统计初步 知识点
统计学 笔记

以下是统计学中的一些基本概念和知识,供参考:
统计学基本概念
总体与样本:总体是研究对象全体的集合,样本是从总体中抽取的一部分元素的集合。
变量:用来描述数据的名称或符号。
数值变量与分类变量:数值变量是可度量的数据,如身高、体重等;分类变量是定性数据,如性别、血型等。
参数与统计量:参数是描述总体特征的指标,如总体均值、总体方差等;统计量是从样本中计算出来的指标,如样本均值、样本方差等。
描述性统计
频数分布表:将数据分为若干个组,统计每个组内的数据个数。
直方图:用直条矩形面积代表各组频数,矩形的面积总和代表频数的总和。
平均数:描述数据集中趋势的指标,计算方法有算术平均数、几何平均数、调和平均数等。
标准差:描述数据离散程度的指标,表示数据分布的宽窄程度。
概率与概率分布
概率:描述随机事件发生的可能性大小的数值。
概率分布:描述随机变量取值的概率规律的函数。
常见的概率分布有二项分布、泊松分布、正态分布等。
参数估计与假设检验
点估计:用单一的数值估计未知参数的值。
区间估计:用一定的置信水平估计未知参数的范围。
假设检验:根据样本数据对未知参数进行检验,判断假设是否成立。
常见的假设检验方法有t检验、卡方检验、F检验等。
相关分析与回归分析
相关分析:描述两个变量之间的线性关系的强度和方向。
回归分析:基于自变量和因变量之间的相关关系建立数学模型,用于预测因变量的值。
常见的回归分析方法有线性回归、逻辑回归等。
统计初步_知识点

统计初步_知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初中数学知识点整理——统计初步班级 姓名 学号1、几个基本概念(1)总体所有调查对象的全体叫做总体。
(2)个体总体中每一个调查对象叫做个体。
(3)样本从总体中所抽取的一部分个体叫做总体的一个样本。
(4)样本容量样本中个体的数量叫做样本容量。
(5)随机样本具有代表性的样本叫做随机样本。
(6)样本平均数样本中所有个体的平均数叫做样本平均数。
(7)总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
(8)收集数据的一般方法有普查和抽样调查两种。
2、平均数的概念(1)平均数:一般地,如果有n 个数据,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数据的平均数。
(2)加权平均数:一组数据中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次,那么kk k f f f f x f x f x x ++++++= 212211叫做这组数据的加权平均数,其中k f f f f +++ 211,kk f f f f +++ 21,叫做权。
3、平均数的计算方法(1)定义法当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x nx +++=(2)加权平均数法: 当所给数据重复出现时,一般选用加权平均数公式:kk k f f f f x f x f x x ++++++= 212211。
(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
)'''(1'21n x x x nx +++= 是新数据的平均数。
统计初步知识点总结

统计初步知识点总结一、统计学的基本概念1. 统计学的定义统计学是一门研究数据收集、处理、分析、解释和推断的学科。
它通过收集大量的数据,并利用数理统计方法对数据进行分析,从而得出有关总体特征的结论。
2. 统计学的发展与应用统计学起源于古代的人口普查和财产统计,随着科学技术的进步,统计学逐渐发展成为一门独立的学科。
它在经济学、医学、社会学、政治学等领域都有着广泛的应用,成为这些领域中不可或缺的工具。
3. 统计学的基本概念(1) 总体和样本:总体是指研究对象的全体,样本是从总体中抽取出来的一部分。
通过对样本的研究,可以对总体做出推断。
(2) 参数和统计量:参数是总体特征的数值度量,统计量是样本特征的数值度量。
通过统计量对参数进行估计。
(3) 变量和数据:变量是统计研究的对象,数据是对变量进行观测和测量的结果。
(4) 随机变量和概率分布:随机变量是随机现象的数学模型,概率分布描述了随机变量的取值规律。
二、统计方法1. 数据的收集数据的收集是统计学研究的基础,它包括实地调查、实验观察、问卷调查、文献资料收集等方式。
合理、科学的数据收集是统计研究的前提和基础,对于数据的真实性和可靠性至关重要。
2. 数据的描述数据的描述包括数据的整理、汇总和展示,通过频数分布表、统计图表等方式对数据进行直观展示,从而揭示数据的分布特征和规律。
