1-4特征函数和母函数
概率论上的母函数

概率论上的母函数(gen erati ng fucnction)定义:假设随机变量E取非负整数值,且相应的分布列为:(0,1, 2)(P o, P i, P2)那么P k*s k( k从0到无穷)的和为s的函数,此函数称为的母函数。
特征函数(概率论)在概率论中,任何随机变量的特征函数完全定义了它的概率分布。
在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量:®x(t) = E(e itX)其中t是一个实数,i是虚数单位,E表示期望值。
用矩母函数M x(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X在虚数轴上求得的矩母函数。
「x(t)二M ix (t)二M x(it)与矩母函数不同,特征函数总是存在。
如果F x是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出:E (e itx)= ::e itx dF x(x)在概率密度函数f x存在的情况下,该公式就变为:E (e itx) = . : e itx f x (x)dx如果X是一个向量值随机变量,我们便取自变量t为向量,tx为数量积。
R或R n上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。
一个对称概率密度函数的特征函数(也就是满足f x(x) = f x(-x))是实数,因为从x>0所获得的虚数局部与从x<0所获得的相互抵消。
连续性勒维连续定理勒维连续定理说明,假设(X n)n」"为一个随机变量序列,其中每一个X n都有特征函数-:n,那么它依分布收敛于某个随机变量X :Xn ° > X当n —如果件一巴in^is j cp 当n Too且④(t)在t=0处连续,9是X的特征函数。
莱维连续定理可以用来证明弱大数定律。
反演定理在累积概率分布函数与特征函数之间存在双射。
也就是说,两个不同的概率分布不能有相同的特征函数。
母函数的概念和使用

母函数的概念和使用
母函数是组合数学中的一种重要工具,用于描述序列的生成函数。
它可以将序列转化为形式简单的多项式,从而方便地进行计算和推导。
形式上,对于序列$\{a_n\}$,它的母函数可以定义为:
$A(x)=\sum_{n=0}^{\infty}a_nx^n=a_0+a_1x+a_2x^2+...$
母函数$A(x)$通常被视为$x$的函数,可以进行各种计算操作,比如加法、乘法、求导等。
母函数的使用有以下几个方面:
1. 求序列的常用操作:对于给定的序列,可以通过母函数求导、乘法、加法等操作得到新的序列。
例如,序列的微分对应于母函数的求导,序列的乘法对应于母函数的乘法,序列的加法对应于母函数的加法。
2. 求序列的递推关系:通过构造序列的母函数,可以得到序列的递推关系。
递推关系描述了序列相邻项之间的关系,是解决组合计数问题的关键。
通过求解递推关系,可以得到序列的通项公式,从而得到更深入的结论。
3. 求序列的生成函数:母函数可以将序列转化为一个形式简单的多项式。
通过对母函数进行逆变换,可以得到序列的生成函数,从而用多项式的形式来表示序列。
生成函数是分析序列性
质的一种强有力的工具,可以进行各种计算和推导。
母函数在组合计数、离散数学和概率等领域中具有广泛的应用,可以解决各种组合计数问题,如排列组合、图论、走迷宫等问题。
同时,母函数也是解决一些难题的关键,在一些具有复杂递推关系的序列中起到了重要作用。
特征函数和矩母函数概要

P ( s) pk s pk s
k k k 0 k 0
n
k n 1
p s
k
k
, n n! pn
k n 1
k (k 1)(k n 1) p s
令s 0, 则P ( n ) (0) n! pn 故pn P
k 0 l 0
P{ N l} P{Y k}s
l 0 k 0
k
l k P{N l} P X j k s l 0 k 0 j 1
k P{N l} P{ X j k}s l 0 j 1 k 0
k 0 k 0
PZ ( s) ck s k
k 0
PX ( s ) PY ( s ) pk s
k 0
k
q s
l 0 l
l
k ,l 0
p qs
k l r
k l
r pk q r k s r 0 k 0
r
c r s PZ ( s )
4. 母函数
定义:设X是非负整数值随机变量,分布律
P{X=k}=pk,k=0,1, 则称
P ( s) E ( s ) pk s
X k 0
k
为X的母函数。
性质: (1)非负整数值随机变量的分布律pk由其母 函数P(s)唯一确定 (k ) P (0) pk , k 0,1,2, k! (2)设P(s)是X的母函数, 若EX存在,则EX=P(1) 若DX存在,则DX= P(1) +P(1)- [P(1)]2
北大随机过程课件:第 3 章 第 6 讲 特征函数与母函数

特征函数、母函数、矩母函数确定随机变量的概率密度函数/分布律 方便求解独立随机变量和的分布函数一类问题可以通过微分运算求随机变量的数字特征1.特征函数:设随机变量ξ的分布函数为F(x), 概率密度函数为f(x), 称:(){}()()jt jtx jtx t E e e dF x e f x dx ξ∞∞−∞−∞Φ===∫∫ 为随机变量ξ的分布函数的特征函数,或ξ的特征函数,特征函数是概率密度函数的付氏变换。
特征函数的性质:1.特征函数与概率密度函数相互唯一地确定;2.两个相互统计独立的随机变量和的特征函数等于各个随机变量特征函数的积;3.特征函数与随机变量的数字特征的关系:()0()|{}k k k t t j E ξ=Φ=典型随机变量的特征函数1. 两点分布的特征函数:()jt t q pe Φ=+2. 二项式分布的特征函数:()()n jt t q pe Φ=+3. 几何分布:()1jtjtpe t qe Φ=− 4. 泊松分布(λ):(1)()jt e t eλ−−Φ= 5. 正态分布2(,)N σ∂:22()exp{}2t t j t σΦ=∂−6. 均匀分布[0,1]:1()jt e t jt−Φ= 7. 负指数分布:()t jtλλΦ=−2.母函数研究分析非负整值随机变量时,可以采用母函数法:对于一个取非负整数值n=0,1,2,……,的随机变量x ,,其相应的矩生成函数定义为: 0()()n n z p x n z ∞=Φ==⋅∑(1/)z Φ是序列()p x n =的正常的z 变换母函数的性质:1. 两个相互统计独立的随机变量和的母函数等于各个随机变量的母函数的积。
2. 随机个独立同分布的非负整值随机变量和的矩生成函数是原来两个母函数的复合(见附合泊松过程的应用)3.()000(),()!1,2,k k z z z p z k p k ==Φ=Φ=="通过母函数有理分式的幂级数展开等方法,得到随机变量的概率分布表达式。
1.4.11.4特征函数的定义

,
i
则
MY
t
M n
i1 Xi
ait
20 X
X1,, X n 为n维实值随机向量,
t
M
t
t1,, E
tn e(
Rn,X的 矩 E X1t1 X ntn )
母 e
函数
X ,t
定
义
为
,
X
30 矩母函数与分布函数也是一一对应关系 .
13
E e i X ,t
n维实值随机向量的特征函数为n元函数.
10
矩母函数
概率空间,F , P 上实值随机变量X ,密度函数 为p x,t R,矩母函数定义为
MX t
E etX
etx p x dx
t 2 x2
1
tx
2!
t n xn
n!
