特征函数和矩母函数
特征函数与矩函数

根据概率分布的性质和公式,计算相应的矩函数。例如,对于离散型随机变量,可以使用概率质量函数和概率分布函 数来计算;对于连续型随机变量,可以使用概率密度函数和概率分布函数来计算。
数值法
对于一些复杂的概率分布,可以使用数值方法来近似计算矩函数。例如,蒙特卡洛方法可以用来模拟随 机变量的样本值,然后通过样本值的数学期望来近似计算矩函数。
05 特征函数与矩函数的扩展
广义特征函数与矩函数
定义
广义特征函数与矩函数是相对于经典的特征 函数与矩函数的扩展,它们在更广泛的意义 下描述了数据的统计特性。
性质
广义特征函数与矩函数具有更强的灵活性和适应性 ,能够更好地处理复杂的数据分布和异常值。
应用
在统计学、机器学习、数据分析等领域,广 义特征函数与矩函数被广泛应用于数据建模 、特征提取和异常检测。
03 特征函数与矩函数的应用
在概率论中的应用
特征函数用于描述随机变量的概率分布, 可以表示为复平面上的函数。通过计算特 征函数的导数,可以得到随机变量的各阶 矩,如均值、方差、偏度、峰度等。
特征函数还可以用于研究随机变量的 变换性质,例如,通过特征函数可以 推导出随机变量的变换规律,以及随 机变量的独立性、相关性等性质。
特征函数与矩函数
目录
• 特征函数 • 矩函数 • 特征函数与矩函数的应用 • 特征函数与矩函数的区别与联系 • 特征函数与矩函数的扩展
01 特征函数
定义与性质
定义
特征函数是概率论和统计学中的一个 概念,用于描述随机变量或随机过程 的特性。
性质
特征函数具有一些重要的性质,如实 部和虚部都是单调递减的,且实部和 虚部都是偶函数。
特征函数的性质
唯一性
概率分布与随机变量的矩与生成函数

概率分布与随机变量的矩与生成函数概率分布与随机变量是概率论与数理统计中重要的概念,它们用于描述和分析随机现象和随机事件。
在概率论和统计学中,矩和生成函数是研究随机变量分布的重要工具。
一、概率分布概率分布描述了一个随机变量在不同取值下的概率情况。
它可以表示为一个概率密度函数或概率质量函数。
对于连续型随机变量,我们使用概率密度函数来描述它的分布;对于离散型随机变量,我们使用概率质量函数。
例如,正态分布是一种常见的概率分布。
它由两个参数μ和σ决定,其中μ是均值,σ是标准差。
正态分布的概率密度函数是一个钟形曲线,对应不同取值的概率可以由曲线下的面积计算得到。
二、随机变量的矩在概率论和数理统计中,随机变量的矩是描述随机变量分布特征的统计量。
对于一个随机变量X,它的r阶矩定义为E(X^r),即X的r次幂的期望。
矩刻画了随机变量的中心位置和离散程度。
以二阶矩为例,它也被称为方差。
方差是衡量随机变量离散程度的指标,它表示随机变量取值偏离均值的程度,方差越大,说明随机变量取值更分散。
三、生成函数生成函数是一种用于表示随机变量分布的函数,它与随机变量的矩有密切的关系。
通过生成函数,我们可以方便地求得随机变量的各阶矩。
常见的生成函数包括矩母函数和特征函数。
矩母函数表示随机变量的矩与生成函数的关系,特征函数则是对应于矩的生成函数。
矩母函数可以表示为M(t)=E(e^(tX)),其中t为变量,X为随机变量。
通过对矩母函数求导,我们可以得到随机变量的各阶矩。
特征函数可以表示为φ(t)=E(e^(itX)),其中i为虚数单位,t为变量,X为随机变量。
特征函数与随机变量的概率分布是一一对应的。
四、应用举例概率分布与随机变量的矩与生成函数在概率论和数理统计的研究中有广泛的应用。
例如,在金融风险管理中,我们常常需要对金融资产的收益率进行建模和分析。
通过分析收益率的概率分布以及一阶矩和二阶矩,我们可以评估资产的风险特征并制定有效的风险管理策略。
随机过程及其在金融领域中的应用课后答案

习题二:1.证:设为X 取值为k (1k ≥)的随机变量。
