮转执行,程序中出现的id均为线程内部标识,即tcb的下标*/ #include #include /* 包含malloc()的头文件*/ #include #include /* 包含strcmp(),strcpy()的头文件*/ #define GET_INDOS 0X34 /* 参见实验指导书*/ #define GET_CRIT_ERR 0X5D06 /* 参见实验指导书*/ #define NTCB 5 /* NTCB是系统允许的最多线程数,也就是允许的线程控制块最大数*/ #define NBUF 5 /* 空闲缓冲区的数量*/ #define NTEXT 20 /* 在线程间传送信息时,信息的上限*/ #define FINISHED 0 /* 表示线程处于终止态或TCB是空闲状态*/ #define RUNNING 1 /* 表示线程处于运行态*/ #define READY 2 /* 表示线程处于就绪态*/ #define BLOCKED 3 /* 表示线程处于阻塞态*/ int current = 0; /* 当前TCB,初始=0 */ int timecount = 0; /* 时间计数*/ int TL = 1; /* 时间片大小*/ char far *indos_ptr = 0; /* 该指针变量存放INDOS标志的地址*/ char far *crit_err_ptr = 0; /* 该指针变量存放严重错误标志的地址*/ /*记录型信号量的定义,参见课本51 页*/ typedef struct{ int value; /* 资源数目*/ struct TCB *wq; /* 线程链表指针,链接所有等待线程*/ } semaphore; struct TCB{ unsigned char *stack; /* 线程堆栈的起始地址*/ unsigned ss; /* 堆栈段址*/ unsigned sp; /* 堆栈指针*/ char state; /* 线程状态:执行、就绪、阻塞*/ char name[10]; /* 线程的外部标识符*/ struct buffer *mq; /* 消息队列队首指针*/ semaphore mutex; /* 消息队列互斥信号量*/ semaphore sm; /* 消息队列资源信号量,用于实现同步*/

4:一个经典的多线程同步问题汇总

一个经典的多线程同步问题 程序描述: 主线程启动10个子线程并将表示子线程序号的变量地址作为参数传递给子线程。子线程接收参数 -> sleep(50) -> 全局变量++ -> sleep(0) -> 输出参数和全局变量。 要求: 1.子线程输出的线程序号不能重复。 2.全局变量的输出必须递增。 下面画了个简单的示意图: 分析下这个问题的考察点,主要考察点有二个: 1.主线程创建子线程并传入一个指向变量地址的指针作参数,由于线程启动须要花费一定的时间,所以在子线程根据这个指针访问并保存数据前,主线程应等待子线程保存完毕后才能改动该参数并启动下一个线程。这涉及到主线程与子线程之间的同步。 2.子线程之间会互斥的改动和输出全局变量。要求全局变量的输出必须递增。这涉及到各子线程间的互斥。 下面列出这个程序的基本框架,可以在此代码基础上进行修改和验证。 //经典线程同步互斥问题 #include #include #include long g_nNum; //全局资源 unsigned int__stdcall Fun(void *pPM); //线程函数 const int THREAD_NUM = 10; //子线程个数 int main() { g_nNum = 0;

HANDLE handle[THREAD_NUM]; int i = 0; while (i < THREAD_NUM) { handle[i] = (HANDLE)_beginthreadex(NULL, 0, Fun, &i, 0, NULL); i++;//等子线程接收到参数时主线程可能改变了这个i的值} //保证子线程已全部运行结束 WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE); return 0; } unsigned int__stdcall Fun(void *pPM) { //由于创建线程是要一定的开销的,所以新线程并不能第一时间执行到这来int nThreadNum = *(int *)pPM; //子线程获取参数 Sleep(50);//some work should to do g_nNum++; //处理全局资源 Sleep(0);//some work should to do printf("线程编号为%d 全局资源值为%d\n", nThreadNum, g_nNum); return 0; } 运行结果:

Java多线程同步机制在售票系统的实现

Java多线程同步机制在售票系统的实现 论文导读:多线程技术的思想已经使用了很长的一段时间。但其不支持相同优先级的时间片轮换。多个用户线程在并发运行过程中可能同时访问临界区的内容。在Java中定义了线程同步的概念。关键词:多线程技术,多线程优先级,时间片,同步,临界区引言:多线程技术的思想已经使用了很长的一段时间,它允许CPU处理器时间共享,即很多用户可以共享处理器,每个用户的任务都分配到一段处理器时间。多线程是现代操作系统有别于传统操作系统的重要标志之一,它有别于传统的多进程的概念。所谓线程就是程序中的一个执行流,多线程程序是指一个程序中包含有多个执行流,多线程是实现并发机制的一种有效手段。进程和线程一样,都是实现并发性的一个基本单位。1.基本概念:1.1线程与进程的主要区别:①同样作为基本的执行单元,线程的划分比进程小。②多进程每个占有独立的内存空间,而多线程共享同一内存空间,通过共享的内存空间来交换信息,切换效率远远高于多进程。③Java线程调度器支持不同优先级线程的抢占方式,但其不支持相同优先级的时间片轮换。④Java运行时系统所在的操作系统(例如:Windows XP)支持时间片的轮换,则线程调度器就支持相同优先级线程的时间片轮换。免费论文参考网。1.2Java 多线程的特点:1.2.1多线程的继承由于Java引入了包的概念,从而使类的继承更加简便,线程的创建就是一个最好的例子。Java多线程的实现有两种办法①通过Thread继承,在下面的研究中,我主要用继承自Thread类来实现Java的多线程技术。②通过Runnable接口。

1.2.2Java多线程的同步技术Java应用程序的多个线程共享同一进程的数据资源,多个用户线程在并发运行过程中可能同时访问临界区的内容,为了程序的正常运行,在Java中定义了线程同步的概念,实现对临界区共享资源的一致性的维护。1.3.3Java多线程的流程控制Java流程控制的方法有Sleep().Interrupt().Wait().Notif().Join()等。1.3.4临界区在一个多线程的程序当中,单独的并发的线程访问代码段中的同一对象,则这个代码段叫做临界区,我们需要用同步的机制对代码段进行保护,避免程序出现不确定的因素。1.3.5同步机制Java中支持线程的同步机制,它由synchronized方法实现,分为同步块和同步方法,在下面的讨论中用synchronized的同步块来解决问题。2.多线程同步机制在车票系统的实现2.1下面就以售票系统中所涉及的问题来讨论Java的多线程同步机制问题,在售票系统中由于很大一部分时间可能有多人在购买车票,所以必须开辟多个线程同时为他们服务,在这里我设有四个售票窗口,则开辟四个线程来为四个窗口服务模拟图如下:窗口 1 窗口2窗口 3 窗口4Thread1Thread2 Thread3Thread4售票窗口模拟图 2.2出错的程序代码如下:class TicketsSystem{public staticvoid main(String[] args){SellThread kt=new SellThread();new Thread(kt).start();new Thread(kt).start();new Thread(kt).start();new Thread(kt).start();}}class SellThreadextends Thread{inttickets=60;public voidrun(){while(true){if(tickets>0){System.out.println(Thread.currentThr ead().getName()+'sellticket '+tickets);tickets--;}}}}在上面的程序中为了

南昌大学操作系统线程进程同步实验报告

南昌大学实验报告 ---(1)进程/线程同步 学生姓名:学号:专业班级:网络工程131班 实验类型:■验证□综合□设计□创新实验日期:实验成绩: 一、实验目的 本实验讨论临界区问题及其解决方案。首先创建两个共享数据资源的并发线程。在没有同步控制机制的情况下,我们将看到某些异常现象。针对观察到的现象,本实验采用Windows 的信号量机制解决临界区互斥访问。 二、实验内容 2.1 进程/线程并发执行 Windows操作系统支持抢先式调度,这意味着一线程运行一段时间后,操作系统会暂停其运行并启动另一线程。也就是说,进程内的所有线程会以不可预知的步调并发执行。为了制造混乱,我们首先创建两个线程t1和t2。父线程(主线程)定义两个全局变量,比如accnt1和accnt2。每个变量表示一个银行账户,其值表示该账户的存款余额,初始值为0。线程模拟在两个账户之间进行转账的交易。也即,每个线程首先读取两个账户的余额,然后产生一个随机数r,在其中一个账户上减去该数,在另一个账户上加上该数。线程操作的代码框架如下: counter=0; do { tmp1 = accnt1 ; tmp2 = accnt2 ; r = rand ( ) ; accnt1 = tmp1 + r ; accnt2 = tmp2 ? r ; counter++; } while ( accnt1 + accnt2 == 0 ) ; print ( counter ) ; 两个线程执行相同的代码。只要它们的执行过程不相互交叉,那么两个账户的余额之和将永远是0。但如果发生了交叉,那么某线程就有可能读到新的accnt1值和老的accnt2值,从而导致账户余额数据发生混乱。线程一旦检测到混乱的发生,便终止循环并打印交易的次数(counter)。 请编写出完整的程序代码并运行,然后观察产生混乱需要的时间长短。因为这是我们编写的第一个程序,因此这里我给出了完整的代码,请参考。有能力的同学在参考下面的代码之前,请先自己尝试一下。 #include "stdafx.h" #include