p
x
dx
1 tEX t 2 E X 2 t n E X n
50 X t 一致连续.
0,
X t h X t eitx eihx 1 p x dx
a
e ihx 1 p x dx e ihx 1 p x dx 2 p x dx
a
x a
1) 取 a 充 分 大 ,使 得 2 p x dx
2) x a , 取 h x a
目录
条件期望 特征函数
1
目录
1.4 特征函数的定义
从傅里叶变换到特征函数,再到矩母函数
2
特征函数前传
一 、卷积
如果随机变量X 与Y 相互独立,则它们的和 Z X Y的密度函数等于X 与Y 密度函数的 卷积:
fZ z f X x * fY y
f Z z f X x fY z x dx
多项分布的数学期望、协方差阵、特征函数及母函数

多项分布的数学期望、协方差阵、特征函数及母函数多项分布的数学期望、协方差阵、特征函数及母函数 1一、定义与性质设 X 为随机变量, I 是一个包含 0 的 ( 有限或无限的 ) 开区间,对任意t ∈ I ,期望 E e t x 存在设X为随机变量,I是一个包含0的(有限或无限的)开区间,对任意t∈I,期望Ee^{tx}存在设X为随机变量,I是一个包含0的(有限或无限的)开区间,对任意t∈I,期望Eetx存在则称函数M X ( t ) = E ( e t X ) = ∫ − ∞ + ∞ e t x d F ( x ) , t ∈ I 为 X 的矩母函数则称函数M_{X}(t)=E(e^{tX})=\int_{-\infin}^{+\infin}e^{tx}dF(x),t∈I为X的矩母函数则称函数MX(t)=E(etX)=∫−∞+∞etxdF(x),t∈I为X的矩母函数设 X 为任意随机变量,称函数φ X ( t ) = E ( e i t X ) = ∫ − ∞ + ∞ e i t x d F ( x ) 为 X 的特征函数设X为任意随机变量,称函数\varphi_{X}(t)=E(e^{itX})=\int_{-\infin}^{+\infin}e^{itx}dF(x)为X的特征函数设X为任意随机变量,称函数φX(t)=E(eitX)=∫−∞+∞eitxdF(x)为X 的特征函数一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
一个随机变量的矩母函数不一定存在,但是特征函数一定存在。
随机变量与特征函数存在一一对应的关系随机变量与特征函数存在一一对应的关系随机变量与特征函数存在一一对应的关系二、离散型随机变量的分布0、退化分布(Degenerate distribution)若 X 服从参数为 a 的退化分布,那么 f ( k ;a ) = { 1 , k = a 0 , k ≠ a 若X服从参数为a的退化分布,那么f(k;a)=\left\{\begin{matrix} 1,k=a \\ 0,k\neq a \end{matrix}\right. 若X服从参数为a的退化分布,那么f(k;a)={1,k=a0,k=a M ( t ) = e t a M(t)=e^{ta}M(t)=eta φ ( t ) = e i t a \varphi(t)=e^{ita}φ(t)=eita M ′ ( t ) = a e t a M'(t)=ae^{ta}M′(t)=aeta E X = M ′ ( 0 ) = a EX=M'(0)=aEX=M′(0)=a M ′ ′ ( t ) = a 2 e t a M''(t)=a^2e^{ta} M′′(t)=a2eta E X 2 = M ′ ′ ( 0 ) = a 2EX^2=M''(0)=a^2 EX2=M′′(0)=a2 D X = E X 2 − ( E X ) 2 = 0 DX=EX^2-(EX)^2=0 DX=EX2−(EX)2=01、离散型均匀分布(Discrete uniform distribution)若 X 服从离散型均匀分布 D U ( a , b ) , 则 X 分布函数为 F ( k ; a , b ) = ⌊ k ⌋− a + 1 b −a + 1 若X服从离散型均匀分布DU(a,b) ,则X分布函数为F(k;a,b)=\frac{\lfloor k\rfloor -a+1}{b-a+1} 若X服从离散型均匀分布DU(a,b),则X分布函数为F(k;a,b)=b−a+1⌊k⌋−a+1 则矩母函数M ( t ) = ∑ k = a b e t k P ( x = k ) 则矩母函数M(t)=\sum_{k=a}^{b} e^{tk}P(x=k) 则矩母函数M(t)=k=a∑betkP(x=k) = ( ∑ k = a b e t k ) 1 b − a + 1 =(\sum_{k=a}^{b} e^{tk})\frac{1}{b-a+1} =(k=a∑b etk)b−a+11 = e a t − e ( b + 1 ) t ( 1 − e t ) ( b − a + 1 ) =\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)} =(1−et)(b−a+1)eat−e(b+1)t 特征函数φ ( t ) = ∑k = a b e i t k P ( x = k ) 特征函数\varphi(t)=\sum_{k=a}^{b} e^{itk}P(x=k) 特征函数φ(t)=k=a∑beitkP(x=k) = ( ∑ k = a b e i t k ) 1 b −a + 1 =(\sum_{k=a}^{b} e^{itk})\frac{1}{b-a+1}=(k=a∑beitk)b−a+11 = e a i t − e ( b + 1 ) i t ( 1 − e i t ) ( b − a + 1 ) =\frac{e^{ait}-e^{(b+1)it}}{(1-e^{it})(b-a+1)}=(1−eit)(b−a+1)eait−e(b+1)it M ′ ( t ) = 1 b − a + 1 ( a e a t − ( b + 1 ) e ( b + 1 ) t ) ( 1 − e t ) + ( e a t − e ( b + 1 ) t ) e t ( e t − 1 ) 2M'(t)=\frac{1}{b-a+1}\frac{(ae^{at}-(b+1)e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{(e^{t}-1)^{2}} M′(t)=b−a+11(et−1)2(aeat−(b+1)e(b+1)t)(1−et)+(eat−e(b+1)t)et t = 0 为M ′ ( t ) 的可去间断点,补充定义M ′ ( 0 ) = lim t → 0 M ′ ( t ) t=0为M'(t)的可去间断点,补充定义M'(0)=\lim_{t\rightarrow0}M'(t) t=0为M′(t)的可去间断点,补充定义M′(0)=t→0limM′(t) E X = M ′ ( 0 ) = lim t → 0 1 b − a + 1 ( a 2 e at − ( b + 1 ) 2 e ( b + 1 ) t ) ( 1 − e t ) + ( e at − e ( b + 1 ) t ) e t 2 ( e t − 1 ) e tEX=M'(0)=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(1-e^t)+(e^{at}-e^{(b+1)t})e^t}{2(e^{t}-1)e^t}EX=M′(0)=t→0limb−a+112(et−1)et(a2eat−(b+1)2e(b+1)t)(1−et)+(eat−e(b+1)t) et = lim t → 0 1 b − a + 1 ( a 2 e a t − ( b +1 )2 e ( b + 1 ) t ) ( e − t − 1 ) + ( e a t − e ( b + 1 ) t ) 2 ( e t − 1 )=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^2e^{at}-(b+1)^2e^{(b+1)t})(e^{-t}-1)+(e^{at}-e^{(b+1)t})}{2(e^{t}-1)} =t→0limb−a+112(et−1)(a2eat−(b+1)2e(b+1)t)(e−t−1)+(eat−e(b+1)t) = lim t → 0 1 b − a + 1 ( a 3 e a t − ( b + 1 ) 3 e ( b + 1 ) t ) ( e − t − 1 ) − ( a 2 e a t −( b + 1 ) 2 e ( b + 1 ) t ) e − t + ( a e a t − ( b + 1 ) e ( b + 1 ) t ) 2 e t=\lim_{t\rightarrow0}\frac{1}{b-a+1}\frac{(a^3e^{at}-(b+1)^3e^{(b+1)t})(e^{-t}-1)-(a^2e^{at}-(b+1)^2e^{(b+1)t})e^{-t}+(ae^{at}-(b+1)e^{(b+1)t})}{2e^{t}} =t→0limb−a+112et(a3eat−(b+1)3e(b+1)t)(e−t−1)−(a2eat−(b+1)2e(b+1)t)e−t+(aeat−(b+1)e(b+1)t) = − a 2 + ( b + 1 ) 2 +a − (b + 1 ) 2 ( b − a + 1 ) =\frac{-a^2+(b+1)^2+a-(b+1)}{2(b-a+1)} =2(b−a+1)−a2+(b+1)2+a−(b+1) = − a 2 + ( b + 1 ) 2 2 ( b − a + 1 ) − 1 2 =\frac{-a^2+(b+1)^2}{2(b-a+1)}-\frac{1}{2}=2(b−a+1)−a2+(b+1)2−21 = ( b + 1 − a ) ( b + 1 +a ) 2 (b − a + 1 ) − 1 2 =\frac{(b+1-a)(b+1+a)}{2(b-a+1)}-\frac{1}{2}=2(b−a+1)(b+1−a)(b+1+a)−21 = b + 1 + a 2 − 1 2=\frac{b+1+a}{2}-\frac{1}{2} =2b+1+a−21 = b + a 2=\frac{b+a}{2} =2b+a 由于对M ′ ( t ) 求导得到M ′ ′ ( t ) ,再求M ′ ′ ( 0 ) 的方法比较繁琐,而我们只需要 t = 0 时 M 的二阶导数值,由于对M'(t)求导得到M''(t),再求M''(0)的方法比较繁琐,而我们只需要t=0时M的二阶导数值,由于对M′(t)求导得到M′′(t),再求M′′(0)的方法比较繁琐,而我们只需要t=0时M的二阶导数值,因此可以考虑使用 T a y l o r 公式计算M ′ ′ ( 0 ) 因此可以考虑使用Taylor公式计算M''(0) 因此可以考虑使用Taylor公式计算M′′(0) 令 1 − e t = u , t = 0 时 , u = 0 令1-e^t=u,t=0时,u=0 令1−et=u,t=0时,u=0 M ( t ) = e a t − e ( b + 1 ) t ( 1 − e t ) ( b − a + 1 )M(t)=\frac{e^{at}-e^{(b+1)t}}{(1-e^{t})(b-a+1)}M(t)=(1−et)(b−a+1)eat−e(b+1)t = 1 b − a + 1 u a −u b + 1 u =\frac{1}{b-a+1}\frac{u^a-u^{b+1}}{u}=b−a+11uua−ub+1 = 1 b − a + 1 1 + a 1 ! ( − u ) + a ( a − 1 ) 2 ! u 2 + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 3 ) + o ( u 3 ) − 1 − b + 1 1 ! ( − u ) −( b + 1 ) b 2 ! u 2 − ( b + 1 ) b ( b − 1 ) 3 ! ( −u 3 ) − o ( u 3 ) u =\frac{1}{b-a+1}\frac{1+\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-1-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)-o(u^3)}{u} =b−a+11u1+1!a (−u)+2!a(a−1)u2+3!a(a−1)(a−2)(−u3)+o(u3)−1−1!b+1(−u)−2!(b+1)bu2−3!(b+1)b(b−1) (−u3)−o(u3) = 1 b − a + 1 a 1 ! ( − u ) + a ( a −1 ) 2 ! u 2 + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 3 ) + o ( u 3 ) − b + 1 1 ! ( − u ) − ( b + 1 ) b 2 ! u 2 − ( b + 1 ) b ( b − 1 ) 3 ! ( − u 3 ) u=\frac{1}{b-a+1}\frac{\frac{a}{1!}(-u)+\frac{a(a-1)}{2!}u^2+\frac{a(a-1)(a-2)}{3!}(-u^3)+o(u^3)-\frac{b+1}{1!}(-u)-\frac{(b+1)b}{2!}u^2-\frac{(b+1)b(b-1)}{3!}(-u^3)}{u} =b−a+11u1!a(−u)+2!a(a−1)u2+3!a(a−1)(a−2)(−u3)+o(u3)−1!b+1 (−u)−2!(b+1)bu2−3!(b+1)b(b−1)(−u3) = 1 b − a + 1 ( ( b + 1 − a ) + a ( a − 1 ) 2 ! u + a ( a − 1 ) ( a − 2 ) 3 ! ( − u 2 ) + o ( u 2 ) − ( b + 1 ) b2 ! u − ( b + 1 ) b ( b − 1 )3 ! ( − u 2 ) )=\frac{1}{b-a+1}((b+1-a)+\frac{a(a-1)}{2!}u+\frac{a(a-1)(a-2)}{3!}(-u^2)+o(u^2)-\frac{(b+1)b}{2!}u-\frac{(b+1)b(b-1)}{3!}(-u^2)) =b−a+11((b+1−a)+2!a(a−1)u+3!a(a−1)(a−2)(−u2)+o(u2)−2!(b+1)bu−3!(b+1)b(b−1)(−u2)) = 1 + a ( a − 1 ) − ( b + 1 ) b 2 ! ( b − a + 1 ) u + ( b +1 ) b ( b − 1 ) − a ( a − 1 ) ( a −2 )3 ! ( b −a + 1 ) u 2 + o ( u 2 ) =1+\frac{a(a-1)-(b+1)b}{2!(b-a+1)}u+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}u^2+o(u^2) =1+2!(b−a+1)a(a−1)−(b+1)bu+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)u2+o(u2) 而 u = 1 − e t = − t − t 2 2 ! + o ( t 2 ) 而u=1-e^t=-t-\frac{t^2}{2!}+o(t^2) 而u=1−et=−t−2!t2+o(t2) 因此M ( t ) = 1 − a ( a − 1 ) − ( b + 1 ) b 2 ! ( b −a + 1 ) t − a ( a − 1 ) − (b + 1 ) b 2 ! ( b − a + 1 ) t 2 2 ! + ( b + 1 ) b ( b − 1 ) − a ( a − 1 ) ( a − 2 ) 3 ! ( b − a + 1 ) t 2 + o ( t 2 ) 因此M(t)=1-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}t-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}\frac{t^2}{2!}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}t^2+o(t^2) 因此M(t)=1−2!(b−a+1)a(a−1)−(b+1)bt−2!(b−a+1)a(a−1)−(b+1)b2!t2+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)t2+o(t2) 又因为M ( t ) = M ( 0 ) + M ′ ( 0 ) t + M ′ ′ ( 0 ) 2 ! t 2 + o ( t 2 ) 又因为M(t)=M(0)+M'(0)t+\frac{M''(0)}{2!}t^2+o(t^2) 又因为M(t)=M(0)+M′(0)t+2!M′′(0)t2+o(t2) 因此M ′ ( 0 ) = − a ( a − 1 ) − ( b + 1 ) b 2 ! ( b − a + 1 ) = a + b 2 因此M'(0)=-\frac{a(a-1)-(b+1)b}{2!(b-a+1)}=\frac{a+b}{2} 因此M′(0)=−2!(b−a+1)a(a−1)−(b+1)b=2a+b E X = M ′( 0 ) = a + b 2 EX=M'(0)=\frac{a+b}{2} EX=M′(0)=2a+b 而M ′ ′ ( 0 ) = 2 ! ∗ ( − a ( a − 1 ) − ( b +1 ) b 4 ( b − a + 1 ) + ( b + 1 ) b ( b − 1 ) − a ( a − 1 ) ( a −2 )3 ! ( b − a + 1 ) ) 而M''(0)=2!*(-\frac{a(a-1)-(b+1)b}{4(b-a+1)}+\frac{(b+1)b(b-1)-a(a-1)(a-2)}{3!(b-a+1)}) 而M′′(0)=2!∗(−4(b−a+1)a(a−1)−(b+1)b+3!