且()k p p x k == 证法I (通俗证法,但不严格):111()()(1)2(2)3(3)...()...(1)(2)(3)...()...()k k k k k E x x p kp x k p x p x p x np x n p x p x p x p x n p x k ∞∞==∞======+=+=+=+=≥+≥+≥+≥+=≥∑∑∑证法II :111111()()()()()k k k i i k ii k EX kp x k p x k p x k p x i p x k ∞∞∞∞∞======∞========≥=≥∑∑∑∑∑∑∑证法III :1111111()()(()(1))()(1)(1)(1)(1)(1)()k k k k k k k E X kp x k k p X k p x k kp x k k p x k p x k p k p x k p x k ∞∞==∞∞∞===∞∞=====≥-≥+=≥-+≥++≥+==+≥+=≥∑∑∑∑∑∑∑2.解:(1)0(1)0()()()1111ax ax ax x x a a x E Y E e e f x dx e e dx e dxde a a+∞+∞+∞---∞+∞-======--⎰⎰⎰⎰3.解:边缘概率密度为:12021202,01()(,)603,01()(,)60,X Y x x f x f x y dy xy dy y y f y f x y dx xy dx +∞-∞+∞-∞<<⎧===⎨⎩⎧<<===⎨⎩⎰⎰⎰⎰其它其它因为(,)()()f x y f x f y =所以X ,Y 独立。
故cov(,)cov(,)0X Y Y X ==11223001132400222221()()2()23233()()3()34513cov(,)()(())cov(,)()(())1880E X xf x dx x dx E X x dx E Y yf y dy y dy E Y y dy X X E X E X Y Y E Y E Y +∞-∞+∞-∞===========-==-=⎰⎰⎰⎰⎰⎰ 故(,)X Y 的协方差矩阵为10cov(,)cov(,)18cov(,)cov(,)3080X X X Y Y X Y Y ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦4.解:(1)22121210,1,4,2μμσσρ=====将各参数代入二维正态分布密度函数,最终得:22211(,)324f x y x xy y ⎧⎫⎡⎤=--+⎨⎬⎢⎥⎣⎦⎩⎭(2)1cov(,)12XY X Y ρ==⇒=cov(,)()()()()1X Y E XY E X E Y E XY =-∴=当Z 与X 独立时,有()()()E ZY E Z E Y =()()()()()222()()()0,()0,()404E Z aE X E Y E Y E ZY E a XY Y aE XY E Y aE XY E Ya a ⎡⎤=+===+=+⎣⎦∴+=+=⇒=-6.解:()()()1212121211()()12121()(,)!!!!!!!kn kn nk k nnk n kk P X Y n P X k Y n k ee k n k en e n k n k n λλλλλλλλλλλλ---==-+-+-=+====-=-==+-∑∑∑()()12121212()121212!!(|)(|)()!kn kk n kk n n ee k n k P X k Y n k P X k X Y n C e P X Y n n λλλλλλλλλλλλλλ-----+-⎛⎫⎛⎫==-=+====⎪ ⎪+=++⎝⎭⎝⎭+8.解:()0()()()ux ux ux x X M u E e e f x dx e e dx u uλλλλλ+∞+∞--∞====>-⎰⎰()()()()222121()X X u u E X M u E X M u D X λλλ=='''=====13.解:由特征函数与矩母函数关系知:()11X M u u=- ()()()()201()21X X u u E X M u E X M u D X =='''∴=====14.解:1,...,n X X 均相互独立。
矩母函数

因而
Y |Xx x 1 y f fY Y||X X y y||x xd y 1/1 1- 1 -x x x 1 y d y1 2 x
Y|X 1 X/2
fY|X y|x 1/ 1-x
注意: Y|X 1 X/2是随机变量,当X x 时, 其值为
Y|X x 1 x/2
思考题:当X与Y独立时, X |Y y 的值?
