中考数学专题 动态几何之直角三角形存在性问题(含解析)
直角三角形的存在性问题解题策略

03
CATALOGUE
直角三角形的存在性问题分类
直角在三角形内部
总结词
当直角位于三角形内部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直 角三角形的斜边长度。接着,根据三角形的性质和已知条件,判断是否能够构成 三角形。如果可以,则存在满足条件的直角三角形;否则,不存在。
在题目中,有时候会隐含一些关于三角形或 角度的条件,需要仔细审题并挖掘。
举例说明
在求解三角形边长的问题时,需要注意隐含 的等腰或等边条件,这些条件可能会影响三 角形的形状和存在性。
掌握常见题型和解题方法
01
02
03
常见题型
直角三角形存在性问题的 常见题型包括角度问题、 边长问题、高的长度问题 等。
直角在三角形外部
总结词
当直角位于三角形外部时,可以通过构建直角三角形并利用勾股定理解决。
详细描述
首先,根据题目条件,确定直角的位置和已知条件。然后,利用勾股定理计算直角三角形的斜边长度。接着,根 据三角形的性质和已知条件,判断是否能够构成三角形。如果可以,则存在满足条件的直角三角形;否则,不存 在。
建立方程
根据题目条件,可以建立关于未知数 (如角度、边长等)的方程,然后求 解该方程。
解方程
解方程的方法有很多种,如代数法、 三角函数法等,选择合适的方法求解 方程。
利用数形结合思想
数形结合
将题目中的条件和图形结合起来,通过 观察图形和计算数据,找到解决问题的 线索。
VS
综合分析
综合运用数学知识和图形分析,逐步推导 和验证,最终得出结论。
解题方法
针对不同的问题类型,需 要掌握相应的解题方法, 如利用三角函数、勾股定 理、相似三角形等。
中考数学“动态几何探究”题型解析

中考数学“动态几何探究”题型解析以三角形、四边形为背景的动态几何问题均以动态几何的形式来考查三角形、四边形的性质,判定,全等三角形、相似三角形的性质及判定,本节将对此类问题归类如下:一、在平面直角坐标系中探究【例题1】已知直线l 经过A(6,0)和B(0,12)两点,且与直线y = x 交于点C. (1)求直线l 的表达式;(2)若点P(x,0)在线段OA 上运动,过点P 作l 的平行线交直线y = x 于点D,①求△PCD 的面积S 与x 的函数关系式;②S 有最大值吗?若有,求出当S 最大时x 的值 .【解析】(1)设直线l 的表达式为y = kx + b , 用待定系数法求出k , b 的值即可;(2)①点C 是直线l 与y = x 的交点,从而可求得点C 的坐标 .根据三角形的面积公式及结合平行的性质,可求得S 与x 的函数关系式;②根据二次函数的性质,即可得到S 的最大值 .解:(1)设直线l 的表达式为y = kx + b ,由A(6,0)和B(0,12),得∴直线l 的表达式为y = -2x + 12 .(2)①∴点C 的坐标为(4,4),∴S△COP = 1/2 x ▪4 = 2x .∵PD∥直线l ,∴CD/OC = AP/OA .∵CD/OC = ( 1/2 h ×CD ) / ( 1/2 h ×OC ) = S / S△COP,∴S / S△COP = AP / OA , 即S / 2x = (6 - x)/ 6 ,∴△PCD 的面积S 与x 的函数关系式为S = -1/3 x^2 + 2x .②∵S = -1/3 (x - 3)^2 + 3 ,∴当S 最大时,x = 3 .【例题2】如图,在直角坐标系中,矩形OABC 的顶点A , C 均在坐标轴上,且OA = 4 ,OC = 3 , 动点M 从点A 出发,以每秒1 个单位长度的速度,沿AO 向终点O 移动;动点N 从点C 出发沿CB 向终点B 以同样的速度移动,当两个动点运动了x 秒(0 < x < 4)时,过点N 作NP⊥BC 交OB 于点P,连接MP .(1)直接写出点B 的坐标,并求出点P 的坐标(用含x 的式子表示);(2)当x 为何值时,△OMP 的面积最大?并求出最大值 .解:(1)在矩形OABC 中,OA = 4 , OC = 3 ,∴B 点的坐标为(4,3).如图,延长NP 交OA 于点G,则PG∥AB,OG = CN = x . ∵PG∥AB,∴△OPG∽△OBA .∴PG / BA = OG / OA , 即PG / 3 = x / 4 ,解得PG = 3/4 x .∴点P 的坐标为(x , 3/4 x).(2)设△OMP 的面积为S .在△OMP 中,OM = 4 - x , OM 边上的高为3/4 x,∴S 与x 之间的函数表达式为配方,得∴当x = 2 时,S 有最大值,最大值为3/2 .二、在几何图形中探究【例题3】如图,在矩形ABCD 中,AB = 3 米,BC = 4 米,动点P 以2 米/秒的速度从点A 出发,沿AC 向点C 移动,同时动点Q 以1 米/秒的速度从点C 出发,沿CB 向点B 移动,设P , Q 两点同时移动的时间为t 秒(0 < t < 2.5).(1)当t 为何值时,PQ∥AB;(2)设四边形ABQP 的面积为y , 当t 为何值时,y 的值最小?并求出这个最小值 .【解析】(1)首先由勾股定理求得AC = 5 米,然后根据AB∥PQ 可得到PC / AC = QC / BC , 从而得到关于t 的方程,从而可解得t 的值;(2)过点P 作PE⊥BC,由PE∥AB 可得到PC / AC = PE / AB ,从而可求得PE = 3 - 6/5 t , 然后根据y = S△ABC - S△PQC 列出t 与y 的函数关系式,最后利用配方法求得最小值即可 .解:(1)在Rt△ABC 中,由题意,得PC = AC - AP = 5 - 2t , QC = t .如图①,∵AB∥PQ , ∴△CPQ∽△CAB .∴PC / AC = QC / BC , 即(5 - 2t)/ 5 = t / 4 , 解得t = 20/13 .(2)如图②,过点P 作PE⊥BC 于点E .由(1)知,PC = 5 - 2t , QC = t ,∵PE∥AB,∴△CPE∽△CAB .∴PC / AC = PE / AB , 即(5 - 2t)/ 5 = PE / 3 . ∴PE = 3 - 6/5 t .∴当t = 5/4 时,y 的值最小,最小值为81/16 .【例题4】如图,在△ABC 中,∠C = 60°,BC = 4,AC = 2√3,点P 在BC 边上运动,PD∥AB,交AC 于D . 设BP 的长为x , △APD 的面积为y .(1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少?(3)是否存在这样的点P,使得△ADP 的面积是△ABP 面积的2/3 ?若存在,请求出BP 的长;若不存在,请说明理由 .解:(1)∵PD∥AB,∴AD / AC = BP / BC .∵BC = 4 , AC = 2√3 , BP = x ,∴AD / 2√3 = x / 4 ,∴AD = √3/2 x .(2)过点P 作PE⊥AC 于E .∵sin∠ACB = PE / PC , ∠C = 60°,∴PE = PC ×sin60°= √3/2(4 - x ).∴y 与x 之间的函数关系式为∴当x = 2 时,y 的值最大,最大值是3/2 . (3)存在这样的点P .∵△ADP 与△ABP 等高不等底,∴S△ADP / S△ABP = DP / AB .∵△ADP 的面积是△ABP 面积的2/3 , ∴S△ADP / S△ABP = 2/3 ,∴DP / AB = 2/3 .∵PD∥AB,∴△CDP∽△CAB .∴DP / AB = CP / CB ,∴CP / CB = 2/3 .∴(4 - x)/ 4 = 2/3 ,∴x = 4/3 ,∴BP = 4/3 .。
初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【答案】(I)证明见解析;(Ⅱ)P的坐标为(4,2)或(55,455)或P(﹣55,﹣455)或(165,85);(Ⅲ)325.【解析】分析:(Ⅰ)由折叠得到∠DOB=∠AOB,再由BC∥OA得到∠OBC=∠AOB,即∠OBC=∠DOB,即可;(Ⅱ)设出点P坐标,分三种情况讨论计算即可;(Ⅲ)根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可.详解:(Ⅰ)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,∴∠DOB=∠AOB,∵BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠DOB,∴EO=EB;(Ⅱ)∵点B的坐标为(8,4),∴直线OB解析式为y=12 x,∵点P是直线OB上的任意一点,∴设P(a,12 a).∵O(0,0),C(0,4),∴OC=4,PO2=a2+(12a)2=54a2,PC2=a2+(4-12a)2.当△OPC是等腰三角形时,可分三种情况进行讨论:①如果PO=PC,那么PO2=PC2,则54a2=a2+(4-12a)2,解得a=4,即P(4,2);②如果PO=OC,那么PO2=OC2,则54a2=16,解得a=±855,即P(855,455)或P(-855,-455);③如果PC=OC时,那么PC2=OC2,则a2+(4-12a)2=16,解得a=0(舍),或a=165,即P(165,85);故满足条件的点P的坐标为(4,2)或(855,455)或P(-855,-455)或(165,85);(Ⅲ)如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值.由(1)有,EO=EB,∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,∴16+(8-x)2=x2,∴x=5,∴BE=5,∴CE=3,∴DE=3,BE=5,BD=4,∵S△BDE=12DE×BD=12BE×DG,∴DG=12=5 DE BDBE⨯,由题意有,GN=OC=4,∴DN=DG+GN=125+4=325.即:AM+MN的最小值为325.点睛:此题是四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△P AD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△P AD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.【答案】(1)y=﹣x2+2x+3;(2)当t=32时,l有最大值,l最大=94;(3)t=32时,△P AD的面积的最大值为278;(4)t 15 +.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-32)2+94,利用二次函数的性质即可解决问题;(3)由S△P AD=12×PM×(x D-x A)=32PM,推出PM的值最大时,△P AD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3).由△P AD是直角三角形,推出PK=12AD,可得(t-32)2+(-t2+2t+3-32)2=14×18,解方程即可解决问题;试题解析:(1)把点B(﹣1,0),C(2,3)代入y=ax2+bx+3,则有30 4233 a ba b-+=⎧⎨++=⎩,解得12ab=-⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3.(2)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,∴D(3,0),且A(0,3),∴直线AD解析式为y=﹣x+3,设M点横坐标为m,则P(t,﹣t2+2t+3),M(t,﹣t+3),∵0<t<3,∴点M在第一象限内,∴l=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t=﹣(t﹣32)2+94,∴当t=32时,l有最大值,l最大=94;(3)∵S△P AD=12×PM×(x D﹣x A)=32PM,∴PM的值最大时,△P AD的面积中点,最大值=32×94=278.