(b−a+1)(b+1)b(b−1)−a(a−1)(a−2)) = a + b 2 + ( b + 1 − a ) ( b 2 + a b − b + a 2 − 2 a ) 3 ( b − a + 1 ) =\frac{a+b}{2}+\frac{(b+1-a)(b^2+ab-b+a^2-2a)}{3(b-a+1)} =2a+b+3(b−a+1)(b+1−a)(b2+ab−b+a2−2a) = a + b 2 + b 2 + a b − b + a 2 − 2 a 3=\frac{a+b}{2}+\frac{b^2+ab-b+a^2-2a}{3} =2a+b+3b2+ab−b+a2−2a = 2 a 2 + 2 b 2 + 2 a b + b − a 6 =\frac{2a^2+2b^2+2ab+b-a}{6} =62a2+2b2+2ab+b−a D X = E X 2 − ( E X ) 2 = M ′ ′ ( 0 ) − ( E X ) 2DX=EX^2-(EX)^2=M''(0)-(EX)^2DX=EX2−(EX)2=M′′(0)−(EX)2 = 2 a 2 + 2 b 2 + 2 a b + b − a 6 − a 2 + 2 a b + b 2 4=\frac{2a^2+2b^2+2ab+b-a}{6}-\frac{a^2+2ab+b^2}{4}=62a2+2b2+2ab+b−a−4a2+2ab+b2 = ( b − a + 1 ) 2 − 1 12 =\frac{(b-a+1)^2-1}{12} =12(b−a+1)2−12、伯努利分布/两点分布(Bernoulli distribution)若 X 服从伯努利分布 B ( 1 , p ) , 则 X 满足 P ( x = 1 ) = p , P ( x = 0 ) = 1 − p = q 若X服从伯努利分布B(1,p) ,则X满足P(x=1)=p, P(x=0)=1-p=q 若X服从伯努利分布B(1,p),则X满足P(x=1)=p,P(x=0)=1−p=q M ( t ) = p e t + 1 − p M(t)=pe^{t}+1-p M(t)=pet+1−p φ ( t ) = p e i t + 1 − p \varphi(t)=pe^{it}+1-pφ(t)=peit+1−p M ′ ( t ) = p e t M'(t)=pe^{t}M′(t)=pet E X = M ′ ( 0 ) = p EX=M'(0)=p EX=M′(0)=pM ′ ′ ( t ) = p e t M''(t)=pe^{t} M′′(t)=pet E X 2 = M ′ ′ ( 0 ) = p EX^{2}=M''(0)=p EX2=M′′(0)=p D X = E X 2 − ( E X ) 2 = p ( 1 − p ) DX=EX^{2}-(EX)^{2}=p(1-p) DX=EX2−(EX)2=p(1−p)3、二项分布(Binomial distribution)若 X 服从二项分布 B ( n , p ) , 则 X 满足 f ( k ; n , p ) = P ( x = k ) = C n k p k ( 1 − p ) n − k ( n 为整数 ) 若X服从二项分布B(n,p) ,则X满足f(k;n,p)=P(x=k)=C_{n}^{k}p^k(1-p)^{n-k} (n为整数) 若X 服从二项分布B(n,p),则X满足f(k;n,p)=P(x=k)=Cnkpk(1−p)n−k(n为整数) 因为服从二项分布的变量可以看作 n 个独立相同的服从伯努利分布的变量之和因为服从二项分布的变量可以看作n个独立相同的服从伯努利分布的变量之和因为服从二项分布的变量可以看作n个独立相同的服从伯努利分布的变量之和因此M ( t ) = ( p e t + 1 − p ) n 因此M(t)=(pe^{t}+1-p)^{n} 因此M(t)=(pet+1−p)n φ ( t ) = ( p e i t + 1 − p ) n \varphi(t)=(pe^{it}+1-p)^{n}φ(t)=(peit+1−p)n M ′ ( t ) = n p ( p e t + 1 − p ) n − 1 e t M'(t)=np(pe^{t}+1-p)^{n-1}e^{t}M′(t)=np(pet+1−p)n−1et E X = M ′ ( 0 ) = n pEX=M'(0)=np EX=M′(0)=np M ′ ′ ( t ) = n ( n − 1 )p 2 ( p e t + 1 − p ) n − 2 e 2 t + n p ( p e t + 1 − p ) n − 1 e t M''(t)=n(n-1)p^{2}(pe^{t}+1-p)^{n-2}e^{2t}+np(pe^{t}+1-p)^{n-1}e^{t}M′′(t)=n(n−1)p2(pet+1−p)n−2e2t+np(pet+1−p)n−1et E X 2 = M ′ ′ ( 0 ) = n ( n − 1 ) p 2 + n pEX^{2}=M''(0)=n(n-1)p^{2}+np EX2=M′′(0)=n(n−1)p2+npD X =E X 2 − ( E X ) 2 = n p ( 1 − p ) DX=EX^{2}-(EX)^{2}=np(1-p) DX=EX2−(EX)2=np(1−p)4、几何分布(Geometric distribution)若 X 服从几何分布 G e ( p ) , 则 X 满足 f ( k ; p ) = P ( x = k ) = ( 1 − p ) k − 1 p ( k = 1 , 2 , 3...... ) 若X服从几何分布Ge(p), 则X满足f(k;p)=P(x=k)=(1-p)^{k-1}p (k=1,2,3......) 若X服从几何分布Ge(p),则X满足f(k;p)=P(x=k)=(1−p)k−1p(k=1,2,3......) M ( t ) = ∑ k = 1 ∞ ( 1 − p ) k − 1 p e t kM(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{tk}M(t)=k=1∑∞(1−p)k−1petk = p e t ∑ k = 1 ∞ ( ( 1 − p ) e t ) k − 1 =pe^{t}\sum_{k=1}^{\infin}((1-p)e^t)^{k-1} =petk=1∑∞((1−p)et)k−1 = p e t 1 −( 1 − p ) e t =\frac{pe^{t}}{1-(1-p)e^{t}}=1−(1−p)etpet φ ( t ) = ∑ k = 1 ∞ ( 1 − p ) k −1 p e i t k \varphi(t)=\sum_{k=1}^{\infin}(1-p)^{k-1}pe^{itk} φ(t)=k=1∑∞(1−p)k−1peitk = p e i t ∑ k = 1 ∞ ( ( 1 − p ) e i t ) k − 1=pe^{it}\sum_{k=1}^{\infin}((1-p)e^{it})^{k-1}=peitk=1∑∞((1−p)eit)k−1 = p e i t 1 − ( 1 − p ) e i t =\frac{pe^{it}}{1-(1-p)e^{it}} =1−(1−p)eitpeit M ′ ( t ) = p e t ( 1 − ( 1 − p ) e t ) 2M'(t)=\frac{pe^t}{(1-(1-p)e^t)^2}M′(t)=(1−(1−p)et)2pet E X = M ′ ( 0 ) = 1 pEX=M'(0)=\frac{1}{p} EX=M′(0)=p1 M ′ ′ ( t ) = p e t ( e t − p e t + 1 ) ( 1 − ( 1 − p ) e t ) 3M''(t)=\frac{pe^t(e^t-pe^t+1)}{(1-(1-p)e^t)^3}M′′(t)=(1−(1−p)et)3pet(et−pet+1) E X 2 = M ′ ′( 0 ) = 2 − p p 2 EX^{2}=M''(0)=\frac{2-p}{p^2}EX2=M′′(0)=p22−p D X = E X 2 − ( E X ) 2 = 1 − p p 2 DX=EX^{2}-(EX)^{2}=\frac{1-p}{p^2}DX=EX2−(EX)2=p21−p5、负二项分布(Negative binomial distribution)若 X 服从负二项分布 N B ( r , p ) , 则 X 满足 f ( k ; r , p ) = ( k + r − 1 k ) p k ( 1 − p ) r , k = 0 , 1 , 2 , 3...... 若X服从负二项分布NB(r,p), 则X满足f(k;r,p)=\binom{k+r-1}{k}p^{k}(1-p)^{r} ,k=0,1,2,3...... 若X服从负二项分布NB(r,p),则X满足f(k;r,p)=(kk+r−1)pk(1−p)r,k=0,1,2,3...... ( r 可以为实数,此时的分布称为波利亚分布 ) (r可以为实数,此时的分布称为波利亚分布) (r可以为实数,此时的分布称为波利亚分布) M ( t ) = ∑ k = 0 ∞ ( k +r − 1 k ) p k ( 1 − p ) r e t kM(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{tk} M(t)=k=0∑∞(kk+r−1)pk(1−p)retk = ∑ k = 0 ∞ ( − 1 ) k ( − r k ) p k ( 1 − p ) r e t k=\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{tk} =k=0∑∞(−1)k(k−r)pk(1−p)retk = ∑ k = 0 ∞ ( − p e t ) k ( − r k ) ( 1 − p ) r =\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}(1-p)^r =k=0∑∞(−pet)k(k−r)(1−p)r = ( 1 − p ) r ∑ k = 0 ∞ ( − p e t ) k( − r k ) 1 − r − k =(1-p)^r\sum_{k=0}^{\infin}(-pe^t)^k\binom{-r}{k}1^{-r-k} =(1−p)rk=0∑∞(−pet)k(k−r)1−r−k = ( 1 − p ) r ( 1 − p e t ) −r =(1-p)^r(1-pe^t)^{-r} =(1−p)r(1−pet)−r φ ( t ) = ∑ k = 0 ∞ ( k + r − 1 k ) p k ( 1 − p ) r e i t k \varphi(t)=\sum_{k=0}^{\infin}\binom{k+r-1}{k}p^k(1-p)^re^{itk} φ(t)=k=0∑∞(kk+r−1)pk(1−p)reitk = ∑ k = 0 ∞ ( − 1 ) k ( − r k ) p k ( 1 − p ) r e