特征函数和矩母函数概要
特征函数与矩函数

根据概率分布的性质和公式,计算相应的矩函数。例如,对于离散型随机变量,可以使用概率质量函数和概率分布函 数来计算;对于连续型随机变量,可以使用概率密度函数和概率分布函数来计算。
数值法
对于一些复杂的概率分布,可以使用数值方法来近似计算矩函数。例如,蒙特卡洛方法可以用来模拟随 机变量的样本值,然后通过样本值的数学期望来近似计算矩函数。
05 特征函数与矩函数的扩展
广义特征函数与矩函数
定义
广义特征函数与矩函数是相对于经典的特征 函数与矩函数的扩展,它们在更广泛的意义 下描述了数据的统计特性。
性质
广义特征函数与矩函数具有更强的灵活性和适应性 ,能够更好地处理复杂的数据分布和异常值。
应用
在统计学、机器学习、数据分析等领域,广 义特征函数与矩函数被广泛应用于数据建模 、特征提取和异常检测。
03 特征函数与矩函数的应用
在概率论中的应用
特征函数用于描述随机变量的概率分布, 可以表示为复平面上的函数。通过计算特 征函数的导数,可以得到随机变量的各阶 矩,如均值、方差、偏度、峰度等。
特征函数还可以用于研究随机变量的 变换性质,例如,通过特征函数可以 推导出随机变量的变换规律,以及随 机变量的独立性、相关性等性质。
特征函数与矩函数
目录
• 特征函数 • 矩函数 • 特征函数与矩函数的应用 • 特征函数与矩函数的区别与联系 • 特征函数与矩函数的扩展
01 特征函数
定义与性质
定义
特征函数是概率论和统计学中的一个 概念,用于描述随机变量或随机过程 的特性。
性质
特征函数具有一些重要的性质,如实 部和虚部都是单调递减的,且实部和 虚部都是偶函数。
特征函数的性质
唯一性
概率论上的母函数

概率论上的母函数(gen erati ng fucnction)定义:假设随机变量E取非负整数值,且相应的分布列为:(0,1, 2)(P o, P i, P2)那么P k*s k( k从0到无穷)的和为s的函数,此函数称为的母函数。
特征函数(概率论)在概率论中,任何随机变量的特征函数完全定义了它的概率分布。
在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量:®x(t) = E(e itX)其中t是一个实数,i是虚数单位,E表示期望值。
用矩母函数M x(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X在虚数轴上求得的矩母函数。
「x(t)二M ix (t)二M x(it)与矩母函数不同,特征函数总是存在。
如果F x是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出:E (e itx)= ::e itx dF x(x)在概率密度函数f x存在的情况下,该公式就变为:E (e itx) = . : e itx f x (x)dx如果X是一个向量值随机变量,我们便取自变量t为向量,tx为数量积。
R或R n上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。
一个对称概率密度函数的特征函数(也就是满足f x(x) = f x(-x))是实数,因为从x>0所获得的虚数局部与从x<0所获得的相互抵消。
连续性勒维连续定理勒维连续定理说明,假设(X n)n」"为一个随机变量序列,其中每一个X n都有特征函数-:n,那么它依分布收敛于某个随机变量X :Xn ° > X当n —如果件一巴in^is j cp 当n Too且④(t)在t=0处连续,9是X的特征函数。
莱维连续定理可以用来证明弱大数定律。
反演定理在累积概率分布函数与特征函数之间存在双射。
也就是说,两个不同的概率分布不能有相同的特征函数。
1-4特征函数和母函数

k =1 n
n
k =1
Ex.7 随机变量Y~B(n, p),写出其特征函数 写出其特征函数. 随机变量 ~ 写出其特征函数 二项分布随机变量Y可表示为 解 二项分布随机变量 可表示为Y = ∑ X k ,且 且 Xk~B(1, p),k=1,2,…,n, 相互独立,故Y 的特征 相互独立, , 函数为 n
g(t1 , t2 ) = E[e
i ( t1 X + t 2Y )
]= ∫
∞
∞ ∞
∫
∞
ei (t1 x+t2 y )dF( x, y)
连续型 离散型
g(t1 , t 2 ) = ∫
∞
∞ ∞
∫
∞
e i (t1 x + t2 y ) f ( x, y)dxdy
i ( t1 X r + t 2YsS )
特征函数、 §1.4 特征函数、母函数
一、特征函数的定义及例子 是实随机变量, 定义 设X,Y是实随机变量,复随机变量 是实随机变量 Z=X+i Y, , 的数学期望定义为 E ( Z ) = E ( X ) + i E (Y ), i = 1 特别 X是实随 是实随 itX Ee = E (costX ) + i E (sintX ) 机变量
g ( t ) = ∫ e itx f ( x )dx;
∞
+∞
g ( t ) = ∑ e itxk pk .
k
Ex.1 单点分布 P{X = c} = 1,
g( t ) = E (e itc ) = e itc , t ∈ R.
Ex.2 两点分布
g( t ) = e (1 p) + e
矩母函数