∴t=32时,△P AD的面积的最大值为278.(4)如图设AD的中点为K,设P(t,﹣t2+2t+3).∵△P AD 是直角三角形,∴PK =12AD , ∴(t ﹣32)2+(﹣t 2+2t +3﹣32)2=14×18, 整理得t (t ﹣3)(t 2﹣t ﹣1)=0, 解得t =0或3或15±, ∵点P 在第一象限, ∴t =1+5. 类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线ky x=相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【答案】(1)13a b =⎧⎨=⎩,4k =;(2)存在,1 1.5,2P ⎛-- ⎝⎭,2 1.5,2P ⎛⎫- ⎪ ⎪⎝⎭,3 1.5,22P ⎛--- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭,()5 1.5,0.5P --;(3)12【解析】 【分析】(1)由点A 在双曲线上,可得k 的值,进而得出双曲线的解析式.设4,B m m ⎛⎫⎪⎝⎭(0m <),过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M .根据AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形=3解方程即可得出k 的值,从而得出点B 的坐标,把A 、B 的坐标代入抛物线的解析式即可得到结论; (2)抛物线对称轴为 1.5x =-,设()1.5,P y -,则可得出2PO ;2OB ;2PB .然后分三种情况讨论即可; (3)设M (x ,y ).由MO =MA =MB ,可求出M 的坐标.作B 关于y 轴的对称点B '.连接B 'M 交y 轴于Q .此时△BQM 的周长最小.用两点间的距离公式计算即可. 【详解】(1)由()1,4A 知:k =xy =1×4=4, ∴4y x=. 设4,B m m ⎛⎫⎪⎝⎭(0m <). 过A 作AP ⊥x 轴于P ,BQ ⊥y 轴于Q ,直线BQ 和直线AP 相交于点M ,则S △AOP =S △BOQ =2.AOB AMB AOP QOB OPMQ S S S S S ∆∆∆∆=---矩形()()14414102AOP QOB m S S m m ∆∆⎛⎫⎛⎫=---+-⨯- ⎪ ⎪⎝⎭⎝⎭242224m m m ⎛⎫⎛⎫=--+--- ⎪ ⎪⎝⎭⎝⎭22m m=- 令:223m m-=, 整理得:22320m m +-=, 解得:112m =,22m =-. ∵m <0, ∴m =-2, 故()2,2B --.把A 、B 带入2y ax bx =+2424a ba b -=-⎧⎨=+⎩解出:13a b =⎧⎨=⎩,∴23y x x =+.(2)223( 1.5) 2.25y x x x =+=+- ∴抛物线23y x x =+的对称轴为 1.5x =-.设()1.5,P y -,则2294PO y =+,28OB =,()22124PB y =++.∵△POB 为等腰三角形, ∴分三种情况讨论: ①22PO OB =,即2984y +=,解得:2y =±,∴1 1.5,P ⎛- ⎝⎭,2P ⎛- ⎝⎭;②22PB OB =,即()21284y ++=,解得:22y =-±,∴3 1.5,2P ⎛-- ⎝⎭,4 1.5,2P ⎛-- ⎝⎭;③22PB OP =,即()2219244y y ++=+,解得:0.5y =- ∴()5 1.5,0.5P --; (3)设(),M x y .∵()1,4A ,()2,2B --,()0,0O ,∴222MO x y =+,()()22214MA x y =-+-,()()22222MB x y =+++.∵MO MA MB ==,∴()()()()222222221422x y x y x y x y ⎧+=-+-⎪⎨+=+++⎪⎩ 解得:11272x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴117,22M ⎛⎫-⎪⎝⎭. 作B 关于y 轴的对称点B '坐标为:(2,-2). 连接B 'M 交y 轴于Q .此时△BQM 的周长最小.BQM C MQ BQ MB ∆=++MQ QB MB '=++=MB '+MB222211711722222222⎛⎫⎛⎫⎛⎫⎛⎫=--+++-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()13461702=+.【名师点睛】本题是二次函数综合题.考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等.第(1)问的关键是割补法;第(2)问的关键是分类讨论;第(3)问的关键是求出M 的坐标. 【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C . (1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.【答案】(1)y =﹣34x +3;(2)R (1,92);(3)BT =2或BT =165.【解析】 【分析】(1)由已知可求A (﹣2,0),B (4,0),C (0,3),即可求BC 的解析式;(2)由已知可得∠QMH =∠CBO ,则有QH =34QM ,MH =54MQ ,所以△MHQ 周长=3QM ,则求△MHQ周长的最大值,即为求QM 的最大值;设M (m ,233384m m -++),过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+,交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,可求出()23=410MQ m m -+,当m =2时,MQ 有最大值65;函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ',|AR ﹣MR |的最大值为AM ';求出AM '的直线解析式为332y x =+,则可求912R ⎛⎫⎪⎝⎭,; (3)有两种情况:当TC '∥OC 时,GO ⊥TC ';当OT ⊥BC 时,分别求解即可. 【详解】解:(1)令y =0,即2333084x x -++=,解得122,4x x =-=, ∵点A 在点B 的左侧 ∴A (﹣2,0),B (4,0), 令x =0解得y =3, ∴C (0,3),设BC 所在直线的解析式为y =kx +3, 将B 点坐标代入解得k =34- ∴BC 的解析式为y =-34x +3;(2)∵MQ ⊥BC ,M 作x 轴, ∴∠QMH =∠CBO , ∴tan ∠QMH =tan ∠CBO =34, ∴QH =34QM ,MH =54MQ ,∴△MHQ 周长=MQ +QH +MH =34QM +QM +54MQ =3QM ,则求△MHQ 周长的最大值,即为求QM 的最大值; 设M (m ,233384m m -++), 过点M 与BC 直线垂直的直线解析式为243733812y x m m =--+, 直线BC 与其垂线相交的交点22972721,35025200100Q m m m m ⎛⎫+--+ ⎪⎝⎭,∴()23=410MQ m m -+, ∴当m =2时,MQ 有最大值65, ∴△MHQ 周长的最大值为185,此时M (2,3), 函数的对称轴为x =1,作点M 关于对称轴的对称点M '(0,3),连接AM '与对称轴交于点R ,此时|AR ﹣MR |=|AR ﹣M 'R |=AM ', ∴|AR ﹣MR |的最大值为AM '; ∵AM '的直线解析式为y =32x +3, ∴R (1,92); (3)①当TC '∥OC 时,GO ⊥TC ', ∵△OCT ≌△OTC ', ∴3412=55OG ⨯=, ∴12655T ⎛⎫⎪⎝⎭, ∴BT =2;②当OT⊥BC时,过点T作TH⊥x轴,OT=125,∵∠BOT=∠BCO,∴3=1255cOo BOTHs∠=,∴OH=36 25,∴36482525 T⎛⎫ ⎪⎝⎭,∴BT=165;综上所述:BT=2或BT=165.【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键. 类型三【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.【答案】(1)y=x2﹣4x+3;(2)点P(4,3)或(0,3)或(2,﹣1);(3)最大值为94,E(32,﹣34).【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S四边形AEBD=12AB(y D﹣y E),即可求解.【详解】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PE=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:22m+,即:22m+=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S四边形AEBD=12AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,∵﹣1<0,故四边形AEBD面积有最大值,当x=32,其最大值为94,此时点E(32,﹣34).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【答案】(1)224233y x x =-++,对称轴1x =;(2)11,4D ⎛⎫ ⎪⎝⎭;(3)面积有最大值是4948,755,424E ⎛⎫⎪⎝⎭;(4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形,()2,2M或104,3M ⎛⎫-⎪⎝⎭或102,3M ⎛⎫-- ⎪⎝⎭.【解析】 【分析】(1)将点A (-1,0),B (3,0)代入y =ax 2+bx +2即可;(2)过点D 作DG ⊥y 轴于G ,作DH ⊥x 轴于H ,设点D (1,y ),在Rt △CGD 中,CD 2=CG 2+GD 2=(2-y )2+1,在Rt △BHD 中,BD 2=BH 2+HD 2=4+y 2,可以证明CD =BD ,即可求y 的值;(3)过点E 作EQ ⊥y 轴于点Q ,过点F 作直线FR ⊥y 轴于R ,过点E 作FP ⊥FR 于P ,证明四边形QRPE是矩形,根据S △CEF =S 矩形QRPE -S △CRF -S △EFP ,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M 使得以B ,C ,M ,N 为顶点的四边形是平行四边形,点M (2,2)或M (4,- 103)或M (-2,-103); 【详解】解:(1)将点()()1,0,3,0A B -代入22y ax bx =++,可得24,33a b =-=, 224233y x x ∴=-++;∴对称轴1x =;(2)如图1:过点D 作DG y ⊥轴于G ,作DH x ⊥轴于H ,设点()1,D y ,()()0,2,3,0C B Q ,∴在Rt CGD ∆中,()222221CD CG GD y =+=-+, ∴在Rt BHD ∆中,22224BD BH HD y =+=+,在BCD ∆中,DCB CBD ∠=∠QCD BD ∴=,22CD BD ∴=()22214y y ∴-+=+ 14y ∴=,11,4D ⎛⎫∴ ⎪⎝⎭; (3)如图2:过点E 作EQ y ⊥轴于点Q ,过点F 作直线FR y ⊥轴于R ,过点E 作FP FR ⊥于P ,90EQR QRP RPE ︒∴∠=∠=∠=, ∴四边形QRPE 是矩形,CEF CRF EFP QRPE S S S S ∆∆∆=--Q 矩形,()()(),,0,2,1,1E x y C F Q ,111•222CEF S EQ QR EQ QC CR RF FP EP ∴=⋅-⨯⋅-⋅-V()()()()111121111222CEF S x y x y x y ∆∴=----⨯⨯---224233y x x =-++Q ,21736CEF S x x ∆∴=-+∴当74x =时,面积有最大值是4948,此时755,424E ⎛⎫⎪⎝⎭; (4)存在点M 使得以,,,B C M N 为顶点的四边形是平行四边形, 设()()1,,,N n M x y ,①四边形CMNB 是平行四边形时,1322x+=2x ∴=-102,3M ⎛⎫∴-- ⎪⎝⎭②四边形CNBM 时平行四边形时,3122x +=2x ∴=, ()2,2M ∴;③四边形CNNB 时平行四边形时,1322x+=, 4x ∴=,104,3M ⎛⎫∴- ⎪⎝⎭;综上所述:()2,2M 或104,3M ⎛⎫- ⎪⎝⎭或102,3M ⎛⎫--⎪⎝⎭; 【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键.