Windows下多线程同步机制

多线程同步机制 Critical section(临界区)用来实现“排他性占有”。适用范围是单一进程的各线程之间。它是: ·一个局部性对象,不是一个核心对象。 ·快速而有效率。 ·不能够同时有一个以上的critical section被等待。 ·无法侦测是否已被某个线程放弃。 Mutex Mutex是一个核心对象,可以在不同的线程之间实现“排他性占有”,甚至几十那些现成分属不同进程。它是: ·一个核心对象。 ·如果拥有mutex的那个线程结束,则会产生一个“abandoned”错误信息。 ·可以使用Wait…()等待一个mutex。 ·可以具名,因此可以被其他进程开启。 ·只能被拥有它的那个线程释放(released)。 Semaphore Semaphore被用来追踪有限的资源。它是: ·一个核心对象。 ·没有拥有者。 ·可以具名,因此可以被其他进程开启。 ·可以被任何一个线程释放(released)。 Ev ent Object Ev ent object通常使用于overlapped I/O,或用来设计某些自定义的同步对象。它是: ·一个核心对象。 ·完全在程序掌控之下。 ·适用于设计新的同步对象。 · “要求苏醒”的请求并不会被储存起来,可能会遗失掉。 ·可以具名,因此可以被其他进程开启。 Interlocked Variable 如果Interlocked…()函数被使用于所谓的spin-lock,那么他们只是一种同步机制。所谓spin-lock是一种busy loop,被预期在极短时间内执行,所以有最小的额外负担(overhead)。系统核心偶尔会使用他们。除此之外,interlocked variables主要用于引用技术。他们:·允许对4字节的数值有些基本的同步操作,不需动用到critical section或mutex之类。 ·在SMP(Symmetric Multi-Processors)操作系统中亦可有效运作。 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

四种进程或线程同步互斥的控制方法

四种进程或线程同步互斥的控制方法 1、临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。 2、互斥量:为协调共同对一个共享资源的单独访问而设计的。 3、信号量:为控制一个具有有限数量用户资源而设计。 4、事件:用来通知线程有一些事件已发生,从而启动后继任务的开始。 一临界区 临界区的使用在线程同步中应该算是比较简单,说它简单还是说它同后面讲到的其它方法相比更容易理解。举个简单的例子:比如说有一个全局变量(公共资源)两个线程都会对它进行写操作和读操作,如果我们在这里不加以控制,会产生意想不到的结果。假设线程A 正在把全局变量加1然后打印在屏幕上,但是这时切换到线程B,线程B又把全局变量加1然后又切换到线程A,这时候线程A打印的结果就不是程序想要的结果,也就产生了错误。解决的办法就是设置一个区域,让线程A在操纵全局变量的时候进行加锁,线程B如果想操纵这个全局变量就要等待线程A释放这个锁,这个也就是临界区的概念。 二互斥体 windows api中提供了一个互斥体,功能上要比临界区强大。也许你要问,这个东东和临界区有什么区别,为什么强大?它们有以下几点不一致: 1.critical section是局部对象,而mutex是核心对象。因此像waitforsingleobject是不可以等待临界区的。 2.critical section是快速高效的,而mutex同其相比要慢很多 3.critical section使用围是单一进程中的各个线程,而mutex由于可以有一个名字,因此它是可以应用于不同的进程,当然也可以应用于同一个进程中的不同线程。 4.critical section 无法检测到是否被某一个线程释放,而mutex在某一个线程结束之后会产生一个abandoned的信息。同时mutex只能被拥有它的线程释放。下面举两个应用mutex 的例子,一个是程序只能运行一个实例,也就是说同一个程序如果已经运行了,就不能再运行了;另一个是关于非常经典的哲学家吃饭问题的例子。 三事件 事件对象的特点是它可以应用在重叠I/O(overlapped I/0)上,比如说socket编程中有两种模型,一种是重叠I/0,一种是完成端口都是可以使用事件同步。它也是核心对象,因此可以被waitforsingleobje这些函数等待;事件可以有名字,因此可以被其他进程开启。 四信号量 semaphore的概念理解起来可能要比mutex还难,我先简单说一下创建信号量的函数,因为我在开始使用的时候没有很快弄清楚,可能现在还有理解不对的地方,如果有错误还是请大侠多多指教。 CreateSemaphore( LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, // SD LONG lInitialCount, // initial count LONG lMaximumCount, // maximum count LPCTSTR lpName // object name )