因而
Y |Xx x 1 y f fY Y||X X y y||x xd y 1/1 1- 1 -x x x 1 y d y1 2 x
Y|X 1 X/2
fY|X y|x 1/ 1-x
注意: Y|X 1 X/2是随机变量,当X x 时, 其值为
Y|X x 1 x/2
思考题:当X与Y独立时, X |Y y 的值?
定义:X的矩母函数(MGF),或Laplace变换定义为
Xt
etX
其中t在实数上变化。
etxdF Xx
若MGF是有定义的,可以证明可以交换微分操作和求期 望操作,所以有:
0 de tX
d t
t0
d e tX d t t0
X e tX t0
X
取k阶导数,可以得到 k 0
Xk 方便计算分布的矩
.
.
6
X ~ U n ifo r m 0 ,1 , Y |X ~ U n ifo r m x ,1
怎样计算 Y ? 一种方法是计算联合密度 f x , y ,然后计算
Y yf x,ydxdy
另一种更简单的方法是分两步计算
计算 Y| X =1 X
计算 Y =
2 Y|X =
1
X
1+ X
2
2
= 1+
Y |X Y Y |X Y |X Y|X Y 0 0
所以
Y Y |X Y |X
.
10
二、混合分布
在一个分布族中,分布族由一个/一些参数决定, 如 f x,| 这些参数 通常又是一个随机变量 (贝叶斯学派的观点,参数也是随机变量), 则最终的分布称为混合分布(mixture distribution)
附录:母函数和特征函数简介简介

§1 母函数(生成函数)简介对于取值非负整数的随机变量,其母函数有极其良好的性质且又便于计算和分析,因此引入母函数是非常必要的。
母函数又称生成函数(Generating function)。
母函数的定义● 定义:对于数列}0,{≥n a n ,称幂级数)1(0≤∑∞=s s a n n n为}0,{≥n a n 的母函数。
● 定义:设X 为取值于非负整数随机变量,分布率为 ,2,1,0,}{===k p x X P k k ,则称1)(ˆ)(0≤==∑∞=s s p s E s g k k k X为随机变量X 的概率母函数,简称母函数。
一些常用分布的母函数(1) 若).(~p n B X ,则n sp q s g )()(+=(2) 若)(~λPo X ,则)1()(-=s e s g λ(3) 若)(~p G X ,则qsps s g -=1)(母函数的基本性质(1)X 的母函数与其分布率是一一对应的,且有!)0()(k g p k k = (2)设非负整值随机变量n X X X ,,,21 相互独立,而n g g g ,,,21 分别是它们的母函数,则∑==n k k XY 1的母函数为:)()()()(21s g s g s g s g n Y =(3)设随机变量X 的母函数为)(s g ,则有:(a ))1()(g X E '=(b )2)]1([)1()1()()(g g g X Var X D '-'+''==母函数的应用(4) 设n X X X ,,,21 独立同分布,且).1(~p B X i ,求∑==n k k XY 1的分布。
(5) 设21,X X 独立,且2,1,).(~=i p n B X i i ,证明),(~2121p n n B X X ++。
(6) 设21,X X 独立,且2,1,)(~=i Po X i i λ,证明)(~2121λλ++Po X X 。
北大随机过程课件:第 3 章 第 6 讲 特征函数与母函数