【新题训练】1.如图,直线y =5x +5交x 轴于点A ,交y 轴于点C ,过A ,C 两点的二次函数y =ax 2+4x +c 的图象交x 轴于另一点B .(1)求二次函数的表达式;(2)连接BC ,点N 是线段BC 上的动点,作ND ⊥x 轴交二次函数的图象于点D ,求线段ND 长度的最大值; (3)若点H 为二次函数y =ax 2+4x +c 图象的顶点,点M (4,m )是该二次函数图象上一点,在x 轴,y 轴上分别找点F ,E ,使四边形HEFM 的周长最小,求出点F 、E 的坐标.【答案】(1) y=-x2+4x+5;(2);(3) F (,0),E(0,).【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC 的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标.【详解】解:(1)∵直线y=5x+5交x轴于点A,交y轴于点C,∴A(-1,0),C(0,5),∵二次函数y=ax2+4x+c的图象过A,C两点,∴,解得,∴二次函数的表达式为y=-x2+4x+5;(2)如解图①,第2题解图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的表达式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴,解得,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)|,由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-)2+,∴当n=时,线段ND长度的最大值是;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如解图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.设直线H1M1的函数表达式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴,解得,∴y=-x+,∴当x=0时,y=,即点E坐标为(0,),当y=0时,x=,即点F坐标为(,0),故所求点F,E的坐标分别为(,0),(0,).2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【答案】(1)4;(2)(3)面积不变,S△ACB’=(4)【解析】【分析】(1)证明△APB′是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;(3)如图3中,结论:面积不变,证明B B′//AC即可;(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.【详解】(1)如图1,∵△ABC为等边三角形,∴∠A=60°,AB=BC=CA=8,∵PB=4,∴PB′=PB=P A=4,∵∠A=60°,∴△APB′是等边三角形,∴AB′=AP=4,故答案为4;(2)如图2,设直线l交BC于点E,连接B B′交PE于O,∵PE∥AC,∴∠BPE=∠A=60°,∠BEP=∠C=60°,∴△PEB是等边三角形,∵PB=5,B、B′关于PE对称,∴BB′⊥PE,BB′=2OB,∴OB=PB·sin60°,∴BB,故答案为(3)如图3,结论:面积不变.过点B作BE⊥AC于E,则有BE=AB·sin60°=3843⨯=,∴S△ABC=1184322AC BE=⨯⨯g=163,∵B、B′关于直线l对称,∴BB′⊥直线l,∵直线l⊥AC,∴AC//BB′,∴S△ACB’=S△ABC=163;(4)如图4,当B′P⊥AC时,△ACB′的面积最大,设直线PB′交AC于E,在Rt△APE中,P A=2,∠P AE=60°,∴PE=P A·sin60°=3,∴B′E=B′P+PE=6+3,∴S△ACB最大值=12×(6+3)×8=24+43.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)点C的坐标为(2,3;(2)OA=2;(3)OC的最大值为8,cos∠OAD 5.【解析】【分析】(1)作CE⊥y轴,先证∠CDE=∠OAD=30°得CE=12CD=2,DE2223CD CE-=OAD=30°知OD=12AD=3,从而得出点C坐标;(2)先求出S△DCM=6,结合S四边形OMCD=212知S△ODM=92,S△OAD=9,设OA=x、OD=y,据此知x2+y2=36,12xy=9,得出x2+y2=2xy,即x=y,代入x2+y2=36求得x的值,从而得出答案;(3)由M为AD的中点,知OM=3,CM=5,由OC≤OM+CM=8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ON⊥AD,证△CMD∽△OMN得CD DM CM ON MN OM==,据此求得MN=95,ON=125,AN=AM﹣MN=65,再由OA22ON AN+cos∠OAD=ANOA可得答案.【详解】(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=12CD=2,DE22CD CE=3,在Rt△OAD中,∠OAD=30°,∴OD=12AD=3,∴点C的坐标为(2,3);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=212,∴S△ODM=92,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=2(负值舍去),∴OA=2;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM22CD DM+5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM=∠ONM=90°,∠CMD=∠OMN,∴△CMD∽△OMN,∴CD DM CMON MN OM==,即4353ON MN==,解得MN=95,ON=125,∴AN=AM﹣MN=65,在Rt△OAN中,OA2265 5ON AN+=,∴cos∠OAD=5 ANOA=.【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O 停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.【答案】(1)(4,0);(2)①当0<t≤1时,S =334t2;②当1<t≤43时,S =﹣394t2+18t;③当43<t≤2时,S =﹣3t2+12;(3)OT+PT的最小值为32【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,①利用正方形的面积减去三角形的面积,②利用矩形的面积减去三角形的面积,③利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论.【详解】(1)令y=0,∴﹣23x+4=0,∴x=6,∴A(6,0),当t=13秒时,AP=3×13=1,∴OP=OA﹣AP=5,∴P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,∴AP=12OQ=3,∴t=3÷3=1,①当0<t≤1时,如图1,令x=0,∴y=4,∴B(0,4),∴OB=4,∵A(6,0),∴OA=6,在Rt△AOB中,tan∠OAB=2=3 OBOA,由运动知,AP=3t,∴P(6﹣3t,0),∴Q(6﹣6t,0),∴PQ=AP=3t,∵四边形PQMN是正方形,∴MN∥OA,PN=PQ=3t,在Rt△APD中,tan∠OAB=233 PD PDAP t==,∴PD=2t,∴DN=t,∵MN∥OA∴∠DCN=∠OAB,∴tan∠DCN=23 DN tCN CN==,∴CN=32t,∴S=S正方形PQMN﹣S△CDN=(3t)2﹣12t×32t=334t2;②当1<t≤43时,如图2,同①的方法得,DN=t,CN=32t,∴S=S矩形OENP﹣S△CDN=3t×(6﹣3t)﹣12t×32t=﹣394t2+18t;③当43<t≤2时,如图3,S=S梯形OBDP=12(2t+4)(6﹣3t)=﹣3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),∴M(6-6t,3t),∵T是正方形PQMN的对角线交点,∴T(6-93,22t t),∴点T是直线y=-13x+2上的一段线段,(-3≤x<6),同理:点N是直线AG:y=-x+6上的一段线段,(0≤x≤6),∴G(0,6),∴OG=6,∵A(6,0),∴AG2,在Rt△ABG中,OA=6=OG,∴∠OAG=45°,∵PN⊥x轴,∴∠APN=90°,∴∠ANP=45°,∴∠TNA=90°,即:TN⊥AG,∵T 正方形PQMN 的对角线的交点, ∴TN =TP , ∴OT +TP =OT +TN ,∴点O ,T ,N 在同一条直线上(点Q 与点O 重合时),且ON ⊥AG 时,OT +TN 最小, 即:OT +TN 最小,∵S △OAG =12OA ×OG =12AG ×ON , ∴ON =OA OGAGn =32. 即:OT +PT 的最小值为32【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T 的位置是解本题(3)的难点.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积. (3)在P 点运动过程中,求APC ∆面积的最大值. 【答案】(1)3y x =+;(2)3;(3)APC ∆面积的最大值为278. 【解析】 【分析】(1)由题意分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标,再根据点A 、C 的坐标利用待定系数法即可求出直线AC 的解析式;(2)由题意先根据二次函数解析式求出顶点P ,进而利用割补法求APC ∆面积;(3)根据题意过点P 作PE y P 轴交AC 于点E 并设点P 的坐标为()2,23m m m --+(30m -<<),则点E的坐标为(),3+m m 进而进行分析. 【详解】解:(1) 分别将x =0、y =0代入二次函数解析式中求出点C 、A 的坐标为()0,3C ;()30A -,; 将()0,3C ;()30A -,代入223y x x =--+,得到直线AC 的解析式为3y x =+. (2)由223y x x =--+,将其化为顶点式为2(1)4y x =-++,可知顶点P 为(1,4)-, 如图P 为顶点时连接PC 并延长交x 轴于点G ,则有S APC S APG S ACG =-V V V ,将P 点和C 点代入求出PC 的解析式为3y x =-+,解得G 为(3,0), 所有S APC S APG S ACG =-V V V 11646312922=⨯⨯-⨯⨯=-=3;(3)过点P 作PE y P 轴交AC 于点E .设点P 的坐标为()2,23m m m --+(30m -<<),则点E 的坐标为(),3+m m ∴()2233PE m m m =--+-+2239324m m m ⎛⎫=--=-++ ⎪⎝⎭, 当32m =-时,PE 取最大值,最大值为94.