用多线程同步方法解决生产者-消费者问题(操作系统课设)

用多线程同步方法解决生产者-消费者问题(操作系统课设)

题目 用多线程同步方法解决生产者-消费 者问题(Producer-Consume r Problem) 学院 物理学与电子信息工程学院 专业电子信息工程班级08电信本一班姓名 指导教师 2010 年12 月日

目录 目录 0 课程设计任务书 (1) 正文 (3) 1.设计目的与要求 (3) 1.1设计目的 (3) 1.2设计要求 (3) 2.设计思想及系统平台 (3) 2.1设计思想 (3) 2.2系统平台及使用语言 (3) 3.详细算法描述 (4) 4.源程序清单 (7) 5.运行结果与运行情况 (12) 6.调试过程 (16) 7.总结 (16)

课程设计任务书 题目: 用多线程同步方法解决生产者-消费者问题 (Producer-Consumer Problem) 初始条件: 1.操作系统:Linux 2.程序设计语言:C语言 3.有界缓冲区内设有20个存储单元,其初 值为0。放入/取出的数据项按增序设定为 1-20这20个整型数。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.技术要求: 1)为每个生产者/消费者产生一个线程,设计正确的同步算法 2)每个生产者和消费者对有界缓冲区进行操作后,即时显示有界缓冲区的当前全部 内容、当前指针位置和生产者/消费者

线程的自定义标识符。 3)生产者和消费者各有两个以上。 4)多个生产者或多个消费者之间须共享对缓冲区进行操作的函数代码。 2.设计说明书内容要求: 1)设计题目与要求 2)总的设计思想及系统平台、语言、工具 等。 3)数据结构与模块说明(功能与流程图) 4)给出用户名、源程序名、目标程序名和源程序及其运行结果。(要注明存储各个 程序及其运行结果的主机IP地址和目 录。) 5)运行结果与运行情况 (提示: (1)有界缓冲区可用数组实现。 (2)编译命令可用:cc -lpthread -o 目标文件名源文件名 (3)多线程编程方法参见附件。) 3. 调试报告: 1)调试记录 2)自我评析和总结

Java第七单元练习题Java多线程机制

J a v a第七单元练习题 J a v a多线程机制 The latest revision on November 22, 2020

7Java多线程机制 7.1单项选择题 1. 线程调用了sleep()方法后,该线程将进入()状态。 A. 可运行状态 B. 运行状态 C. 阻塞状态 D. 终止状态 2. 关于java线程,下面说法错误的是() A. 线程是以CPU为主体的行为 B. java利用线程使整个系统成为异步 C. 创建线程的方法有两种:实现Runnable接口和继承Thread类 D. 新线程一旦被创建,它将自动开始运行 3. 在java中的线程模型包含() A. 一个虚拟处理器 B. CPU执行的代码 C. 代码操作的数据 D. 以上都是 4.在java语言中,临界区可以是一个语句块,或者是一个方法,并用()关键字标识。 A. synchronized B. include C. import D. Thread 5. 线程控制方法中,yield()的作用是() A. 返回当前线程的引用 B. 使比其低的优先级线程执行 C. 强行终止线程 D. 只让给同优先级线程运行 6. 线程同步中,对象的锁在()情况下持有线程返回 A. 当synchronized()语句块执行完后 B. 当在synchronized()语句块执行中出现例外(exception)时 C. 当持有锁的线程调用该对象的wait()方法时 D. 以上都是 7. 在以下()情况下,线程就进入可运行状态 A. 线程调用了sleep()方法时 B. 线程调用了join()方法时 C. 线程调用了yield()方法时 D. 以上都是 8. java用()机制实现了进程之间的异步执行