3. 统计推断统计推断是利用样本数据对总体特征进行推断的过程,包括参数估计和假设检验两个方面。
(1) 参数估计:通过样本数据对总体参数进行估计,得到对总体的估计值和置信区间估计。
(2) 假设检验:根据样本数据对总体参数提出假设,并通过统计方法对假设进行检验,判断原假设是否成立。
4. 相关性分析和回归分析相关性分析是研究变量之间相关关系的方法,通过相关系数来度量两个变量之间的相关程度。
而回归分析则是研究变量之间的因果关系,并用回归方程来描述变量之间的函数关系。
5. 方差分析和协方差分析方差分析是比较多组样本均值之间差异的一种统计方法,协方差分析则是研究两个或多个变量之间的协方差关系。
2023年统计师之初级统计基础理论及相关知识知识点归纳总结(精华版)

2023年统计师之初级统计基础理论及相关知识知识点归纳总结(精华版) 1、产品产量与单件成本的相关系数是-0.80,单位成本与利润率的相关系数是-0.94,产量与利润率之间的相关系数是0.89,因此( )A.产量与利润率的相关程度最高B.单位成本与利润率的相关程度最高C.产量与单位成本的相关程度最高D.反映不出哪对变量的相关程度最高正确答案:B2、应当取得统计从业资格的人员是()。
A.在国家机关、社会团体、企业事业单位和其他组织等统计调查对象中承担经常性政府统计调查任务的人员B.国家机关、社会团体、企业事业单位和其他组织以及个体工商户等调查对象中报送统计资料的人员和个人C.国家机关、社会团体、企业事业单位和其他组织等统计调查对象中的法定代表人D.从事统计工作的人员正确答案:A3、根据《统计法》的规定,搜集、整理统计资料应当( )。
A.以周期性普查为基础,以经常性抽样调查为主体,综合运用全面调查、重点调查等方法,并充分利用行政记录等资料B.以经常性抽样调查为基础,以周期性普查为主体,综合利用全面调查、重点调查等方法,并充分利用行政记录等资料C.以周期性普查为基础,以全面调查、重点调查为主体,运用经常性抽样调查等方法,并充分利用行政记录等资料D.以行政记录等资料为基础,以经常性抽样调查为主体,综合运用全面调查、重点调查等方法正确答案:A4、编制居民消费价格指数时,代表规格品的平均价格采用()计算。
A.简单算术平均法B.简单几何平均法C.加权算术平均法D.加权几何平均法正确答案:A5、根据《统计法》规定,统计调查表应当标明()等标志。
A.表号、制定机关、批准文号、有效期限B.表号、制定机关、批准或者备案机关、有效期限C.表号、制定机关、批准或者备案文号、有效期限D.表号、制定机关、批准或者备案文号正确答案:C6、我国的产业活动单位相当于联合国推荐的行业分类划分中的()。
A.机构单位B.基层单位C.活动类型单位D.地方单位正确答案:B7、普查的特点之一,就是要确定调查的标准时间,其目的是()。
中职数学第十章统计概率知识点

第十章概率与统计初步一、概率1.计数原理(1)分类计数原理:完成一件事,有n 类方式,第1类方式有K 1种方法,第2类方式有K 2种方法,……,第n 类方式有Kn 种方法,那么完成这件事的方法共有12n N K K K =++⋅⋅⋅+ 种(2)分步计数原理:完成一件事,需要分n 个步骤,完成第1个步骤有K 1种方法,完成第2个步骤有K 2种方法,……, 完成第n 个步骤有Kn 种方法,那么完成这件事的方法共有12n N K K K =⨯⨯⋅⋅⋅⋅⨯ 种2、概率的基本概念:(1)必然事件:在一定条件下,必然会发生的事件,叫做必然事件;Ω(2)不可能事件:在一定条件下,一定不会发生的事件,叫做不可能事件;φ(3)确定事件:必然事件和不可能事件统称为确定事件;(4)随机事件:在一定条件下可能发生也可能不发生的事件,叫做随机事件;(5)基本事件:在试验和观察中不能再分的最简单的随机事件,叫做基本事件。
(6)复合事件:可以用基本事件来描绘的随机事件叫做复合事件。
3.频率与概率:(1) 频数与频率:在相同的条件S 下重复n 次试验,某一事件A 发生了m 次,称m 为事件A 发生的频数;事件A 的频数在试验的总次数中所占的比例m n,叫做事件A 发生的频率。
(2)概率:当试验次数n 充分大时,如果事件A 发生的频率m n总稳定在某个常数附近,那么就把这个常数叫做事件A 发生的概率,记作P(A)。
对于必然事件Ω:P(Ω)=1 对于不可能事件φ,P(φ)=0 0≤P(A )≤14.古典概型:如果一个随机试验的基本事件只有有限个,并且每个基本事件发生的可能性相同,那第这个随机试验属于古典概型。
设试验共包含n 个基本事件,并且每一个基本事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件A 发生的概率为:P(A)= m n(1)互斥事件(互不相容事件):在一个试验中不可能同时发生的两个事件叫做互斥事件(互不相容事件)如果事件A 与B 互斥,那么事件 A B 发生的概率,等于事件A 、B 分别发生的概率的和,即概率加法公式:()()()P A B P A P B =+(2)对立事件:在一次随机试验中必发生一个的两个事件,称为对立事件,记作A⑶ 相互独立事件:一个事件发生与否对另一个事件发生的概率没有影响,则称两个事件为相互独立事件。