∵()1322APC C A S PE x x PE ∆=⋅-=,∴APC ∆面积的最大值为278. 【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标; (3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【答案】(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫-⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭【解析】 【分析】(1)利用B (5,0)用待定系数法求抛物线解析式; (2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB , 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D ,作M 1关于AD 的对称点M 2, 则∠A M 2C =3∠ACB ,根据对称点坐标特点可求M 2的坐标. 【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-= 1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB =5, ∵Q 在BC 上,∴Q 的坐标为(x ,x -5),∴PQ =2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+∴当52x =时,S 有最大值,最大值为1258S =,∴点P 坐标为515,24⎛⎫⎪⎝⎭. (3)如图1,作∠CAN =∠NAM 1=∠ACB ,则∠A M 1B =3∠ACB ,∵∠CAN =∠NAM 1, ∴AN =CN ,∵265y x x =-+-=-(x -1)(x -5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a ,a -5),则∴2222(1)(5)(55)a a a a -+-=+-+,∴a =136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26,∴22169113182636 ANAC=⨯=,∵∠NAM1=∠ACB,∠N M1A=∠C M1A,∴∆NAM1∽∆A C M1,∴11AMANAC CM=,∴21211336AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1=7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标=7860232323⨯-=,M2纵坐标=37552(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.(1)若点B与点C关于直线x=1对称,求b的值;(2)若OB=OA,求△BCP的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.【答案】(1)2(2)(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x=1对称,可得出抛物线的对称轴为直线x=1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OA=OB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出△BCP的面积;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.【详解】解:(1)∵点B与点C关于直线x=1对称,y=x(x﹣b)﹣=x2﹣bx﹣,∴﹣=1,解得:b=2.(2)当x=0时,y=x2﹣bx﹣=﹣,∴点A的坐标为(0,﹣).又∵OB=OA,∴点B的坐标为(﹣,0).将B(﹣,0)代入y=x2﹣bx﹣,得:0=+b﹣,解得:b=,∴抛物线的解析式为y=x2﹣x﹣.∵y=x2﹣x﹣=(x﹣)2﹣,∴点P的坐标为(,﹣).当y=0时,x2﹣x﹣=0,解得:x1=﹣,x2=1,∴点C的坐标为(1,0).∴S△BCP=×[1﹣(﹣)]×|﹣|=.(3)y=x2﹣bx﹣=(x﹣)2﹣﹣.当≥1,即b≥2时,如图1所示,y最大=b+,y最小=﹣b+,∴h=2b;当0≤<1,即0≤b<2时,如图2所示,y最大=b+,y最小=﹣﹣,∴h=1+b+=(1+)2;当﹣1<<0,﹣2<b<0时,如图3所示y最大=﹣b,y最小=﹣﹣,∴h=1﹣b+=(1﹣)2;当≤﹣1,即b≤﹣2时,如图4所示,y最大=﹣b+,y最小=b+,h=﹣2b.综上所述:h=,h存在最小值,最小值为1.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式、三角形的面积、二次函数图象以及二次函数的最值,解题的关键是:(1)利用二次函数的性质,求出b的值;(2)利用二次函数图象上的坐标特征及配方法,求出点B,C,P的坐标;(3)分b≥2,0≤b<2,﹣2<b<0和b≤﹣2四种情况,找出h关于b的关系式.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.。
中考数学专题讲解:直角三角形的存在性问题

中考专题讲解:直角三角形的存在性问题 一、学习目标1.经历探索直角三角形存在性问题的过程,熟练掌握解题技巧2.体会分类讨论的数学思想,体验解决问题方法的多样性二、课前准备1.已知直角三角形的两边长分别为3和4,则第三边的长为2.如图,A(0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为三、探究理解如图,A(0,1),C(4,3)是直线121+=x y 上的两点,点P 是x 轴上的一个动点,问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标.问题:(1)这样的问题,你怎么思考的? 针对直角顶点进行分类(2)一般会有几种情况? 3种(3)分类时候需要做什么? 画图(4)解题有那些方法?(5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点总结:直角三角形的存在性问题的解题策略:四、反馈练习1.如图,点O (0,0),A(1,2),若存在格点P ,使△APO 为直角三角形, 则点P 的个数有 个2.在△ABC 中,∠C=900,AC=8 cm,BC=6 cm ,动点P 、Q 分别同时从点A 、B 出发,其中点P 在线段AB 上向点B 移动,速度是2 cm/s,点Q 在线段BC上向点C 运动,速度为1cm/s ,设运动时间为t s,当t= 时,△BPQ 是直角三角形.3.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB>1,以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设AB=x.若△ABC 为直角三角形,(1)求x 的值.(2)x 的取值是多少.五、链接中考如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线834942++-=x x y 经过A 、C 两点,与AB 边交于点D ,Q 是AC 上一点,且AQ=5.请问在抛物线对称轴l 上是否存在点F ,使得△FDQ 为直角三角形?若存在,请直接写出所有符合条件的点F 的坐标,若不存在,请说明理由六、课堂小结直角三角形的存在性问题解题策略分类画图(1)角:构造相似三角形解题 (2) 边:勾股定理(3)函数:k 1·k 2=-1六、课后练习在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0),如图所示,B 点在抛物线221212-+=x x y 图像上,过点B 作BD ⊥X 轴,垂足为D ,且B 点的横坐标为-3.(1)求证:△BDC ≌△COA(2)求BC 所在直线的函数关系式(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由。
直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3)直角三角形的存在性问题解题策略《挑战压轴题·中考数学》的作者马学斌专题攻略解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).例题解析例❶如图1-1,在△ABC中,AB=AC=10,cos∠B=45.D、E为线段BC上的两个动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E作EF//AC 交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值.图1-1【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点.在Rt△ABH中,AB=10,cos∠B=45,所以BH=8.所以BC=16.由EF//AC,得BF BEBA BC=,即31016BF x+=.所以BF=5(3)8x+.图1-2 图1-3 图1-4①如图1-3,当∠BDF =90°时,由4cos 5BD B BF ∠==,得45BD BF =. 解方程45(3)58x x =⨯+,得x =3. ②如图1-4,当∠BFD =90°时,由4cos 5BF B BD ∠==,得45BF BD =. 解方程5154885x x +=,得757x =. 我们看到,在画示意图时,无须受到△ABC 的“限制”,只需要取其确定的∠B .例❷ 如图2-1,已知A 、B 是线段MN 上的两点,,,.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成 △ABC ,设AB =x ,若△ABC 为直角三角形,求x 的值.图2-1【解析】△ABC 的三边长都可以表示出来,AC =1,AB =x ,BC =3-x .如果用斜边进行分类,每条边都可能成为斜边,分三种情况:①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根.②若AB 为斜边,则1)3(22+-=x x ,解得35=x (如图2-2). ③若BC 为斜边,则221)3(x x +=-,解得34=x (如图2-3). 因此当35=x 或34=x 时,△ABC 是直角三角形.图2-2 图2-3例❸ 如图3-1,已知在平面直角坐标系中,点A 的坐标为(-2, 0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图象上的一点,且△ABP 是直角三角形,求点P 的坐标.图3-1【解析】A 、B 两点是确定的,以线段AB 为分类标准,分三种情况.4=MN 1=MA 1>MB如果线段AB 为直角边,那么过点A 画AB 的垂线,与第一象限的一支双曲线没有交点;过点B 画AB 的垂线,有1个交点.以AB 为直径画圆,圆与双曲线有没有交点呢?先假如有交点,再列方程,方程有解那么就有交点.如果是一元二次方程,那么可能是一个交点,也可能是两个交点.由题意,得点B 的坐标为(2,0),且∠BAP 不可能成为直角.①如图3-2,当∠ABP =90°时,点P 的坐标为(2,1).②方法一:如图3-3,当∠APB =90°时,OP 是Rt △APB 的斜边上的中线,OP =2.设P 2(,)x x ,由OP 2=4,得2244x x +=.解得x =P (2,2).图3-2 图3-3方法二:由勾股定理,得PA 2+PB 2=AB 2.解方程2222222(2)()(2)()4x x x x +++++=,得x =方法三:如图3-4,由△AHP ∽△PHB ,得PH 2=AH ·BH .解方程22()(2)(2)x x x=+-,得x =图3-4 图3-5这三种解法的方程貌似差异很大,转化为整式方程之后都是(x 2-2)2=0.这个四次方程的解是x 1=x 2=2,x 3=x 4=,它的几何意义就是以AB 为直径的圆与双曲线相切于P 、P ′两点(如图3-5).