多线程同步方法及比较

多线程同步方法及比较 多线程同步方法: 1.临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数 据访问。. 2.互斥量:为协调一起对一个共享资源的单独访问而设计的。. 3.信号量:为控制一个具备有限数量用户资源而设计。. 4.事件:用来通知线程有一些事件已发生,从而启动后继任务的开始。 临界区(Critical Section).. 确保在某一时刻只有一个线程能访问数据的简便办法。在任意时刻只允许一个线程对共享资源进行访问。假如有多个线程试图同时访问临界区,那么在有一个线程进入后其他任何试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程能够继续抢占,并以此达到用原子方式操作共享资源的目的。 临界区包含两个操作原语: EnterCriticalSection()进入临界区 LeaveCriticalSection()离开临界区。 EnterCriticalSection()语句执行后代码将进入临界区以后无论发生什么,必须确保和之匹配的LeaveCriticalSection()都能够被执行到。否则临界区保护的共享资源将永远不会被释放。虽然临界区同步速度很快,但却只能用来同步本进程内的线程,而不可用来同步多个进程中的线程。 MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是很简单的。只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。Lock()后代码用到的资源自动被视为临界区内的资源被保护。UnLock后别的线程才能访问这些资源。. ------------------------------------------------

操作系统实验线程同步

实验2:线程同步 一、实验目的 (1)掌握Windows2000环境下,线程同步。 (2)熟悉Windows2000提供的线程同步与互斥API。 (3)用Windows2000提供的线程同步与互斥API解决实际问题 (producer-consumer)。 二、实验内容 生产者与消费者问题的实现。在Windows 2000环境下,创建一组“生产者”线程和一组“消费者”线程,并建立一个长度为N的全局数组作为共享缓冲区。“生产者”向缓冲区输入数据,“消费者”从缓冲区读出数据。当缓冲区满时,“生产者”必须阻塞,等待“消费者”取走缓冲区数据后将其唤醒。当缓冲区空时,“消费者”阻塞,等待“生产者”生产了产品后将其唤醒。试用信号量实现“生产者”与“消费者”线程之间的同步。 三、实验环境 (1)使用的操作系统及版本。 Windows xp professional (2)使用的编译系统及版本。 Visual c++ 6.0 四、实验步骤 1.等待一个对象(相当于p操作) WaitForSingleObject用于等待一个对象。它等待的对象可以为: Change notification:变化通知。 Console input:控制台输入。 Event:事件。 Job:作业。 Mutex:互斥信号量。 Process:进程。 Semaphore:计数信号量。

Thread:线程。 Waitable timer:定时器。 返回值: 如果成功返回,其返回值说明是何种事件导致函数返回。 访问描述 WAIT_ABANDONED 等待的对象是一个互斥(mutex)对象,该互斥对 象没有被拥有它的线程释放,它被设置为不能被唤 醒。 WAIT_OBJECT_0 指定对象被唤醒。 WAIT_TIMEOUT 超时。 2.创建信号量 CreateSemaphore用于创建一个信号量。 返回值: 信号量创建成功,将返回该信号量的句柄。如果给出的信号量名是系统已经存在的信号量,将返回这个已存在信号量的句柄。如果失败,系统返回NULL,可以调用函数GetLastError查询失败的原因。 3.打开信号量 OpenSemaphore用于打开一个信号量。 返回值: 信号量打开成功,将返回该信号量的句柄。如果失败,系统返回NULL,可以调用函数GetLastError查询失败的原因。 4.增加信号量的值 ReleaseSemaphore用于增加信号量的值。 返回值: 如果成功,将返回一个非0值。如果失败,系统返回0,可以调用函数GetLastError 查询失败的原因。 方法一: 程序代码: #include #include

相关文档
最新文档