特征函数、母函数、矩母函数确定随机变量的概率密度函数/分布律 方便求解独立随机变量和的分布函数一类问题可以通过微分运算求随机变量的数字特征1.特征函数:设随机变量ξ的分布函数为F(x), 概率密度函数为f(x), 称:(){}()()jt jtx jtx t E e e dF x e f x dx ξ∞∞−∞−∞Φ===∫∫ 为随机变量ξ的分布函数的特征函数,或ξ的特征函数,特征函数是概率密度函数的付氏变换。
特征函数的性质:1.特征函数与概率密度函数相互唯一地确定;2.两个相互统计独立的随机变量和的特征函数等于各个随机变量特征函数的积;3.特征函数与随机变量的数字特征的关系:()0()|{}k k k t t j E ξ=Φ=典型随机变量的特征函数1. 两点分布的特征函数:()jt t q pe Φ=+2. 二项式分布的特征函数:()()n jt t q pe Φ=+3. 几何分布:()1jtjtpe t qe Φ=− 4. 泊松分布(λ):(1)()jt e t eλ−−Φ= 5. 正态分布2(,)N σ∂:22()exp{}2t t j t σΦ=∂−6. 均匀分布[0,1]:1()jt e t jt−Φ= 7. 负指数分布:()t jtλλΦ=−2.母函数研究分析非负整值随机变量时,可以采用母函数法:对于一个取非负整数值n=0,1,2,……,的随机变量x ,,其相应的矩生成函数定义为: 0()()n n z p x n z ∞=Φ==⋅∑(1/)z Φ是序列()p x n =的正常的z 变换母函数的性质:1. 两个相互统计独立的随机变量和的母函数等于各个随机变量的母函数的积。
2. 随机个独立同分布的非负整值随机变量和的矩生成函数是原来两个母函数的复合(见附合泊松过程的应用)3.()000(),()!1,2,k k z z z p z k p k ==Φ=Φ=="通过母函数有理分式的幂级数展开等方法,得到随机变量的概率分布表达式。
考研数学概率论重要考点总结

考研数学概率论重要考点总结概率论是考研数学中的重要考点之一。
下面是概率论中的一些重要考点总结。
一、概率基本概念1. 随机试验与样本空间2. 事件与事件的关系3. 概率的定义、性质和运算法则4. 条件概率及其性质二、随机变量与概率分布1. 随机变量的概念及其分类2. 离散型随机变量与连续型随机变量3. 随机变量的分布函数和密度函数4. 两个随机变量的独立性5. 随机变量的函数及其分布三、数学期望与方差1. 数学期望的概念及其性质2. 数学期望的计算3. 方差的概念及其性质4. 方差的计算5. 协方差和相关系数四、大数定律与中心极限定理1. 大数定律的概念及其性质2. 切比雪夫不等式3. 中心极限定理的概念及其性质4. 泊松定理5. 极限定理的应用五、随机变量的常见分布1. 二项分布、泊松分布2. 均匀分布、指数分布3. 正态分布4. 伽马分布、贝塔分布5. t分布、F分布、卡方分布六、矩母函数与特征函数1. 矩母函数的概念及性质2. 矩母函数的计算3. 特征函数的概念及性质4. 特征函数的计算5. 中心极限定理的特征函数证明七、样本与抽样分布1. 随机样本的概念及其性质2. 样本统计量的概念及其性质3. 样本均值和样本方差4. 正态总体抽样分布5. t分布,x^2分布,F分布的定义及其应用八、参数估计与假设检验1. 点估计的概念及性质2. 极大似然估计3. 置信区间的概念及计算4. 参数假设检验的概念及流程5. 正态总体均值的假设检验九、回归与方差分析1. 回归分析的概念及方法2. 多元回归模型、回归模型的检验3. 方差分析的概念及方法4. 单因素方差分析、双因素方差分析以上是概率论中的一些重要考点总结。
在备考过程中,需要对这些知识点有一定的掌握,并进行大量的练习和习题训练,只有充分理解和掌握这些知识,并能运用到实际问题中,才能在考试中取得好成绩。
概率统计:矩母函数