i t k =\sum_{k=0}^{\infin}(-1)^k\binom{-r}{k}p^k(1-p)^re^{itk} =k=0∑∞(−1)k(k−r)pk(1−p)reitk = ∑ k = 0 ∞ ( − p e i t ) k ( − r k ) ( 1 − p ) r=\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}(1-p)^r=k=0∑∞(−peit)k(k−r)(1−p)r = ( 1 − p ) r ∑ k = 0 ∞ ( − p e i t ) k ( − r k ) 1 − r − k =(1-p)^r\sum_{k=0}^{\infin}(-pe^{it})^k\binom{-r}{k}1^{-r-k} =(1−p)rk=0∑∞(−peit)k(k−r)1−r−k = ( 1 − p ) r ( 1 − p e i t ) − r =(1-p)^r(1-pe^{it})^{-r}=(1−p)r(1−peit)−r M ′ ( t ) = ( 1 − p ) r ( − r ) ( 1 − p e t ) − r − 1 ( − p e t ) M'(t)=(1-p)^r(-r)(1-pe^{t})^{-r-1}(-pe^t)M′(t)=(1−p)r(−r)(1−pet)−r−1(−pet) = r p ( 1 −p ) r e t ( 1 − p e t ) − r − 1 =rp(1-p)^re^t(1-pe^t)^{-r-1} =rp(1−p)ret(1−pet)−r−1 E X = M ′( 0 ) = r p 1 − p EX=M'(0)=\frac{rp}{1-p}EX=M′(0)=1−prp M ′ ′ ( t ) = r p ( 1 − p ) r e t ( 1 − p e t ) − r − 1 + r p ( 1 − p ) r e t ( − r − 1 ) ( 1 − p e t ) − r − 2 ( − p e t )M''(t)=rp(1-p)^re^t(1-pe^t)^{-r-1}+rp(1-p)^re^t(-r-1)(1-pe^t)^{-r-2}(-pe^t)M′′(t)=rp(1−p)ret(1−pet)−r−1+rp(1−p)ret(−r−1) (1−pet)−r−2(−pet) E X 2 = r p ( 1 − p ) − 1 + r ( r + 1 ) p 2 ( 1 − p ) − 2 EX^2=rp(1-p)^{-1}+r(r+1)p^2(1-p)^{-2}EX2=rp(1−p)−1+r(r+1)p2(1−p)−2 = r p ( 1 − p ) + r ( r + 1 ) p 2 ( 1 − p ) 2 =\frac{rp(1-p)+r(r+1)p^2}{(1-p)^2} =(1−p)2rp(1−p)+r(r+1)p2 = r p + r 2 p 2 ( 1 − p ) 2 =\frac{rp+r^2p^2}{(1-p)^2}=(1−p)2rp+r2p2 D X = E X 2 − ( E X ) 2 = p r ( 1 −p ) 2 DX=EX^2-(EX)^2=\frac{pr}{(1-p)^2}DX=EX2−(EX)2=(1−p)2pr6、泊松分布(Poisson distribution)若 X 服从泊松分布P ( λ ) , 则 P ( X = k ) = e− λ λ k k ! , k = 0 , 1 , 2...... 若X服从泊松分布P(\lambda),则P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!},k=0,1,2...... 若X服从泊松分布P(λ),则P(X=k)=k!e−λλk,k=0,1,2...... M ( t ) = ∑k = 0 ∞ e − λ λ k k ! e t kM(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{tk} M(t)=k=0∑∞k!e−λλketk = e − λ ∑ k = 0 ∞ ( λ e t ) k k ! =e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambda e^t)^k}{k!} =e−λk=0∑∞k!(λe t)k = e − λ e λ e t =e^{-\lambda}e^{\lambda e^t} =e−λeλet= e λ ( e t − 1 ) =e^{\lambda (e^t-1)} =eλ(et−1) φ ( t ) = ∑ k = 0∞ e − λ λ k k ! e i t k\varphi(t)=\sum_{k=0}^{\infin}\frac{e^{-\lambda}\lambda^k}{k!}e^{itk} φ(t)=k=0∑∞k!e−λλk eitk = e − λ ∑ k = 0 ∞ ( λ e i t ) k k ! =e^{-\lambda}\sum_{k=0}^{\infin}\frac{(\lambdae^{it})^k}{k!} =e−λk=0∑∞k!(λe it)k = e − λ e λ e i t =e^{-\lambda}e^{\lambda e^{it}} =e−λeλeit = e λ ( e i t − 1 ) =e^{\lambda (e^{it}-1)} =eλ(eit−1) M ′ ( t ) = e λ ( e t − 1 ) λ e t M'(t)=e^{\lambda (e^t-1)}\lambda e^t M′(t)=eλ(et−1)λe t E X = M ′ ( 0 ) = λ EX=M'(0)=\lambda EX=M′(0)=λM ′ ′ ( t ) = e λ ( e t − 1 ) λ e t + e λ ( e t − 1 ) λ e tλ e t M''(t)=e^{\lambda (e^t-1)}\lambdae^t+e^{\lambda (e^t-1)}\lambda e^t\lambda e^tM′′(t)=eλ(et−1)λe t+eλ(et−1)λe tλe t E X 2 =M ′ ′ ( 0 ) = λ + λ 2EX^2=M''(0)=\lambda+\lambda^2 EX2=M′′(0)=λ+λ2 D X = E X 2 − ( E X ) 2 = λ DX=EX^2-(EX)^2=\lambdaDX=EX2−(EX)2=λ三、连续型随机变量的分布1、连续型均匀分布(Uniform distribution (continuous))若 X 服从连续型均匀分布 U ( a , b ) , 则 f( x ) = 1 b − a I [ a , b ] ( x ) 若X服从连续型均匀分布U(a,b),则f(x)=\frac{1}{b-a}I_{[a,b]}(x) 若X服从连续型均匀分布U(a,b),则f(x)=b−a1I[a,b](x) M ( t ) = ∫ a b 1 b − a e t x d x M(t)=\int_{a}^{b}\frac{1}{b-a}e^{tx}dx M(t)=∫abb−a1etxdx = 1 b − a ∫ a b e t x d x =\frac{1}{b-a}\int_{a}^{b}e^{tx}dx =b−a1∫abetxdx = 1 b − a ( 1 t e t x ∣ a b ) =\frac{1}{b-a}(\frac{1}{t}e^{tx}\mid_{a}^{b}) =b−a1(t1etx∣ab) = e t b − e t a t ( b − a ) =\frac{e^{tb}-e^{ta}}{t(b-a)} =t(b−a)etb−eta φ ( t ) = ∫ a b 1 b − a e i t x d x \varphi(t)=\int_{a}^{b}\frac{1}{b-a}e^{itx}dxφ(t)=∫abb−a1eitxdx = 1 b − a ∫ a b e i t x d x=\frac{1}{b-a}\int_{a}^{b}e^{itx}dx =b−a1∫abeitxdx = 1 b − a ( 1 i t e i t x ∣ a b ) =\frac{1}{b-a}(\frac{1}{it}e^{itx}\mid_{a}^{b}) =b−a1(it1eitx∣ab) = e i t b − e i t a i t ( b − a ) =\frac{e^{itb}-e^{ita}}{it(b-a)} =it(b−a)eitb−eita M ′ ( t ) = 1 b − a ( b e t b − a e t a ) t − ( e t b − e t a ) t 2 M'(t)=\frac{1}{b-a}\frac{(be^{tb}-ae^{ta})t-(e^{tb}-e^{ta})}{t^2} M′(t)=b−a1t2(betb−aeta)t−(etb−eta) t = 0 为M ′ ( t ) 的可去间断点,补充定义M ′ ( 0 ) = lim t → 0 M ′ ( t ) t=0为M'(t)的可去间断点,补充定义M'(0)=\lim_{t\rightarrow0}M'(t) t=0为M′(t)的可去间断点,补充定义M′(0)=t→0limM′(t) E X = M ′ ( 0 ) = lim t → 0 ( b e t b − a e t a ) + ( b 2 e t b − a 2 e t a ) t − ( b e t b − a e ta ) 2 t (b − a )EX=M'(0)=\lim_{t\rightarrow0}\frac{(be^{tb}-ae^{ta})+(b^2e^{tb}-a^2e^{ta})t-(be^{tb}-ae^{ta})}{2t(b-a)} EX=M′(0)=t→0lim2t(b−a)(betb−aeta)+(b2etb−a2eta)t−(betb−aeta) = lim