例❹ 如图4-1,已知直线y =kx -6经过点A (1,-4),与x 轴相交于点B .若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.图4-1【解析】和例题3一样,过A 、B 两点分别画AB 的垂线,各有1个点Q .和例题3不同,以AB 为直径画圆,圆与y 轴有没有交点,一目了然.而圆与双曲线有没有交点,是徒手画双曲线无法肯定的.将A (1,-4)代入y =kx -6,可得k =2.所以y =2x -6,B (3,0).设OQ 的长为m .分三种情况讨论直角三角形ABQ :①如图4-2,当∠AQB =90°时,△BOQ ∽△QHA ,BO QH OQ HA =.所以341m m -=. 解得m =1或m =3.所以Q (0,-1)或(0,-3).②如图4-3,当∠BAQ =90°时,△QHA ∽△AGB ,QH AG HA GB =.所以4214m -=. 解得72m =.此时7(0,)2Q -. ③如图4-4,当∠ABQ =90°时,△AGB ∽△BMQ ,AG BM GB MQ =.所以243m =. 解得32m =.此时3(0,)2Q .图4-2 图4-3 图4-4三种情况的直角三角形ABQ ,直角边都不与坐标轴平行,我们以直角顶点为公共顶点,构造两个相似的直角三角形,这样列比例方程比较简便.已知A (1,-4)、B (3,0),设Q (0, n ),那么根据两点间的距离公式可以表示出AB 2,AQ 2和BQ 2,再按照斜边为分类标准列方程,就不用画图进行“盲解”了.例❺ 如图5-1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧).若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只...有.三个时,求直线l 的解析式.图5-1【解析】有且只有三个直角三角形ABM 是什么意思呢?过A 、B 两点分别画AB 的垂线,与直线l 各有一个交点,那么第三个直角顶点M 在哪里?以AB 为直径的⊙G 与直线l 相切于点M 啊! 由23333(4)(2)848y x x x x =--+=-+-,得A (-4, 0)、B (2, 0),直径AB =6. 如图5-2,连结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.因此3tan 4GEM ∠=. 设直线l 与y 轴交于点C ,那么OC =3.所以直线l (直线EC )为334y x =-+. 根据对称性,直线l 还可以是334y x =-.图5-2例❻ 如图6-1,在△ABC 中,CA =CB ,AB =8,4cos 5A ∠=.点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连结CE 、DE .(1)求底边AB 上的高;(2)设CE 与AB 交于点F ,当△ACF 为直角三角形时,求AD 的长;(3)连结AE ,当△ADE 是直角三角形时,求AD 的长.图6-1【解析】这道题目画示意图有技巧的,如果将点D 看作主动点,那么CE 就是从动线段.反过来画图,点E 在以CA 为半径的⊙C 上,如果把点E 看作主动点,再画∠ACE 的平分线就产生点D 了.(1)如图6-2,设AB 边上的高为CH ,那么AH =BH =4.在Rt △ACH 中,AH =4,4cos 5A ∠=,所以AC =5,CH =3. (2)①如图6-3,当∠AFC =90°时,F 是AB 的中点,AF =4,CF =3. 在Rt △DEF 中,EF =CE -CF =2,4cos 5E ∠=,所以52DE =.此时52AD DE ==.②如图6-4,当∠ACF=90°时,∠ACD=45°,那么△ACD的条件符合“角边角”.作DG⊥AC,垂足为G.设DG=CG=3m,那么AD=5m,AG=4m.由CA=5,得7m=5.解得57m=.此时2557AD m==.图6-2 图6-3 图6-4 (3)因为DA=DE,所以只存在∠ADE=90°的情况.①如图6-5,当E在AB下方时,根据对称性,知∠CDA=∠CDE=135°,此时△CDH是等腰直角三角形,DH=CH=3.所以AD=AH-DH=1.②如图6-6,当E在AB上方时,根据对称性,知∠CDA=∠CDE=45°,此时△CDH是等腰直角三角形,DH=CH=3.所以AD=AH+DH=7.图6-5 图6-6马学斌wnmaxuebin163.2015年9月21日星期一To:《中小学数学·初中版》市海淀区西三环北路105号(首都师大)数学楼118室,100048。
中考数学直角三角形的存在性问题解题策略

直角三角形的存在性问题解题策略专题攻略解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).例题解析例1、 如图1-1,在△ABC 中,AB =AC =10,cos ∠B =45.D 、E 为线段BC 上的两个动点,且DE =3(E 在D 右边),运动初始时D 和B 重合,当E 和C 重合时运动停止.过E 作EF //AC 交AB 于F ,连结DF .设BD =x ,如果△BDF 为直角三角形,求x 的值.图1-1【解析】△BDF 中,∠B 是确定的锐角,那么按照直角顶点分类,直角三角形BDF 存在两种情况.如果把夹∠B 的两条边用含有x 的式子表示出来,分两种情况列方程就可以了. 如图1-2,作AH ⊥BC ,垂足为H ,那么H 是BC 的中点.在Rt △ABH 中,AB =10,cos ∠B =45,所以BH =8.所以BC =16. 由EF //AC ,得BF BE BA BC =,即31016BF x +=.所以BF =5(3)8x +.图1-2 图1-3 图1-4①如图1-3,当∠BDF =90°时,由4cos 5BD B BF ∠==,得45BD BF =. 解方程45(3)58x x =⨯+,得x =3.②如图1-4,当∠BFD =90°时,由4cos 5BF B BD ∠==,得45BF BD =. 解方程5154885x x +=,得757x =. 我们看到,在画示意图时,无须受到△ABC 的“限制”,只需要取其确定的∠B . 例2、 如图2-1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成 △ABC ,设AB =x ,若△ABC 为直角三角形,求x 的值.图2-1【解析】△ABC 的三边长都可以表示出来,AC =1,AB =x ,BC =3-x . 如果用斜边进行分类,每条边都可能成为斜边,分三种情况:①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根.②若AB 为斜边,则1)3(22+-=x x ,解得35=x (如图2-2). ③若BC 为斜边,则221)3(x x +=-,解得34=x (如图2-3). 因此当35=x 或34=x 时,△ABC 是直角三角形.图2-2 图2-3例3、 如图3-1,已知在平面直角坐标系中,点A 的坐标为(-2, 0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图象上的一点,且△ABP 是直角三角形,求点P 的坐标.图3-1【解析】A 、B 两点是确定的,以线段AB 为分类标准,分三种情况.如果线段AB 为直角边,那么过点A 画AB 的垂线,与第一象限内的一支双曲线没有交点;过点B 画AB 的垂线,有1个交点.以AB 为直径画圆,圆与双曲线有没有交点呢?先假如有交点,再列方程,方程有解那么就有交点.如果是一元二次方程,那么可能是一个交点,也可能是两个交点.由题意,得点B 的坐标为(2,0),且∠BAP 不可能成为直角.①如图3-2,当∠ABP =90°时,点P 的坐标为(2,1).②方法一:如图3-3,当∠APB =90°时,OP 是Rt △APB 的斜边上的中线,OP =2.设P 2(,)x x ,由OP 2=4,得2244x x+=.解得x =P (2,2).图3-2 图3-3 方法二:由勾股定理,得P A 2+PB 2=AB 2.解方程2222222(2)()(2)()4x x x x+++++=,得x = 方法三:如图3-4,由△AHP ∽△PHB ,得PH 2=AH ·BH .解方程22()(2)(2)x x x=+-,得x =图3-4 图3-5这三种解法的方程貌似差异很大,转化为整式方程之后都是(x 2-2)2=0.这个四次方程的解是x 1=x 2=2,x 3=x 4=它的几何意义就是以AB 为直径的圆与双曲线相切于P 、P ′两点(如图3-5).例4、 如图4-1,已知直线y =kx -6经过点A (1,-4),与x 轴相交于点B .若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.图4-1【解析】和例题3一样,过A 、B 两点分别画AB 的垂线,各有1个点Q .和例题3不同,以AB 为直径画圆,圆与y 轴有没有交点,一目了然.而圆与双曲线有没有交点,是徒手画双曲线无法肯定的.将A (1,-4)代入y =kx -6,可得k =2.所以y =2x -6,B (3,0).设OQ 的长为m .分三种情况讨论直角三角形ABQ :①如图4-2,当∠AQB =90°时,△BOQ ∽△QHA ,BO QH OQ HA =.所以341m m -=. 解得m =1或m =3.所以Q (0,-1)或(0,-3).②如图4-3,当∠BAQ =90°时,△QHA ∽△AGB ,QH AG HA GB =.所以4214m -=. 解得72m =.此时7(0,)2Q -. ③如图4-4,当∠ABQ =90°时,△AGB ∽△BMQ ,AG BM GB MQ =.所以243m =. 解得32m =.此时3(0,)2Q .图4-2 图4-3 图4-4三种情况的直角三角形ABQ ,直角边都不与坐标轴平行,我们以直角顶点为公共顶点,构造两个相似的直角三角形,这样列比例方程比较简便.已知A (1,-4)、B (3,0),设Q (0, n ),那么根据两点间的距离公式可以表示出AB 2,AQ 2和BQ 2,再按照斜边为分类标准列方程,就不用画图进行“盲解”了.例5、 如图5-1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧).若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只...有.三个时,求直线l 的解析式.图5-1【解析】有且只有三个直角三角形ABM 是什么意思呢?过A 、B 两点分别画AB 的垂线,与直线l 各有一个交点,那么第三个直角顶点M 在哪里?以AB 为直径的⊙G 与直线l 相切于点M 啊! 由23333(4)(2)848y x x x x =--+=-+-,得A (-4, 0)、B (2, 0),直径AB =6. 如图5-2,连结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.因此3tan 4GEM ∠=. 设直线l 与y 轴交于点C ,那么OC =3.所以直线l (直线EC )为334y x =-+. 根据对称性,直线l 还可以是334y x =-.图5-2例6、 如图6-1,在△ABC 中,CA =CB ,AB =8,4cos 5A ∠=.点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连结CE 、DE .(1)求底边AB 上的高;(2)设CE 与AB 交于点F ,当△ACF 为直角三角形时,求AD 的长;(3)连结AE ,当△ADE 是直角三角形时,求AD 的长.图6-1【解析】这道题目画示意图有技巧的,如果将点D 看作主动点,那么CE 就是从动线段.反过来画图,点E 在以CA 为半径的⊙C 上,如果把点E 看作主动点,再画∠ACE 的平分线就产生点D 了.(1)如图6-2,设AB 边上的高为CH ,那么A H =BH =4.在Rt △ACH 中,AH =4,4cos 5A ∠=,所以AC =5,CH =3. (2)①如图6-3,当∠AFC =90°时,F 是AB 的中点,AF =4,CF =3. 在Rt △DEF 中,EF =CE -CF =2,4cos 5E ∠=,所以52DE =.此时52AD DE ==. ②如图6-4,当∠ACF =90°时,∠ACD =45°,那么△ACD 的条件符合“角边角”. 作DG ⊥AC ,垂足为G .设DG =CG =3m ,那么AD =5m ,AG =4m .由CA =5,得7m =5.解得57m =.此时2557AD m ==.图6-2 图6-3 图6-4 (3)因为DA=DE,所以只存在∠ADE=90°的情况.①如图6-5,当E在AB下方时,根据对称性,知∠CDA=∠CDE=135°,此时△CDH 是等腰直角三角形,DH=CH=3.所以AD=AH-DH=1.②如图6-6,当E在AB上方时,根据对称性,知∠CDA=∠CDE=45°,此时△CDH 是等腰直角三角形,DH=CH=3.所以AD=AH+DH=7.图6-5 图6-6。