定义:X的矩母函数(MGF),或Laplace变换定义为
Xt
etX
其中t在实数上变化。
etxdF Xx
若MGF是有定义的,可以证明可以交换微分操作和求期 望操作,所以有:
0 de tX
d t
t0
d e tX d t t0
X e tX t0
X
取k阶导数,可以得到 k 0
Xk 方便计算分布的矩
.
.
6
X ~ U n ifo r m 0 ,1 , Y |X ~ U n ifo r m x ,1
怎样计算 Y ? 一种方法是计算联合密度 f x , y ,然后计算
Y yf x,ydxdy
另一种更简单的方法是分两步计算
计算 Y| X =1 X
计算 Y =
2 Y|X =
1
X
1+ X
2
2
= 1+
Y |X Y Y |X Y |X Y|X Y 0 0
所以
Y Y |X Y |X
.
10
二、混合分布
在一个分布族中,分布族由一个/一些参数决定, 如 f x,| 这些参数 通常又是一个随机变量 (贝叶斯学派的观点,参数也是随机变量), 则最终的分布称为混合分布(mixture distribution)
特征函数和矩母函数概要

P ( s) pk s pk s
k k k 0 k 0
n
k n 1
p s
k
k
, n n! pn
k n 1
k (k 1)(k n 1) p s
令s 0, 则P ( n ) (0) n! pn 故pn P
k 0 l 0
P{ N l} P{Y k}s
l 0 k 0
k
l k P{N l} P X j k s l 0 k 0 j 1
k P{N l} P{ X j k}s l 0 j 1 k 0
k 0 k 0
PZ ( s) ck s k
k 0
PX ( s ) PY ( s ) pk s
k 0
k
q s
l 0 l
l
k ,l 0
p qs
k l r
k l
r pk q r k s r 0 k 0
r
c r s PZ ( s )
4. 母函数
定义:设X是非负整数值随机变量,分布律
P{X=k}=pk,k=0,1, 则称
P ( s) E ( s ) pk s
X k 0
k
为X的母函数。
性质: (1)非负整数值随机变量的分布律pk由其母 函数P(s)唯一确定 (k ) P (0) pk , k 0,1,2, k! (2)设P(s)是X的母函数, 若EX存在,则EX=P(1) 若DX存在,则DX= P(1) +P(1)- [P(1)]2
考研数学概率论重要考点总结

考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
随机变量 特征函数 矩

随机变量特征函数矩
随机变量是概率论中的重要概念,它描述了随机事件的结果。
而特征函数则是描述随机变量的重要工具之一,它可以用来确定随机变量的分布和性质。
特征函数是一个复数函数,通常表示为φ(t),其中t为实数。
对于一个随机变量X,它的特征函数φ(t)定义为:
φ(t) = E[e^(itX)]
其中E表示期望,i表示虚数单位。
特征函数在概率论中有广泛的应用,可以用来计算随机变量的矩和分布,以及求解各种概率分布的性质。
矩是描述随机变量的另一个重要工具,它表示随机变量的各阶矩值。
对于一个随机变量X,它的k阶矩定义为:
E[X^k]
其中E表示期望。
随机变量的矩可以用来描述它的分布和性质,例如均值、方差、偏度和峰度等。
特征函数和矩之间存在着紧密的联系,可以通过特征函数来计算随机变量的各阶矩。
具体来说,随机变量的k阶矩可以表示为特征函数的k阶导数在0处的值:
E[X^k] = (-i)^k φ^(k)(0)
其中φ^(k)(t)表示φ(t)的k阶导数。
这个公式可以用来计算随机变量的矩,从而求解各种概率分布的性质。
总之,随机变量、特征函数和矩是概率论中的重要概念和工具,
它们在统计学、金融学、物理学等领域有广泛的应用。
深入理解这些概念和工具,对于掌握概率论和统计学的基本原理和方法,以及解决实际问题都具有重要意义。
概率统计:矩母函数

矩母函数与特征函数在计算随机变量的数字特征和概率分 布起很大的作用,它们使许多繁难的问题得到简化和解决,是证 明概率论中的许多理论问题的有力的工具.