t → 0 ( b 2 e t b − a 2 e t a ) 2 ( b − a ) =\lim_{t\rightarrow0}\frac{(b^2e^{tb}-a^2e^{ta})}{2(b-a)} =t→0lim2(b−a)(b2etb−a2eta) = b 2 − a 2 2 ( b − a ) =\frac{b^2-a^2}{2(b-a)} =2(b−a)b2−a2 = a + b 2 =\frac{a+b}{2} =2a+b M ′ ′ ( t ) = 1 b − a ( ( b 2 e t b − a 2 e t a ) t + ( b e t b − a e t a ) −( b e t b − a e t a ) ) t − 2 ( ( b e t b − a e ta ) t − ( e tb − e t a ) ) t 3 M''(t)=\frac{1}{b-a}\frac{((b^2e^{tb}-a^2e^{ta})t+(be^{tb}-ae^{ta})-(be^{tb}-ae^{ta}))t-2((be^{tb}-ae^{ta})t-(e^{tb}-e^{ta}))}{t^3} M′′(t)=b−a1t3((b2etb−a2eta)t+(betb−aeta)−(betb−aeta))t−2((be tb−aeta)t−(etb−eta)) = 1 b − a t 2 ( b 2 e t b −a 2 e t a ) − 2 t (b e t b − a e t a ) + 2 ( e t b − e t a ) t 3 =\frac{1}{b-a}\frac{t^2(b^2e^{tb}-a^2e^{ta})-2t(be^{tb}-ae^{ta})+2(e^{tb}-e^{ta})}{t^3} =b−a1t3t2(b2etb−a2eta)−2t(betb−aeta)+2(etb−eta) t = 0 为M ′ ′ ( t ) 的可去间断点,补充定义M ′ ′ ( 0 ) = lim t → 0 M ′ ′ ( t ) t=0为M''(t)的可去间断点,补充定义M''(0)=\lim_{t\rightarrow0}M''(t) t=0为M′′(t)的可去间断点,补充定义M′′(0)=t→0limM′′(t) E X 2 =M ′ ′ ( 0 ) = lim t → 0 1 b − a t 2 ( b 3 e t b − a 3 e t a ) + 2 t ( b 2 e t b − a 2 e t a ) − 2 t ( b 2 e t b − a 2 e t a ) − 2 ( b e t b − a e t a ) + 2 ( b e t b − a e t a ) 3 t 2EX^2=M''(0)=\lim_{t\rightarrow0}\frac{1}{b-a}\frac{t^2(b^3e^{tb}-a^3e^{ta})+2t(b^2e^{tb}-a^2e^{ta})-2t(b^2e^{tb}-a^2e^{ta})-2(be^{tb}-ae^{ta})+2(be^{tb}-ae^{ta})}{3t^2}EX2=M′′(0)=t→0limb−a13t2t2(b3etb−a3eta)+2t(b2etb−a2eta)−2t(b2etb−a2eta)−2(betb−aeta)+2(betb−aeta) = 1 b − a lim t → 0 t 2 ( b 3 e t b − a 3 e t a ) 3 t 2 =\frac{1}{b-a}\lim_{t\rightarrow0}\frac{t^2(b^3e^{tb}-a^3e^{ta})}{3t^2} =b−a1t→0lim3t2t2(b3etb−a3eta) = 1 b − a lim t → 0 ( b 3 e t b − a 3 e t a ) 3=\frac{1}{b-a}\lim_{t\rightarrow0}\frac{(b^3e^{tb}-a^3e^{ta})}{3} =b−a1t→0lim3(b3etb−a3eta) = 1 b − a ( b 3 − a 3 ) 3 =\frac{1}{b-a}\frac{(b^3-a^3)}{3}=b−a13(b3−a3) = b 2 + a b + a 2 3=\frac{b^2+ab+a^2}{3} =3b2+ab+a2 D X = E X 2 − ( E X ) 2 = ( b − a ) 2 12 DX=EX^2-(EX)^2=\frac{(b-a)^2}{12} DX=EX2−(EX)2=12(b−a)22、指数分布(Exponential distribution)若 X 服从指数分布 E ( λ ) ,则 f ( x ) = λ e− λ x I [ 0 , + ∞ ) ( x ) 若X服从指数分布E(\lambda),则f(x)=\lambda e^{-\lambdax}I_{[0,+\infin)}(x) 若X服从指数分布E(λ),则f(x)=λe−λx I[0,+∞)(x) M ( t ) = ∫ 0 + ∞ λ e −λ x e t x d x M(t)=\int_{0}^{+\infin} \lambda e^{-\lambda x}e^{tx}dx M(t)=∫0+∞λe−λx etxdx = λ ∫ 0 + ∞ e ( t − λ ) x d x =\lambda \int_{0}^{+\infin} e^{(t-\lambda)x}dx =λ∫0+∞e(t−λ)xdx = λ t − λ ( e ( t − λ ) x ∣ 0 + ∞ ) =\frac{\lambda}{t-\lambda}(e^{(t-\lambda)x}\mid_{0}^{+\infin}) =t−λλ(e(t−λ)x∣0+∞) t < λ 时,M ( t ) = λ t − λ ( 0 − 1 ) t<\lambda时,M(t)=\frac{\lambda}{t-\lambda}(0-1) t<λ时,M(t)=t−λλ(0−1) = λ λ − t =\frac{\lambda}{\lambda-t} =λ−tλφ ( t ) = λ λ − i t \varphi(t)=\frac{\lambda}{\lambda-it}φ(t)=λ−itλM ′ ( t ) = λ ( λ − t ) 2M'(t)=\frac{\lambda}{(\lambda-t)^2} M′(t)=(λ−t)2λE X = M ′ ( 0 ) = 1 λ EX=M'(0)=\frac{1}{\lambda}EX=M′(0)=λ1 M ′ ′ ( t ) = 2 λ ( λ − t ) 3M''(t)=\frac{2\lambda}{(\lambda-t)^3}M′′(t)=(λ−t)32λ E X 2 = M ′ ′ ( 0 ) = 2 λ 2 EX^2=M''(0)=\frac{2}{\lambda^2} EX2=M′′(0)=λ22 D X = E X 2 − ( E X ) 2 = 1 λ 2 DX=EX^2-(EX)^2=\frac{1}{\lambda^2} DX=EX2−(EX)2=λ213、正态分布(Normal distribution)若 X 服从正态分布N ( μ , σ 2 ) , 则 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 若X服从正态分布N(\mu,\sigma^2),则f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} 若X服从正态分布N(μ,σ2),则f(x)=2πσ1e−2σ2(x−μ)2 引理 1 :∫ − ∞ + ∞ e − t 2 2 d t = 2 π 引理1:\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi} 引理1:∫−∞+∞e−2t2dt=2π证明:( ∫ − ∞ + ∞ e − t 2 2 d t ) 2 = ∫ − ∞ + ∞ ∫ − ∞ + ∞ e − x 2 + y 2 2 d x d y 证明:(\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt)^2=\int_{-\infin}^{+\infin}\int_{-\infin}^{+\infin}e^{-\frac{x^2+y^2}{2}}dxdy 证明:(∫−∞+∞e−2t2dt)2=∫−∞+∞∫−∞+∞e−2x2+y2dxdy = ∫ 0 2 π d θ ∫ 0 + ∞ e − r 2 2 r d r=\int_{0}^{2\pi}d\theta \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr =∫02πdθ∫0+∞e−2r2rdr = 2 π ∫ 0 + ∞ e − r 2 2 r d r =2\pi \int_{0}^{+\infin}e^{-\frac{r^2}{2}}rdr =2π∫0+∞e−2r2rdr = 2 π ( − e −r 2 2 ∣0 + ∞ ) =2\pi (-e^{-\frac{r^2}{2}}\mid_{0}^{+\infin}) =2π(−e−2r2∣0+∞) = 2 π =2\pi =2π因此∫ − ∞ + ∞ e − t 2 2 d t = 2 π 因此\int_{-\infin}^{+\infin}e^{-\frac{t^2}{2}}dt=\sqrt{2\pi} 因此∫−∞+∞e−2t2dt=2πM ( t ) = ∫ − ∞ + ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 