中考数学压轴题专题39 动态几何之面动形成的等腰三角形存在性问题(解析版)

一、选择题 二、填空题 三、解答题1.(2016广西来宾市)如图,在矩形ABCD 中,AB =10,AD =6,点M 为AB 上的一动点,将矩形ABCD 沿某一直线对折,使点C 与点M 重合,该直线与AB (或BC )、CD (或DA )分别交于点P 、Q .(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹) (2)如果PQ 与AB 、CD 都相交,试判断△MPQ 的形状并证明你的结论;(3)设AM =x ,d 为点M 到直线PQ 的距离,2y d =,①求y 关于x 的函数解析式,并指出x 的取值范围;②当直线PQ 恰好通过点D 时,求点M 到直线PQ 的距离.【答案】(1)作图见解析;(2)△MPQ 是等腰三角形;(3)10. 【分析】(1)作线段CM 的垂直平分线即可;(2)由矩形的性质得出AB ∥CD ,CD =AB =10,得出∠QCO =∠PMO ,由折叠的性质得出PQ 是CM 的垂直平分线,由线段垂直平分线的性质得出CQ =MQ ,由ASA 证明△OCQ ≌△OMP ,得出CQ =MP ,得出MP =MQ 即可;(3)①作MN ⊥CD 于N ,如图2所示:则MN =AD =6,DN =AM =x ,CN =10﹣x ,在Rt △MCN 中,由勾股定理得出222(2)6(10)d x =+-,即可得出结果;②当直线PQ 恰好通过点D 时,Q 与D 重合,DM =DC =10,由勾股定理求出AM ,得出BM ,再由勾股定理求出CM ,即可得出结果.【解析】(1)如图1所示:(2)△MPQ是等腰三角形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,CD=AB=10,∴∠QCO=∠PMO,由折叠的性质得:PQ是CM的垂直平分线,∴CQ=MQ,OC=OM,在△OCQ和△OMP中,∵∠QCO=∠PMO,OC=OM,∠COQ=∠MOP,∴△OCQ≌△OMP(ASA),∴CQ=MP,∴MP=MQ,即△MPQ 是等腰三角形;考点:四边形综合题;动点型;探究型;压轴题.2.(2016吉林省)如图,在等腰直角三角形ABC中,∠BAC=90°,AC=82cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以2cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2)(1)当点M落在AB上时,x= ;(2)当点M落在AD上时,x= ;(3)求y关于x的函数解析式,并写出自变量x的取值范围.【答案】(1)4;(2)163;(3)2221(04)27163264 (4)23161664 (8)3x xy x x xx x x⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.【分析】(1)当点M落在AB上时,四边形AMQP是正方形,此时点D与点Q重合,由此即可解决问题.(2)如图1中,当点M落在AD上时,作PE⊥QC于E,先证明DQ=QE=EC,由PE∥AD,得PA DEAC DC==23,由此即可解决问题.(3)分三种情形①当0<x≤4时,如图2中,设PM、PQ分别交AD于点E、F,则重叠部分为△PEF,②当4<x≤163时,如图3中,设PM、MQ分别交AD于E、G,则重叠部分为四边形PEGQ.③当163<x<8时,如图4中,则重合部分为△PMQ,分别计算即可解决问题.(3)①当0<x ≤4时,如图2中,设PM 、PQ 分别交AD 于点E 、F ,则重叠部分为△PEF ,∵AP =2x ,∴EF =PE =x ,∴y =S △PEF =12•PE •EF =212x . ②当4<x ≤163时,如图3中,设PM 、MQ 分别交AD 于E 、G ,则重叠部分为四边形PEGQ .∵PQ =PC =822x -,∴PM =16﹣2x ,∴ME =PM ﹣PE =16﹣3x ,∴y =S △PMQ ﹣S △MEG =2211(822)(163)22x x ---=2732642x x -+-.③当163<x <8时,如图4中,则重合部分为△PMQ ,∴y =S △PMQ =212PQ =21(822)2=21664x x -+.综上所述2221 (04)27163264 (4)23161664 (8)3x x y x x x x x x ⎧<≤⎪⎪⎪=-+-<≤⎨⎪⎪-+<<⎪⎩.考点:三角形综合题;分类讨论;分段函数;动点型;压轴题.3.(2016江苏省苏州市)如图,在矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点B 出发,沿对角线BD 向点D 匀速运动,速度为4cm /s ,过点P 作PQ ⊥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得点N 落在射线PD 上,点O 从点D 出发,沿DC 向点C 匀速运动,速度为3m /s ,以O 为圆心,0.8cm 为半径作⊙O ,点P 与点O 同时出发,设它们的运动时间为t (单位:s )(0<t <85). (1)如图1,连接DQ 平分∠BDC 时,t 的值为 ;(2)如图2,连接CM ,若△CMQ 是以CQ 为底的等腰三角形,求t 的值; (3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O 始终在QM 所在直线的左侧;②如图3,在运动过程中,当QM 与⊙O 相切时,求t 的值;并判断此时PM 与⊙O 是否也相切?说明理由.【答案】(1)1;(2)4049;(3)①证明见解析;②t =43s 时,⊙O 与直线QM 相切,PM 与⊙O 不相切.【分析】(1)先利用△PBQ ∽△CBD 求出PQ 、BQ ,再根据角平分线性质,列出方程解决问题.(2)由△QTM ∽△BCD ,得QM TQBD BC=列出方程即可解决. (3)①如图2中,由此QM 交CD 于E ,求出DE 、DO 利用差值比较即可解决问题. ②如图3中,由①可知⊙O 只有在左侧与直线QM 相切于点H ,QM 与CD 交于点E .由△OHE ∽△BCD ,得OH OEBC BD=,列出方程即可解决问题.利用反证法证明直线PM 不可能由⊙O 相切.【解析】(1)解:如图1中,∵四边形ABCD 是矩形,∴∠A =∠C =∠ADC =∠ABC =90°,AB =CD =6.AD =BC =8,∴BD 22AD AB +2268+=10,∵PQ ⊥BD ,∴∠BPQ =90°=∠C ,∵∠PBQ =∠DBC ,∴△PBQ ∽△CBD ,∴PB PQ BQ BC DC BD ==,∴48610t PQ BQ==,∴PQ =3t ,BQ =5t ,∵DQ 平分∠BDC ,QP ⊥DB ,QC ⊥DC ,∴QP =QC ,∴3t =8﹣5t ,∴t =1,故答案为:1.(2)解:如图2中,作MT ⊥BC 于T .∵MC =MQ ,MT ⊥CQ ,∴TC =TQ ,由(1)可知TQ =12(8﹣5t ),QM =3t ,∵MQ ∥BD ,∴∠MQT =∠DBC ,∵∠MTQ =∠BCD =90°,∴△QTM ∽△BCD ,∴QM TQBD BC=,∴1(85)32108t t -=,∴t =4049(s ),∴t =4049s 时,△CMQ 是以CQ 为底的等腰三角形.(3)①证明:如图2中,由此QM 交CD 于E ,∵EQ ∥BD ,∴EC CQ CD CB =,∴EC =34(8﹣5t ),ED =DC ﹣EC =6﹣34(8﹣5t )=154t ,∵DO =3t ,∴DE ﹣DO =154t ﹣3t =34t >0,∴点O 在直线QM 左侧.②解:如图3中,由①可知⊙O 只有在左侧与直线QM 相切于点H ,QM 与CD 交于点E . ∵EC =34(8﹣5t ),DO =3t ,∴OE =6﹣3t ﹣34(8﹣5t )=34t ,∵OH ⊥MQ ,∴∠OHE =90°,∵∠HEO =∠CEQ ,∴∠HOE =∠CQE =∠CBD ,∵∠OHE =∠C =90°,∴△OHE ∽△BCD ,∴OH OE BC BD =,∴30.84810t=,∴t =43,∴t =43s 时,⊙O 与直线QM 相切. 连接PM ,假设PM 与⊙O 相切,则∠OMH =12PMQ =22.5°,在MH 上取一点F ,使得MF =FO ,则∠FMO =∠FOM =22.5°,∴∠OFH =∠FOH =45°,∴OH =FH =0.8,FO =FM =0.82,∴MH =0.8(21)+,由OH HE BC DC =得到HE =35,由EC CQ BD CB =得到EQ =53,∴MH =MQ ﹣HE ﹣EQ =4﹣35﹣53=2625,∴0.8(21)+≠2625,矛盾,∴假设不成立,∴直线PM 与⊙O 不相切.考点:圆的综合题;动点型;探究型;压轴题. 4.(2016河南省)如图1,直线43y x n =-+交x 轴于点A ,交y 轴于点C (0,4),抛物线223y x bx c =++经过点A ,交y 轴于点B (0,﹣2).点P 为抛物线上一个动点,过点P 作x 轴的垂线PD ,过点B 作BD ⊥PD 于点D ,连接PB ,设点P 的横坐标为m . (1)求抛物线的解析式;(2)当△BDP 为等腰直角三角形时,求线段PD 的长;(3)如图2,将△BDP 绕点B 逆时针旋转,得到△BD ′P ′,且旋转角∠PBP ′=∠OAC ,当点P 的对应点P ′落在坐标轴上时,请直接写出点P 的坐标.【答案】(1)224233y x x =--;(2)PD =12或PD =72;(3)P (﹣5,4543+)或P (5,4543-+)或P (258,1132). 【分析】(1)先确定出点A 的坐标,再用待定系数法求出抛物线解析式;(2)由△BDP 为等腰直角三角形,判断出BD =PD ,建立m 的方程计算出m ,从而求出PD ; (3)分点P ′落在x 轴和y 轴两种情况计算即可.(3)∵∠PBP '=∠OAC ,OA =3,OC =4,∴AC =5,∴sin ∠PBP '=45,cos ∠PBP '=35,分两种情况讨论:①当点P '落在x 轴上时,过点D '作D 'N ⊥x 轴,垂足为N ,交BD 于点M ,∠DBD '=∠ND 'P '=∠PBP ',如图1,ND '﹣MD '=2,∴23244()()25335m m m ---=,∴m =5(舍),或m =﹣5; 如图2, ND '+MD '=2,∴23244()25335m m m -+=,∴m =5,或m =﹣5(舍),∴P(﹣5,4543+)或P (5,4543-+);②当点P '落在y 轴上时,如图3,过点D ′作D ′M ⊥x 轴,交BD 于M ,过P ′作P ′N ⊥y 轴,∴∠DBD ′=∠ND ′P ′=∠PBP ′,∵P ′N =BM ,∴24243()5335m m m -=,∴m =258,∴P (258,1132); 综上所述:P (﹣5,4543+)或P (5,4543-+)或P (258,1132).考点:二次函数综合题;分类讨论;动点型;压轴题.5.(2016甘肃省天水市)如图,二次函数2y ax bx c =++的图象交x 轴于A 、B 两点,交y 轴于点C ,且B (1,0),C (0,3),将△BOC 绕点O 按逆时针方向旋转90°,C 点恰好与A 重合.