定义 5.1 设 X 为随机变量,I 是一个包含0的(有限或无限的)
开区间,对任意t I ,期望EetX 存在,则称函数
M X (t) E(etX )
5
矩母函数(5)
3) 设U ,V 独立,U ~ B(m, p),V ~ B(n, p),W U V .则 MU (t) ( pet q)m , MV (t) ( pet q)n,
MW (t) MU (t)MV (t) ( pet q)m ( pet q)n ( pet q)mn. 故W ~ B(m n, p).
6
例 5.2 设 X ~ ( , ),则
矩母函数(6)
1) M X (t)
etx x 1e xdx 0 ( )
x 1e( t)xdx. 0 ( )
xu /( t)
(
t) ( )
0
u
1eu
du
t
a
.
2)
M
X
(t)
t
a1,
M
X
(t
)
(
2
1)
t
a2
2
2) M X (t) tet2 / 2, M X (t) t 2et2 / 2 et2 / 2 ,
EX M X (0) 0, EX 2 M X (0) 1, DX EX 2 (EX )2 1.
9
矩母函数(9)
3) M X (t) et2 / 2
(t2 / 2)k k0 k !
MY (t) et M X (t). 证 MY (t) EetY Eet( X ) et Ee(t ) X et M X (t).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 母函数
定义:设X是非负整数值随机变量,分布律
P{X=k}=pk,k=0,1, 则称
P ( s) E ( s ) pk s
X k 0
k
为X的母函数。
性质: (1)非负整数值随机变量的分布律pk由其母 函数P(s)唯一确定 (k ) P (0) pk , k 0,1,2, k! (2)设P(s)是X的母函数, 若EX存在,则EX=P(1) 若DX存在,则DX= P(1) +P(1)- [P(1)]2
t 0
npq n 2 p 2
DX EX EX npq
2 2
例4:设X~N(0,1),求X的特征函数。 x 解: 1 itx
2
g (t )
2
e e
2
dx
1 g (t ) 2
ixe e
x2 itx 2
i dx 2
e d e
l
P{N l} P ( s )
l 0 j 1
l
P{N l}[ P ( s )]l G ( P ( s ))
l 0
dG( P ( s )) EY H (1) ds
s 1
dG dP G ( P (1)) P (1) dP ds s 1 G (1) P (1) EN EX1 (注P (1) 1)
矩母函数和特征函数
一、矩母函数
tX
1.定义
称
e
的数学期望
(t ) E[e ]
tX
为随机变量X的矩母函数。
2.原点 矩的求法 利用矩母函数可求得X的各阶矩,即对
(t )逐次求导,并计算在 t 0
值:
点的
n tX
(t ) E[ XetX ]
(n )
(t ) E[ X e ]
(4) (t )是非负定函数。 (5)若X1, X2, , Xn是相互独立的随机变量, 则X=X1+X2++Xn的特征函数为 (t ) 1 (t )2 (t )n (t )
(6)随机变量的分布函数与特征函数是一一对 应且相互唯一确定。
如果随机变量X为连续型,且其特征函 数绝对可积,则有反演公式:
二、特征函数
1 .特征函数 设X为随机变量,称复随机变量 e itX 的数学期望
X (t ) E[e
itX
]
为X的特征函数,其中t是实数。
X (t ) X (it )
还可写成
ei cos i sin
欧拉公式:
X (t ) E[cos tX ] iE[sin tX ]
PX ( s ) pk s , PY ( s ) qk s
k k 0 k 0 k
PZ ( s ) c k s k
k 0
PX ( s ) PY ( s ) pk s
k 0
k
q s
l 0 l
l
k ,l 0
p qs
k l r
k l
r pk q r k s r 0 k 0
(3)独立随机变量之和的母函数等于母函数 之积。 (4)若X1,X2,是相互独立同分布的非负整 数值随机变量,N是与X1,X2,独立的非 负整数值随机变量,则 Y N X
k 1
k
的母函数H(s)=G(P(s)) , EY=ENEX1 其中G(s),P(s)分别是N, X1的母函数。
证明:(1)
k
P{Y k}P{ N l}s k
k 0 l 0
P{ N l} P{Y k}s
l 0 k 0
k