高中数学概率统计知识点总结大全

概率统计一,统计初步1.简单随机抽样简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.2.系统抽样(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.(2)系统抽样的步骤:①编号.采用随机的方式将总体中的个体编号.②分段.先确定分段的间隔k.当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=N′n.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S +k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n 的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.3.分层抽样(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.(2)分层抽样的步骤①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.(3)分层抽样的优点分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.4.绘制频率分布直方图把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.5.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.6.平均数、中位数和众数(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.7.方差、标准差(1)设样本数据为x1,x2,…,x n样本平均数为x-,则s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]=1n[(x12+x22+…+x n2)-n x2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.8.两个变量的线性相关(1)散点图将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.(2)正相关、负相关如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.9.回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归直线方程的求法——最小二乘法.设具有线性相关关系的两个变量x、y的一组观察值为(x i,y i)(i=1,2,…,n),则回归直线方程y^=a^+b^x的系数为:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ b ^=∑i =1n x i y i -n x ·y ∑i =1n x i 2-n x 2=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2a^=y --b ^x 其中x -=1n ∑i =1n x i ,y -=1n ∑i =1n y i ,(x -,y -)称作样本点的中心. a ^,b ^表示由观察值用最小二乘法求得的a ,b 的估计值,叫回归系数.10.独立性检验(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.(2)两个分类变量X 与Y 的频数表,称作2×2列联表.二.随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 B 或A B +) B (或AB ) B 为不可能事件B φ= B 为不可能事件B 为必然事件与事件B 互为对立事件 B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A . 由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0.5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.(3)不可能事件的概率:()0p A =.