(1)求该二次函数的解析式;(2)若点P 为线段AB 上的任一动点,过点P 作PE ∥AC ,交BC 于点E ,连结CP ,求△PCE 面积S 的最大值;(3)设抛物线的顶点为M ,Q 为它的图象上的任一动点,若△OMQ 为以OM 为底的等腰三角形,求Q 点的坐标.【答案】(1)223y x x =--+;(2)S △PCE 的最大值为32;(3)Q (91378-+,813732+),或(91378--,5913732-). 【分析】(1)先求出点A 坐标,再用待定系数法求出抛物线解析式; (2)先求出S △PCE =S △PBC ﹣S △PBE ,即可求出最大面积;(3)先求出抛物线顶点坐标,由等腰三角形的两腰相等建立方程求出点Q 坐标.(3)∵二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标(﹣1,4),∵△OMQ 为等腰三角形,OM 为底,∴MQ =OQ ,∴222(1)(234)x x x ++--+-=222(23)x x x +--+,∴281870x x +-=,∴x =91378-±,∴y =813732+或y =5913732-,∴Q (91378-+,813732+),或(91378--,5913732-). 考点:二次函数综合题;动点型;旋转的性质;最值问题;二次函数的最值;综合题. 6.(2015四川)如图,在△ABC 中,已知AB =AC =5,BC =6,且△ABC ≌△DEF ,将△DEF 与△ABC 重合在一起,△ABC 不动,△DEF 运动,并满足:点E 在边BC 上沿B 到C 的方向运动,且DE 、始终经过点A ,EF 与AC 交于M 点. (1)求证:△ABE ∽△ECM ;(2)探究:在△DEF 运动过程中,重叠部分能否构成等腰三角形?若能,求出BE 的长;若不能,请说明理由;(3)当线段AM 最短时,求重叠部分的面积.此时,EF ⊥AC ,∴22221612EM=AE AM 455⎛⎫-=-= ⎪⎝⎭.∴AEM 11161296S =AM EM 225525∆⋅⋅=⋅⋅=. ∴当线段AM 最短时,重叠部分的面积为9625.7.(2014年重庆市A 12分)已知:如图①,在矩形ABCD 中,AB =5,AD =320,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连接AF 、BF . (1)求AE 和BE 的长;(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值. (3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P .与直线BD 交于点Q .是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.【答案】解:(1)∵AB =5,AD =203,∴由勾股定理得22222025BD AB AD 533⎛⎫=+=+= ⎪⎝⎭.∵SBD 11S AB AD BD AE 22∆=⋅=⋅,∴1201255AE 2323⨯⨯=⨯,解得AE =4. ∴2222BE AB AE 543=-=-=.(2)当点F 在线段AB 上时,m 3=;当点F 在线段AD 上时,16m 3=. (3)存在,理由如下:①当DP =DQ 时,若点Q 在线段BD 的延长线上时,如答图1,有∠Q =∠1,则∠2=∠1+∠Q =2∠Q .∵∠3=∠4+∠Q ,∠3=∠2,∴∠4+∠Q =2∠Q . ∴∠4=∠Q .∴A ′Q =A ′B =5. ∴F ′Q =4+5=9.在Rt △BF ′Q 中,2222593DQ 3⎛⎫+=+ ⎪⎝⎭,解得25DQ 3103=-或25DQ 3103=--(舍去). 若点Q 在线段BD 上时,如答图2,有∠1=∠2=∠4, ∵∠1=∠3,∴∠3=∠4. ∵∠3=∠5+∠A ′,∠A ′=∠CBD ,∴∠3=∠5+∠CBD =∠A ′BQ . ∴∠4=∠∠A ′BQ . ∴A ′Q = A ′B =5.∴F ′Q =5-4=1. ∴22BQ 3110=+=. ∴25DQ 103=-. ②当QP =QD 时,如答图3,有∠P =∠1, ∵∠A ′=∠1,∠2=∠3, ∴∠4=∠P . ∴∠4=∠A ′. ∴QB =Q A ′. 设QB =Q A ′=x ,在Rt △BF ′Q 中,()22234x x +-=, 解得2525125x 3824=-=. ③当PD =PQ 时,如答图4, 有∠1=∠2=∠3,∵∠1=∠A ′,∴∠3=∠A ′.∴BQ =A ′B =5. ∴2510DQ 533=-=. 综上所述,当△DPQ 为等腰三角形时,DQ 的长为252512510310,10,,33243-- .【考点】1.轴对称、平移和旋转问题;2.矩形的性质;3.勾股定理;4.等腰三角形存在性问题;5.勾股定理;6.分类思想的应用.【分析】(1)由勾股定理求得BD 的长,根据三角形面积公式求出AE 的长,再应用勾股定理即可求得BE 的长.(2)根据平移的性质求解即可.(3)分DP =DQ (考虑点Q 在线段BD 的延长线和点Q 在线段BD 上两种情况),QP =QD ,PD =PQ 三种情况求解即可. 8.(2014年重庆市B 12分)如图1,在□ABCD 中,AH ⊥DC ,垂足为H ,AB =7,AD =7,AH 21.现有两个动点E 、F 同时从点A 出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC 方向匀速运动. 在点E 、F 运动过程中,以EF 为边作等边△EFG ,使△EFG 与△ABC 在射线AC 的同侧,当点E 运动到点C 时,E 、F 两点同时停止运动. 设运转时间为t 秒. (1)求线段AC 的长;(2)在整个运动过程中,设等边△EFG 与△ABC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)当等边△EFG 的顶点E 到达点C 时,如图2,将△EFG 绕着点C 旋转一个角度(0360)αα︒<<︒.在旋转过程中,点E 与点C 重合,F 的对应点为F ′,G 的对应点为G ′. 设直线F ′G ′与射线DC 、射线AC 分别相交于M 、N 两点.试问:是否存在点M 、N ,使得△CMN 是以∠MCN 为底角的等腰三角形?若存在,请求出线段CM 的长度;若不存在,请说明理由.(3)存在.如图2,当等边△EFG 的顶点E 到达点C 时,AE =AC =7,AF =21,EF =14. △EFG 绕点C 旋转过程中,以∠MCN 为底角的等腰三角形△CMN 有两种情况:①当∠CMN 为等腰△CMN 的另一底角时,如答图1,过点C 作CI ⊥MN 于点I ,过N 作NJ ⊥CM 于点J .在等边△CG ′I 中,易得77IG ',CI 322== .设IN a,CN MN b === , 易得△ACH ∽△NCJ ,∴AC CH NC CJ =,即727b CJ=, ∴27CJ b 7=.∴47CM b 7=.在△CNI 中,由勾股定理得222CI IN CN +=,即22273a b 2⎛⎫+= ⎪⎝⎭,在△CMI 中,由勾股定理得222CI IM CM +=,即()2227473a b b 27⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭, 二者联立,解得49b 4=,∴47CM b 777==.二者联立,解得49b 4=,∴49CM b 4==.综上所述,线段CM 的长度为77或494. 【考点】1.双动点和面动旋转问题;2.勾股定理;3.线段垂直平分线的性质;4.等边、腰三角形的性质;5.由实际问题列函数关系式;6.旋转的性质;7.相似三角形的判定和性质;8.等腰三角形存在性问题;9.分类思想的应用.【分析】(1)由勾股定理求出DH 的长,证明点H 为DC 的中点,从而根据线段垂直平分线上的点到线段两端距离相等的性质,得AC =AD =7.(2)分770t ,<t 4,4<t 733≤≤≤≤ 三种情况讨论即可.(3)分∠CMN 为等腰△CMN 的另一底角和∠CNM 为等腰△CMN 的另一底角两种情况讨论即可.。
压轴题解题策略:直角三角形的存在性问题

中考数学压轴题解题策略直角三角形的存在性问题解题策略2015年9月13日星期日专题攻略解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根.一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程.有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便.解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起.如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便.在平面直角坐标系中,两点间的距离公式常常用到.怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点).例题解析例? 如图1-1,在△ABC中,AB=AC=10,cos∠B=4.D、E为线段BC上的两个动点,5且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E作EF//AC交AB 于F ,连结DF .设BD =x ,如果△BDF 为直角三角形,求x 的值.图1-1【解析】△BDF 中,∠B 是确定的锐角,那么按照直角顶点分类,直角三角形BDF 存在两种情况.如果把夹∠B 的两条边用含有x 的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH ⊥BC ,垂足为H ,那么H 是BC 的中点.在Rt △ABH 中,AB =10,cos ∠B =45,所以BH =8.所以BC =16.由EF //AC ,得BF BE BA BC =,即31016BF x +=.所以BF =5(3)8x +. 图1-2 图1-3 图1-4①如图1-3,当∠BDF =90°时,由4cos 5BD B BF ∠==,得45BD BF =. 解方程45(3)58x x =⨯+,得x =3.②如图1-4,当∠BFD =90°时,由4cos 5BF B BD ∠==,得45BF BD =. 解方程5154885x x +=,得757x =. 我们看到,在画示意图时,无须受到△ABC 的“限制”,只需要取其确定的∠B . 例? 如图2-1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成 △ABC ,设AB =x ,若△ABC 为直角三角形,求x 的值.图2-1【解析】△ABC 的三边长都可以表示出来,AC =1,AB =x ,BC =3-x . 如果用斜边进行分类,每条边都可能成为斜边,分三种情况:①若AC 为斜边,则22)3(1x x -+=,即0432=+-x x ,此方程无实根.②若AB 为斜边,则1)3(22+-=x x ,解得35=x (如图2-2).③若BC 为斜边,则221)3(x x +=-,解得34=x (如图2-3).因此当35=x 或34=x 时,△ABC 是直角三角形.图2-2 图2-3例? 如图3-1,已知在平面直角坐标系中,点A 的坐标为(-2, 0),点B 是点A 关于原点的对称点,P 是函数)0(2>=x xy 图象上的一点,且△ABP 是直角三角形,求点P 的坐标.图3-1【解析】A 、B 两点是确定的,以线段AB 为分类标准,分三种情况.如果线段AB 为直角边,那么过点A 画AB 的垂线,与第一象限内的一支双曲线没有交点;过点B 画AB 的垂线,有1个交点.以AB 为直径画圆,圆与双曲线有没有交点呢?先假如有交点,再列方程,方程有解那么就有交点.如果是一元二次方程,那么可能是一个交点,也可能是两个交点.由题意,得点B 的坐标为(2,0),且∠BAP 不可能成为直角.①如图3-2,当∠ABP =90°时,点P 的坐标为(2,1).②方法一:如图3-3,当∠APB =90°时,OP 是Rt △APB 的斜边上的中线,OP =2.