l k P{N l} P X j k s l 0 k 0 j 1
k P{N l} P{ X j k}s l 0 j 1 k 0
itx
x2 2
i e 2
x2 itx 2
t 2
e e
x2 itx 2
dx tg (t ),
dg 1 2 g '(t ) tg (t ) 0, tdt , ln g (t ) t C g 2
g (t ) e
1 f ( x) 2
e (t )dt
itx
(相差一个负号的傅立叶逆变换)
(t ) eitx f ( x)dx
(相差一个负号的傅立叶变换)
例1 设随机变量X服从参数为 的泊松分布,
求X的特征函数。 解 由于 所以
k P(X k) e k! k e itk e X (t )
1 t 2 C 2
,由g (0) 1, 得C 0,从而g (t ) e
1 t2 2
例5 :设随机变量X的特征函数为gX(t) , Y=aX+b,其中a, b为任意实数,证明Y的 gY (t ) e itb g X (at) 。 特征函数gY(t)为
eit ( aX b ) 证:gY (t ) E ei ( at ) X eitb eitb E ei ( at ) X E
(3) 设离散型非负整数随机变量X,Y的分布律
分别为P{X=k}=pk,P{Y=k}=qk,k=0,1, , 则Z=X+Y的分布律为P{Z=k}=ck,其中 ck= p0 qk +p1qk-1 + + pk q0 设X,Y,Z的母函数分别为PX(s), PY(s), PZ(s),即有
e e it (b a )
itb ita
例3:设X服从二项分布B(n, p),求X的特 征函数g(t)及EX、EX2、DX。 k 解: X的分布律为P(X=k)= C n p k q nk , q=1-p,k=0,1,2,,n
g (t ) e C p q
itk k 0 k n k n nk
k 2
P (1) k (k 1) pk k (k 1) pk
k 2 k 1
k 2 pk kpk EX 2 EX
k 1 k 1
DX EX 2 ( EX ) 2 P (1) EX ( EX ) 2 P (1) P (1) [ P (1)]2
e
( s 1)
1 p
q 2 p
pe it 1 qe it
ps 1 qs
分布
均匀分布
期望
ab 2
方差
特征函数 矩母函数
e ibt e iat i (b a ) t e bt e at (b a ) t
b a 2
12
N ( , )
2
1
1
2
e
i t 1 2 t 2 2
(t ) (t1 , t2 , , tn ) Ee
itX
n E exp i tk X k k 1
性质: (1) (0) 1, (t ) 1, (t ) (t ) 。 (2) (t )在(-, )上一致连续。 (3)若随机变量X的n阶矩EXn存在,则 (k ) k k (0) i EX , k n 当k=1时,EX = (1) (0) / i ; (2) (0) ( (1) (0) / i)2 。 当k=2时,DX =
P ( s ) pk s pk s
k k k 0 k 0
n
k n 1
p s
k
k
, n 0,1,
k n
P
( n)
( s ) n! pn
( n)
k n 1
k (k 1) (k n 1) p s
k
令s 0, 则P
(0) n! pn
P ( n ) ( 0) 故 pn ,n 0,1, n!
(2)
P ( s ) pk s k , P ( s ) kpk s k 1
k 0 k 1
E ( X ) kpk P (1)
k 1
P ( s ) k (k 1) pk s k 1
k 0
k!
k
e
k 0
(e ) k!
it
麦克劳林公式
e e
eit
e
( e it 1)
例2 设随机变量X服从[a,b]上的均匀分布,求X的 特征函数。
解
X的概率密度为
1 b a f ( x) 0
b itx
a xb
其它
所以
1 X (t ) e dx a ba
e g X (at )
itb
例6:设随机变量Y~N( , 2) ,求Y的特征 函数为gY(t)。 t2 解:X~N(0 , 1) ,X的特征函数为 g X (t ) e 2 设Y= X + ,则Y~N( , 2) , Y的特征函数为
gY (t ) eit g X ( t )
(n )
(0) E[ X ]
n
3.和的矩母函数 定理1
矩母函数分别为 1 (t ) , 2 (t ) ,…, r (t ) ,
Y X 1 X 2 X r 的矩母函数为
设相互独立的随机变量 X 1,X 2, ,X r 的