矩母函数与特征函数在计算随机变量的数字特征和概率分 布起很大的作用,它们使许多繁难的问题得到简化和解决,是证 明概率论中的许多理论问题的有力的工具.
定义 5.1 设 X 为随机变量,I 是一个包含0的(有限或无限的)
开区间,对任意t I ,期望EetX 存在,则称函数
M X (t) E(etX )
5
矩母函数(5)
3) 设U ,V 独立,U ~ B(m, p),V ~ B(n, p),W U V .则 MU (t) ( pet q)m , MV (t) ( pet q)n,
MW (t) MU (t)MV (t) ( pet q)m ( pet q)n ( pet q)mn. 故W ~ B(m n, p).
6
例 5.2 设 X ~ ( , ),则
矩母函数(6)
1) M X (t)
etx x 1e xdx 0 ( )
x 1e( t)xdx. 0 ( )
xu /( t)
(
t) ( )
0
u
1eu
du
t
a
.
2)
M
X
(t)
t
a1,
M
X
(t
)
(
2
1)
t
a2
2
2) M X (t) tet2 / 2, M X (t) t 2et2 / 2 et2 / 2 ,
EX M X (0) 0, EX 2 M X (0) 1, DX EX 2 (EX )2 1.
9
矩母函数(9)
3) M X (t) et2 / 2
(t2 / 2)k k0 k !
MY (t) et M X (t). 证 MY (t) EetY Eet( X ) et Ee(t ) X et M X (t).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P ( s) pk s pk s
k k k 0 k 0
n
k n 1
p s
k
k
, n n! pn
k n 1
k (k 1)(k n 1) p s
令s 0, 则P ( n ) (0) n! pn 故pn P
k 0 l 0
P{ N l} P{Y k}s
l 0 k 0
k
l k P{N l} P X j k s l 0 k 0 j 1
k P{N l} P{ X j k}s l 0 j 1 k 0
k 0 k 0
PZ ( s) ck s k
k 0
PX ( s ) PY ( s ) pk s
k 0
k
q s
l 0 l
l
k ,l 0
p qs
k l r
k l
r pk q r k s r 0 k 0
r
c r s PZ ( s )
4. 母函数
定义:设X是非负整数值随机变量,分布律
P{X=k}=pk,k=0,1, 则称
P ( s) E ( s ) pk s
X k 0
k
为X的母函数。
性质: (1)非负整数值随机变量的分布律pk由其母 函数P(s)唯一确定 (k ) P (0) pk , k 0,1,2, k! (2)设P(s)是X的母函数, 若EX存在,则EX=P(1) 若DX存在,则DX= P(1) +P(1)- [P(1)]2
( n)
(0) ,n 0,1, n!
(2)
P ( s ) pk s k , P ( s ) kpk s k 1
k 0 k 1
E ( X ) kpk P (1)
k 1
P ( s ) k (k 1) pk s k 1
k 2
(n) (0) E[ X n ]
3.和的矩母函数 定理1
r (t ) , 2 (t ) ,…, 矩母函数分别为 1 (t ) ,
Y X 1 X 2 X r 的矩母函数为
,X r 的 设相互独立的随机变量 X 1,X 2,
则其和
Y (t ) 1 (t ) 2 (t ) … r (t )
分布律为P(X=xk)=pk(k=1,2,)的离散 型随机变量X,特征函数为
(t ) eitx pk
k
k 1
概率密度为f(x)的连续型随机变量X,特征 函数为 (t ) eitx f ( x)dx 对于n维随机向量X=(X1, X2, , Xn),特 征函数为
矩母函数和特征函数
一、矩母函数
1.定义
称
e
tX
的数学期望
(t ) E[e ]
tX
为随机变量X的矩母函数。
2.原点 矩的求法 利用矩母函数可求得X的各阶矩,即对
(t )逐次求导,并计算在 t 0
值:
tX (t ) E[ Xe ]
(n )
点的
n tX
(t ) E[ X e ]
r 0
(4) H ( s ) P{Y k}s k
k 0 k P Y k , { N l} s k 0 l 0
P{Y k , N l}s
k 0 l 0
k
P{Y k}P{ N l}s k
(3) 设离散型非负整数随机变量X,Y的分布律
分别为P{X=k}=pk,P{Y=k}=qk,k=0,1, , 则Z=X+Y的分布律为P{Z=k}=ck,其中 ck= p0 qk +p1qk-1 + + pk q0 设X,Y,Z的母函数分别为PX(s), PY(s), PZ(s),即有 k k PX ( s) pk s , PY ( s) qk s
二、特征函数
1 .特征函数 设X为随机变量,称复随机变量 e itX 的数学期望
X (t ) E[e
itX
]
为X的特征函数,其中t是实数。
X (t) X (it )
还可写成
ei cos i sin
欧拉公式:
X (t ) E[costX ] iE[sin tX ]
P (1) k (k 1) pk k (k 1) pk
k 2 k 1
k pk kpk EX 2 EX
2 k 1 k 1
DX EX 2 ( EX ) 2 P (1) EX ( EX ) 2 P (1) P (1) [ P (1)]2
(t ) (t1 , t2 ,, tn ) Ee
itX
n E exp i tk X k k 1
性质: (1) (0) 1, (t ) 1, (t ) (t ) 。 (2) (t ) 在(-, )上一致连续。 (3)若随机变量X的n阶矩EXn存在,则 (k ) k k (0) i EX , k n 当k=1时,EX = (1) (0) / i ; (2) (1) 2 当k=2时,DX = (0) ( (0) / i) 。
(3)独立随机变量之和的母函数等于母函数 之积。 (4)若X1,X2,是相互独立同分布的非负整 数值随机变量,N是与X1,X2,独立的非 负整数值随机变量,则 Y N X
k 1
k
的母函数H(s)=G(P(s)) , EY=ENEX1 其中G(s),P(s)分别是N, X1的母函数。
证明:(1)
l
P{N l} P( s )
l 0 j 1
l
P{N l}[ P( s )]l G ( P( s))
l 0
dG( P ( s )) EY H (1) ds s 1 dG dP G ( P (1)) P (1) dP ds s 1 G (1) P (1) EN EX 1 (注P (1) 1)