(4)互斥事件的概率加法公式:①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-.三.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.四.几何概型1.(1)随机数的概念:随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.(2)随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数.2.几何概型(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.(3)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()p A =构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.3.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积。
统计初步常考知识点分析

D.对 我 国 首架 大 型 民用 直 升 机 各 零 部 件 的检 查 解 : C采 用 普 查 的方 法 不 方 便 也 没 有 必 要 , A、 B不 适 宜 采 用 普 查 的方 法 , D 中 的 调 查 不 仅 精 确 度 要 求 很 高 , 且 事 关 重 大 , 而 而 只
能 采 用 普 查 , D. 选
合 格 情 况
D .总 体 是 1 个 纪 念 章 的 合 格 情 况 ,样 本 是 1个 纪 念 章 的 0万
合 格 情 况
解 : 据 总体 与个 体 的 概 念 可 知 应 选 A. 根 温 馨 小提 示 : 类题 在 中考 中常 出现 , 这 解题 的 关 键 是 正确 理 解
概念 , 据概念进行判 断. 根
楚 , 能 得 分 .平 均 数 是 将 各 数 相 加 再 除 以数 据 的 个 数 ; 就 众数 是 指
一
组 数 据 中 出 现 次 数 最 多 的 教 ( 不 是 次 数 ) 一 组 数 据 可 能 有 几 而 ,
个 众 数 , 有可 能 没 有 众数 ;中位 数 是 指 一 组数 据 按 从 小到 大 的顺
你 复 习时 参 考 . 考点一 抽 样 方 式
例 1 ( 0 0年 重 庆 卷 ) 列 调 查 中 , 宜 采 用 全 面 调 查 ( 21 下 适 普 查) 方式 的是 ( ) .
A.对 全 国 中学 生 心 理 健 康 现 状 的调 查 B. 冷 饮 市 场 上 冰淇 淋 质 量 情 况 的调 查 对 C. 我 市 市 民实 施 低 碳 生 活 情 况 的 调 查 对
法 不 正 确 的是 ( )( 0 0年 天 门卷 ) .2 1
A. 调 查 的学 生 共 5 被 0人
冀教版八年级下册数学知识点总结

冀教版八年级下册数学知识点总结第十六章:统计的初步知识1、 调查的一般过程:实际问题——搜集数据——整理数据——表示数据——统计分析——合理决策。
2、调查的方法:抽样调查与普查。
普查:对全体对象的调查。
抽样调查:从总体中抽出部分个体进行调查。
总体:抽查对象的全体叫做总体。
个体:调查的每一个对象叫做个体。
样本:总体中抽取的部分个体叫做样本。
样本容量:样本所包含的个体的数量叫做样本容量。
(样本容量不带单位) 例:为了解一批炮弹的杀伤力,抽取100枚炮弹作调查。
总体:一批炮弹的杀伤力;个体:每枚炮弹的杀伤力;样本:被抽到的100枚炮弹的杀伤力;样本容量为100。
3、简单的随机抽样:抽样调查时每个个体被抽到的可能性相同的抽样叫做简单的随机抽样。
4、抽样调查的注意事项:(1)样体要具有代表性 (2)样本容量要适当,不能太少。
5、频数分布直方图 (1)将样本按照一定的方法分成若干组,每组内含有这个样本的个体的数目叫做频数. 某个组的频数与样本容量的比值叫做这个组的频率。
(2)分组一般采用等距分组的方法。
(3)极差:一组数据的最数据与最小数据的差。
(4)组距:把所有数据分成若干个组,每个小组的两个端点的距离。
组数=[(极差/组数)]+1([]表示取整)第十七章:平面直角坐标系1、平面内物体位置的确定:(1)有序数对法(2)方位角+距离法(3)经纬法2、平面直角坐标系象限内点的特征:第一象限(+,+);第二象限(-,+); 第三象限(-,-);第四象限(+,-)。
3、平面直角坐标系内图形的变化与点的坐标变化特征 (1)轴对称:横轴对称纵相反,纵轴对称横相反。