设P 2(,)x x ,由OP 2=4,得2244x x+=.解得2x =±.此时P (2,2). 图3-2 图3-3方法二:由勾股定理,得PA 2+PB 2=AB 2.解方程2222222(2)()(2)()4x x x x+++++=,得2x =±. 方法三:如图3-4,由△AHP ∽△PHB ,得PH 2=AH ·BH .解方程22()(2)(2)x x x=+-,得2x = 图3-4 图3-5这三种解法的方程貌似差异很大,转化为整式方程之后都是(x 2-2)2=0.这个四次方程的解是x 1=x 2=2,x 3=x 4=2-,它的几何意义就是以AB 为直径的圆与双曲线相切于P 、P ′两点(如图3-5).例? 如图4-1,已知直线y =kx -6经过点A (1,-4),与x 轴相交于点B .若点Q 是y 轴上一点,且△ABQ 为直角三角形,求点Q 的坐标.图4-1【解析】和例题3一样,过A 、B 两点分别画AB 的垂线,各有1个点Q .和例题3不同,以AB 为直径画圆,圆与y 轴有没有交点,一目了然.而圆与双曲线有没有交点,是徒手画双曲线无法肯定的.将A (1,-4)代入y =kx -6,可得k =2.所以y =2x -6,B (3,0).设OQ 的长为m .分三种情况讨论直角三角形ABQ :①如图4-2,当∠AQB =90°时,△BOQ ∽△QHA ,BO QH OQ HA =.所以341m m -=. 解得m =1或m =3.所以Q (0,-1)或(0,-3).②如图4-3,当∠BAQ =90°时,△QHA ∽△AGB ,QH AG HA GB =.所以4214m -=. 解得72m =.此时7(0,)2Q -.③如图4-4,当∠ABQ =90°时,△AGB ∽△BMQ ,AG BM GB MQ =.所以243m =. 解得32m =.此时3(0,)2Q . 图4-2 图4-3 图4-4三种情况的直角三角形ABQ ,直角边都不与坐标轴平行,我们以直角顶点为公共顶点,构造两个相似的直角三角形,这样列比例方程比较简便.已知A (1,-4)、B (3,0),设Q (0, n ),那么根据两点间的距离公式可以表示出AB 2,AQ 2和BQ 2,再按照斜边为分类标准列方程,就不用画图进行“盲解”了. 例? 如图5-1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧).若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只...有.三个时,求直线l 的解析式.图5-1【解析】有且只有三个直角三角形ABM 是什么意思呢?过A 、B 两点分别画AB 的垂线,与直线l 各有一个交点,那么第三个直角顶点M 在哪里?以AB 为直径的⊙G 与直线l 相切于点M 啊! 由23333(4)(2)848y x x x x =--+=-+-,得A (-4, 0)、B (2, 0),直径AB =6. 如图5-2,连结GM ,那么GM ⊥l .在Rt △EGM 中,GM =3,GE =5,所以EM =4.因此3tan 4GEM ∠=. 设直线l 与y 轴交于点C ,那么OC =3.所以直线l (直线EC )为334y x =-+. 根据对称性,直线l 还可以是334y x =-. 图5-2例? 如图6-1,在△ABC 中,CA =CB ,AB =8,4cos 5A ∠=.点D 是AB 边上的一个动点,点E 与点A 关于直线CD 对称,连结CE 、DE .(1)求底边AB 上的高;(2)设CE 与AB 交于点F ,当△ACF 为直角三角形时,求AD 的长;(3)连结AE ,当△ADE 是直角三角形时,求AD 的长.图6-1【解析】这道题目画示意图有技巧的,如果将点D 看作主动点,那么CE 就是从动线段.反过来画图,点E 在以CA 为半径的⊙C 上,如果把点E 看作主动点,再画∠ACE 的平分线就产生点D 了.(1)如图6-2,设AB 边上的高为CH ,那么A H =BH =4.在Rt △ACH 中,AH =4,4cos 5A ∠=,所以AC =5,CH =3. (2)①如图6-3,当∠AFC =90°时,F 是AB 的中点,AF =4,CF =3.在Rt △DEF 中,EF =CE -CF =2,4cos 5E ∠=,所以52DE =.此时52AD DE ==. ②如图6-4,当∠ACF =90°时,∠ACD =45°,那么△ACD 的条件符合“角边角”. 作DG ⊥AC ,垂足为G .设DG =CG =3m ,那么AD =5m ,AG =4m .由CA =5,得7m =5.解得57m =.此时2557AD m ==. 图6-2 图6-3 图6-4(3)因为DA =DE ,所以只存在∠ADE =90°的情况.①如图6-5,当E 在AB 下方时,根据对称性,知∠CDA =∠CDE =135°,此时△CDH 是等腰直角三角形,DH =CH =3.所以AD =AH -DH =1.②如图6-6,当E 在AB 上方时,根据对称性,知∠CDA =∠CDE =45°,此时△CDH 是等腰直角三角形,DH =CH =3.所以AD =AH +DH =7.图6-5 图6-6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题40 动态几何之直角三角形存在性问题数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等。
本专题原创编写直角三角形存在性问题模拟题。
在中考压轴题中,直角三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类。
1.如图,Rt△ABC中,∠ACB=90°,AC=BC=4cm,CD=1cm,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,至A点结束,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t 的值为秒。
【答案】5
2
2
或
11
2
2
或2或72。
【考点】单动点问题,相等腰直角三角形的判定和性质,分类思想的应用。
【解析】∵Rt△ABC中,∠ACB=90°,AC=BC=4cm,∴∠ABC=45°,AB=42(cm)。
∵BC=4cm,CD=1cm,∴BD=3cm。
若∠DEB=90°,则232
cm)。
2. 如图,O 为坐标原点,点B 在x 轴的正半轴上,四边形OACB 是平行四边形,反比例函数
16y x
=在第一象限内的图象经过点A ,与BC 交于点F ,OB=33,BF=
1
2
BC 。
过点F 作EF ∥OB ,交OA 于点,点P 为直线EF 上的一个动点,连接PA ,PO 。
若以P 、O 、A 为顶点的三角形是直角三角形,请求出所有点P 的坐标。
【答案】解:∵点A 是反比例函数16
y x
=
在第一象限内的图象上的点, ∴可设A ()16a,a >0a ⎛⎫
⎪⎝
⎭ 。
∵四边形OACB 是平行四边形, BF=
12BC ,∴F a 833,2a ⎛
⎫+ ⎪⎝
⎭ 。
∵点F 是反比例函数16
y x
=在第一象限内的图象上的点, ∴
816a 2a 33a 23a a 2
332
=⇒=⇒=
∴A
823,33⎛
⎫ ⎪⎝⎭ ,F 4343,3⎛⎫ ⎪ ⎪⎝⎭。
∵EF ∥O B ,点P 为直线EF 上的一个动点,∴可设P 43p,3⎛⎫ ⎪ ⎪⎝⎭。
根据勾股定理,得OA 2=1003,OP 2=216p 3+,AP 2=()
2
2
2
8435223p 3p 43p 333⎛⎫-+-=-+ ⎪ ⎪⎝⎭。
当∠POA=90°时,有AP 2
= OA 2
+ OP 2
,即22521001616
p 43p p p 33339
-+
=++⇒=-, ∴416
4P 3,39
3⎛⎫-
⎪⎝⎭ 。
综上所述,满足条件的点P 的坐标为122484P 3,3,P 3,33333⎛⎫⎛⎫-
⎪ ⎪⎝⎭⎝⎭ ,334
4P 3,393⎛⎫ ⎪⎝⎭ ,416
4P 3,39
3⎛⎫- ⎪⎝⎭ 。
【考点】反比例函数综合题,单动点问题,曲线上点的坐标与方程的关系,平行四边形的性质,勾股定理,直角三角形的判定,分类思想和数形结合思想的应用。
【解析】先根据曲线上点的坐标与方程的关系和平行四边形的性质求出点A ,F 的坐标,再分别根据当∠APO=90°时,在OA 的两侧各有一点P ,得出P 1,P 2;当∠PAO=90°时,求出P 3;当∠POA=90°时,求出P 4即可。
3.在中,
现有两个动点P 、Q 分
别从点A 和点B 同时出发,其中点P 以1cm/s 的速度,沿A C 向终点C 移动;点Q 以1.25cm/s 的速度沿BC 向终点C 移动。
过点P 作PE ∥BC 交AD 于点E ,连结EQ 。
设动点运动时间为x 秒。
ABC ∆,4,5,D BC CD 3cm,C Rt AC cm BC cm ∠=∠==点在上,且以=
E
D
B
C
A
Q
P B C
A
D E P
Q
A
C
B
D
E
P Q
(1)用含x 的代数式表示AE 、DE 的长度;
(2)当点Q 在BD (不包括点B 、D )上移动时,设的面积为,求与月份的函数关系式,
并写出自变量的取值范围;
(3)当为何值时,为直角三角形。
(3)分两种情况讨论: ①当
②当
综上所述,当x 为2.5秒或3.1秒时,
为直角三角形。
EDQ ∆2
()y cm y x x x EDQ ∆EQD Rt ∠=∠时,4,,EQ PC x EQ AC EDQ ADC ==-∴∆∆Q P :显然有又,EQ DQ
AC DC ∴
=4 1.252, 2.5
43x x x --==即解得 2.5x =解得 QED Rt ∠=∠时,,,CDA EDQ QED C Rt EDQ CDA ∠=∠∠=∠=∠∴∆∆Q :5(4) 1.252,,125EQ DQ x x CD DA --∴==即3.1x =解得 EDQ ∆
x
y
Q
P
O
C B
A
备用图
4.如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,,∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒).
(1)求点C的坐标及梯形ABCO的面积;
(2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围;(3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.
【答案】(1)(2)()(3)当t=1或t=2时,△OPQ为直角三角形
【解析】
试题分析:(1)作CM⊥OA于点M,知CM,由∠AOC=60°易求BM=1,求出C点坐标;由B点坐标可求BC 的长,从而梯形面积可求;
(2)用含有t的代数式分别表示△OPQ的高和底,求出△OPQ的的面积即可表示出S与运动时间t的函数关系式;
3
=
3
2≤
≤t
2
3
(4)
2
S t t
=--
43
3
G M Q P
O C B A
x
y
图(1)
D A
B C O
P
Q x
y
图(2) x
y
Q A
B
C O
P
图(3)
(2)如图1,当动点Q 运动到OC 边时,OQ=, 作QG ⊥OP ,∴∠OQG=30°,
∴,∴,
又∵OP=2t ,
∴
();
(3)根据题意得出:,
当时,Q 在BC 边上运动,延长BC 交y 轴于点D ,
此时OP=2t ,,,
∵∠POQ <∠POC=60°,
∴若△OPQ 为直角三角形,只能是∠OPQ=90°或∠OQP=90°, 若∠OPQ=90°,如图2,则∠PQD =90°,
∴四边形PQDO 为矩形,
∴OP=QD ,∴2t=3-t ,
解得t=1,
若∠OQP=90°,如图3,则OQ 2+PQ 2=PO 2
,
即, 解得:t 1=t 2=2,
当时,Q 在OC 边上运动,
若∠OQP=90°,
32≤<t 2
22224)3()33()3()3(t t t =+-++-2
22)]3(2[)3(t t PQ --+=222)3()3(t OQ -+=20≤≤t 30≤≤t 32≤≤t 2
3(4)2t t =-
-)4(23221t t S -⨯⨯=)4(23t QG -=)4(2121t OQ OG -==t -4
考点: 1.二次函数;2.直角三角形的判定.。