'(,)x P P x y −−−→-轴对称(x,y ) '(,)P P x y −−−→-y 轴对称(x,y ) (2)关于原点对称(即中心对称:绕原点旋转180度后能构互相重合): 方法:原点对称横纵坐标都相反'(,)P P x y −−−→--y 轴对称(x,y ) (3)点的平移:左右平移横(坐标)加减,上下平移纵(坐标)加减(上加下减,右加左减)'(,)m P P x y m −−−−−→+上平移个单位(x,y )'(,)m P P x y m −−−−−→-下平移个单位(x,y ) '(,)m P P x m y −−−−−→-左平移个单位(x,y )'(,)m P P x m y −−−−−→-右平移个单位(x,y )'(,)m P P x m y n −−−→-+左上n(x,y ) '(,)m PP x m y n −−−→+-右下n (x,y ) (4)图形的缩放:在平面直角坐标系内,图形上点的坐标都乘以k (或1k),图形横向纵向将拉长为原来的k 倍(或压缩为原来的1k),图形边长扩大为原来的k 倍(或缩小为原来的1k ),图形的面积扩大为原来的2k 倍(或缩小为原来的21k) 22(,)k (,)1111()P kx ky k P x y P x y k k k k ⎧→→⎪⎨→→⎪⎩边长扩大倍,面积扩大倍,边长压缩为原来的,面积压缩为原来的(5)两点之间的距离公式:数轴上:两点对应的数分别为1x ,1y ,则12dx x =-平面直角坐标系内:两点A 、B 坐标分别为(11,x y )(22,x y )则AB =若C 为线段AB 的中点,则点C 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭4、平面直角坐标系中图形面积求法(1)条件具备时利用面积公式求(2)条件不具备时,三角形面积可采用求差法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学知识点整理——统计初步
班级 姓名 学号
1、几个基本概念 (1)总体
所有调查对象的全体叫做总体。
(2)个体
总体中每一个调查对象叫做个体。
(3)样本
从总体中所抽取的一部分个体叫做总体的一个样本。
(4)样本容量
样本中个体的数量叫做样本容量。
(5)随机样本
具有代表性的样本叫做随机样本。
(6)样本平均数
样本中所有个体的平均数叫做样本平均数。
(7)总体平均数
总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
(8)收集数据的一般方法有普查和抽样调查两种。
2、平均数的概念
(1)平均数:一般地,如果有n 个数据,,,,21n x x x 那么,)(121n x x x n
x 叫做这n 个数据的平均数。
(2)加权平均数:一组数据中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次,那么k k k f f f f x f x f x x
212211叫做这组数据的加权平均数,其中k
f f f f 211
,
k
k
f f f f 21,
叫做权。
3、平均数的计算方法 (1)定义法
当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x n
x (2)加权平均数法:
当所给数据重复出现时,一般选用加权平均数公式:k
k
k f f f f x f x f x x 212211。
(3)新数据法:
当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x '。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x 11',
a x x 22',…,a x x n n '。
)'''(1
'21n x x x n
x
是新数据的平均数。
4、中位数、众数 (1)中位数
将n 个数据按大小顺序排列,居中的一个数据(n 为奇数时),或居中的两个数据(n 为偶数时)叫做这组数据的中位数。
即,
当n 为奇数时,第
21
n 个数据为中位数。
当n 为偶数时,第2n ,12
n
个数据的平均数为中位数。
(2)众数
在一组数据中,出现次数最多的数据叫做这组数据的众数。
5、方差、标准差
(1)方差、标准差的概念
在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即
方差的非负平方根叫做这组数据的标准差,用“s ”表示,即 (2)方差的简化计算公式
也可写成22
22212
)(1x x x x n
s n
(3)填表
6、频数、频率 (1)频数、频率的概念
把数据分组后,落在某个小组内的数据累计出现的次数叫做这个小组的 。
小组中数据的频数与全组数据的总个数的比值叫做这个小组的 。
用等式表示,即 。
(2)频数分布直方图
绘
制
频
数
分
布
直
方
图
的
步
骤
有 。
频数分布直方图中,每个小矩形的宽度表示 ,高度表
示。
(3)频率分布直方图
频率分布直方图中,每个小矩形的宽度表示,高度表示,面积表示。
每个小矩形的面积之和等于。