e t x d x M(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{tx}dx M(t)=∫−∞+∞2πσ1e−2σ2(x−μ)2etxdx = 1 2 π σ ∫ − ∞ + ∞ e −( x − μ ) 2 2 σ 2 + t x d x=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+tx}dx =2πσ1∫−∞+∞e−2σ2(x−μ)2+txdx 令 w = x − μ σ 令w=\frac{x-\mu}{\sigma} 令w=σx−μ原式= 1 2 π ∫ − ∞ + ∞ e − w 2 2 + t ( w σ + μ ) d w 原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t(w\sigma+\mu)}dw 原式=2π1∫−∞+∞e−2w2+t(wσ+μ)dw = e μ t 1 2 π ∫ − ∞ + ∞ e − w 2 2 + t σ w d w =e^{\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+t\sigma w}dw=eμt2π1∫−∞+∞e−2w2+tσw dw = e μ t 1 2 π ∫ − ∞ + ∞ e − ( w − t σ ) 2 − t 2 σ 2 2 d w =e^{\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2-t^2\sigma^2}{2}}dw=eμt2π1∫−∞+∞e−2(w−tσ)2−t2σ2dw = e μ t + t 2 σ 2 2 1 2 π ∫ − ∞ + ∞ e − ( w − t σ ) 2 2 d w=e^{\mut+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-t\sigma)^2}{2}}dw=eμt+2t2σ22π1∫−∞+∞e−2(w−tσ)2dw = e μ t + t 2 σ 2 2 1 2 π 2 π =e^{\mut+\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\p i} =eμt+2t2σ22π12π= e μ t + t 2 σ 2 2 =e^{\mu t+\frac{t^2\sigma^2}{2}} =eμt+2t2σ2 φ ( t ) = ∫ − ∞ + ∞ 1 2 π σ e −( x − μ ) 2 2 σ 2 e i t x d x \varphi(t)=\int_{-\infin}^{+\infin}\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}e^{itx}dx φ(t)=∫−∞+∞2πσ1e−2σ2(x−μ)2eitxdx = 1 2 π σ ∫ − ∞ + ∞ e − ( x − μ ) 2 2 σ 2 + i t x d x=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}e^{-\frac{(x-\mu)^2}{2\sigma^2}+itx}dx=2πσ1∫−∞+∞e−2σ2(x−μ)2+itxdx 令 w = x − μ σ 令w=\frac{x-\mu}{\sigma} 令w=σx−μ原式= 1 2 π ∫ − ∞ + ∞ e − w 2 2 + i t ( w σ + μ ) d w 原式=\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it(w\sigma+\mu)}dw 原式=2π1∫−∞+∞e−2w2+it(wσ+μ)dw = e i μ t 1 2 π ∫ −∞ + ∞ e − w 2 2 + i t σ w d w =e^{i\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{w^2}{2}+it\sigma w}dw=e iμt2π1∫−∞+∞e−2w2+itσw dw = e i μ t 1 2 π ∫ − ∞ + ∞ e − ( w − i t σ ) 2 + t 2 σ 2 2 d w =e^{i\mut}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2+t^2\sigma^2}{2}}dw=e iμt2π1∫−∞+∞e−2(w−itσ)2+t2σ2dw = e i μ t − t 2 σ 2 2 1 2 π ∫ − ∞ + ∞ e − ( w − i t σ ) 2 2 d w =e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\int_{-\infin}^{+\infin}e^{-\frac{(w-it\sigma)^2}{2}}dw=e iμt−2t2σ22π1∫−∞+∞e−2(w−itσ)2dw = e i μ t − t 2 σ 2 2 12 π 2 π =e^{i\mu t-\frac{t^2\sigma^2}{2}}\frac{1}{\sqrt{2\pi}}\sqrt{2\pi} =e iμt−2t2σ22π12π= e i μ t − t 2 σ 2 2 =e^{i\mu t-\frac{t^2\sigma^2}{2}} =e iμt−2t2σ2 M ′ ( t ) = eμ t + t 2 σ 2 2 ( μ + σ 2 t ) M'(t)=e^{\mut+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)M′(t)=eμt+2t2σ2(μ+σ2t) E X = M ′ ( 0 ) = μEX=M'(0)=\mu EX=M′(0)=μM ′ ′ ( t ) = e μ t + t 2 σ 2 2 ( μ + σ 2 t ) 2 + e μ t + t 2 σ 2 2 σ 2M''(t)=e^{\mut+\frac{t^2\sigma^2}{2}}(\mu+\sigma^2t)^2+e^{\mut+\frac{t^2\sigma^2}{2}}\sigma^2 M′′(t)=eμt+2t2σ2 (μ+σ2t)2+eμt+2t2σ2σ2 E X 2 = M ′ ′ ( 0 ) = μ 2 + σ 2 EX^2=M''(0)=\mu^2+\sigma^2 EX2=M′′(0)=μ2+σ2 D X = E X 2 − ( E X ) 2 = σ 2 DX=EX^2-(EX)^2=\sigma^2 DX=EX2−(EX)2=σ2 特别地 , X 服从标准正态分布 N ( 0 , 1 ) 时特别地,X服从标准正态分布N(0,1)时特别地,X服从标准正态分布N(0,1)时 M ( t )= e t 2 2 M(t)=e^{\frac{t^2}{2}} M(t)=e2t2 φ ( t ) = e − t 2 2 \varphi(t)=e^{-\frac{t^2}{2}} φ(t)=e−2t2 E X = 0 , D X = 1 EX=0,DX=1 EX=0,DX=14、伽马分布(Gamma distribution)若 X 服从伽马分布Γ ( α , β ) ( α , β > 0 ) , 则 f ( x ) = β α Γ ( α ) x α − 1 e − β x I( 0 , + ∞ ) ( x ) 若X服从伽马分布\Gamma(\alpha,\beta)(\alpha,\beta>0),则f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}I_{(0,+\infin)}(x) 若X服从伽马分布Γ(α,β)(α,β>0),则f(x)=Γ(α)βαxα−1e−βx I(0,+∞)(x) 其中,Γ ( α ) = ∫ 0 + ∞ t α − 1 e − t d t , α > 0 其中,\Gamma(\alpha)=\int_{0}^{+\infin}t^{\alpha-1}e^{-t}dt,\alpha>0 其中,Γ(α)=∫0+∞tα−1e−tdt,α>0 指数分布 E ( λ ) 是伽马分布Γ ( 1 , λ ) , χ 2 分布χ n 2 是伽马分布Γ ( n 2 , 1 2 ) 指数分布E(\lambda)是伽马分布\Gamma(1,\lambda),\chi^2分布\chi^2_n是伽马分布\Gamma(\frac{n}{2},\frac{1}{2}) 指数分布E(λ)是伽马分布Γ(1,λ),χ2分布χn2是伽马分布Γ(2n,21) M ( t ) = ∫ 0 + ∞ β α Γ ( α ) x α −1 e − β x e t x d xM(t)=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alp ha)}x^{\alpha-1}e^{-\beta x}e^{tx}dx M(t)=∫0+∞Γ(α)βαxα−1e−βx etxdx = ∫ 0 + ∞ β α Γ ( α ) x α − 1 e ( t − β ) x d x=\int_{0}^{+\infin}\frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1}e^{(t-\beta) x}dx =∫0+∞Γ(α)βαxα−1e(t−β)xdx = β α ∫ 0 + ∞ 1 Γ ( α ) x α− 1 e ( t − β ) x d x=\beta^\alpha\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha) }x^{\alpha-1}e^{(t-\beta) x}dx =βα∫0+∞Γ(α)1xα−1e(t−β)xdx t < β 时,令v = ( β − t ) x ,原式= β α β − t ∫ 0 + ∞ 1 Γ ( α ) ( v β −t ) α − 1 e − v d v t<\beta时,令v=(\beta-t)x,原式=\frac{\beta^\alpha}{\beta-t}\int_{0}^{+\infin}\frac{1}{\Gamma(\alpha)}(\frac{v}{ \beta-t})^{\alpha-1}e^{-v}dv t<β时,令v=(β−t)x,原式=β−tβα∫0+∞Γ(α)1(β−tv)α−1e−vdv = ( β β − t ) α 1 Γ ( α ) ∫ 0 + ∞ v α − 1 e − v d v =(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\int_{0}^{+\infin}v^ {\alpha-1}e^{-v}dv =(β−tβ)αΓ(α)1∫0+∞vα−1e−vdv = ( β β − t ) α 1 Γ ( α ) Γ ( α ) =(\frac{\beta}{\beta-t})^\alpha\frac{1}{\Gamma(\alpha)}\Gamma(\alpha)=(β−tβ)αΓ(α)1Γ(α) = ( β β − t ) α=(\frac{\beta}{\beta-t})^\alpha =(β−tβ)αφ ( t ) = ( β β − i t ) α \varphi(t)=(\frac{\beta}{\beta-it})^\alpha φ(t)=(β−itβ)αM ′ ( t ) = β α ( β − t ) − α − 1 α M'(t)=\beta^\alpha(\beta-t)^{-\alpha-1}\alpha M′(t)=βα(β−t)−α−1α E X = M ′ ( 0 ) = α β EX=M'(0)=\frac{\alpha}{\beta}EX=M′(0)=βαM ′ ′ ( t ) = β α ( β − t ) − α − 2 α ( α + 1 ) M''(t)=\beta^\alpha(\beta-t)^{-\alpha-2}\alpha(\alpha+1)M′′(t)=βα(β−t)−α−2α(α+1) E X 2 = α ( α + 1 ) β 2 EX^2=\frac{\alpha(\alpha+1)}{\beta^2}EX2=β2α(α+1) D X = E X 2 − ( E X ) 2 = α β 2。
北大随机过程课件:第 3 章 第 6 讲 特征函数与母函数

特征函数、母函数、矩母函数确定随机变量的概率密度函数/分布律 方便求解独立随机变量和的分布函数一类问题可以通过微分运算求随机变量的数字特征1.特征函数:设随机变量ξ的分布函数为F(x), 概率密度函数为f(x), 称:(){}()()jt jtx jtx t E e e dF x e f x dx ξ∞∞−∞−∞Φ===∫∫ 为随机变量ξ的分布函数的特征函数,或ξ的特征函数,特征函数是概率密度函数的付氏变换。
特征函数的性质:1.特征函数与概率密度函数相互唯一地确定;2.两个相互统计独立的随机变量和的特征函数等于各个随机变量特征函数的积;3.特征函数与随机变量的数字特征的关系:()0()|{}k k k t t j E ξ=Φ=典型随机变量的特征函数1. 两点分布的特征函数:()jt t q pe Φ=+2. 二项式分布的特征函数:()()n jt t q pe Φ=+3. 几何分布:()1jtjtpe t qe Φ=− 4. 泊松分布(λ):(1)()jt e t eλ−−Φ= 5. 正态分布2(,)N σ∂:22()exp{}2t t j t σΦ=∂−6. 均匀分布[0,1]:1()jt e t jt−Φ= 7. 负指数分布:()t jtλλΦ=−2.母函数研究分析非负整值随机变量时,可以采用母函数法:对于一个取非负整数值n=0,1,2,……,的随机变量x ,,其相应的矩生成函数定义为: 0()()n n z p x n z ∞=Φ==⋅∑(1/)z Φ是序列()p x n =的正常的z 变换母函数的性质:1. 两个相互统计独立的随机变量和的母函数等于各个随机变量的母函数的积。
2. 随机个独立同分布的非负整值随机变量和的矩生成函数是原来两个母函数的复合(见附合泊松过程的应用)3.()000(),()!1,2,k k z z z p z k p k ==Φ=Φ=="通过母函数有理分式的幂级数展开等方法,得到随机变量的概率分布表达式。
随机过程第四版_Ch1_刘次华_(修改)

peit 1 qeit
ps 1 qs
1.4 特征函数、母函数
常见随机变量的数学期望、方差、特征函数和矩母函数
分布
均匀分布
期望
ab 2
方差
特征函数 矩母函数
e ibt e iat i (b a)t e bt e at (b a ) t
b a 2
12
N ( , )
Y Xk
k 1
的母函数H(s)=G(P(s)) , EY=ENEX1 其中G(s),P(s)分别是N,X1的母函数
• 例:某商店一天到达的顾客总数N服从 均值λ的泊松分布,用X1,X2,…,XN表示 各顾客购买商品的情况, Xi=1表示第i 个顾客购买了商品, Xi=0表示第i个顾 客没有购买商品, P(Xi=1)=p, P(Xi=0)=1-p=q, i=1,2,…,N。 X1,X2,…,XN相互独立且和N独立。用Y 表示购买商品的顾客数,求Y的分布, 及EY。
例:观察某路公交车某站候车人数,
={0,1,2,„};
记 A={至少有10人候车}={10,11,12,„} , A为随机事件,A可能发生,也可能不发生。
B={至少有0人候车}= ,为必然事件
C={有1.5人候车} = Φ,为不可能事件,Φ 不包含
任何样本点。
1.1 概率空间
定义1.1 -代数(事件域) 集合的某些子集组成集合族F (1)F (必然事件) (2)若AF, 则\AF (对立事件) (3)若AiF,i=1,2…,则 A F (可 i i 1 列并事件)
F4 ={,{正反}, {正正,反正,反反} , } Fi为-代数,(,Fi)为可测空间
F={,{正正},{正反},{反正},{反反}, {正正,正反},{正正,反正},{正正, 反反},{正反,反正},{正反,反反}, {反正,反反},{正正,正反,反正}, {正正,正反,反反},{正正,反正,反 反},{正反,反正,反反},{正正,正 反,反正,反反}} 为-代数,( , F ) 为可测空间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k =1 n
n
k =1
Ex.7 随机变量Y~B(n, p),写出其特征函数 写出其特征函数. 随机变量 ~ 写出其特征函数 二项分布随机变量Y可表示为 解 二项分布随机变量 可表示为Y = ∑ X k ,且 且 Xk~B(1, p),k=1,2,…,n, 相互独立,故Y 的特征 相互独立, , 函数为 n
g(t1 , t2 ) = E[e
i ( t1 X + t 2Y )
]= ∫
∞
∞ ∞
∫
∞
ei (t1 x+t2 y )dF( x, y)
连续型 离散型
g(t1 , t 2 ) = ∫
∞
∞ ∞
∫
∞
e i (t1 x + t2 y ) f ( x, y)dxdy
i ( t1 X r + t 2YsS )
特征函数、 §1.4 特征函数、母函数
一、特征函数的定义及例子 是实随机变量, 定义 设X,Y是实随机变量,复随机变量 是实随机变量 Z=X+i Y, , 的数学期望定义为 E ( Z ) = E ( X ) + i E (Y ), i = 1 特别 X是实随 是实随 itX Ee = E (costX ) + i E (sintX ) 机变量
g ( t ) = ∫ e itx f ( x )dx;
∞
+∞
g ( t ) = ∑ e itxk pk .
k
Ex.1 单点分布 P{X = c} = 1,
g( t ) = E (e itc ) = e itc , t ∈ R.
Ex.2 两点分布
g( t ) = e (1 p) + e
it 0 it 1
p
= 1 p + pe it = q + pe it , t ∈ R.
Ex.3 指数分布
λ e λ x , f ( x) = 0,
itx λx
x ≥ 0; x < 0.
(λ > 0)
g( t ) = ∫ λe e
0
+∞
dx
=
+∞ λx ∫0 λe costxdx
+i
+ ∞ λx λ ∫0 e sintxdx
t2
2
,则
φ
k =1
∑ Xk
n
(t ) = ∏ φ X k (t ) =
k =1
n
n
nt 2 e 2
,
,
t∈R
t∈R
从而 φ Y (t ) = φ
k =1
∑ Xk
(t
n
)=
t2 e 2
由唯一性定理知, ~ 由唯一性定理知,Y~N(0,1).
五、多维随机变量的特征函数 二维随机变量(X, 的特征函数定义为 定义 二维随机变量 Y)的特征函数定义为
∫ ∞ ∫ ∞
1
i t 1 x1 +L+ tn xn
(
)
n)
性质: 性质: 随机变量X 随机变量 1,X2,…,Xn相互独立的充要条件是
g ( t1 , t 2 , L , t n ) = k∏1 g X =
n
(tk ) k
母函数的概念: 定义:离散型随机变量 定义:离散型随机变量X 的分布律为 P{X=k}=Pk, k=0,1,2,…
k
存在,且 存在,
E ( X k ) = i ( k ) g k (0),
( k ≤ n)
Ex.5 随机变量 的概率密度为 随机变量X的概率密度为
1 cosx , f ( x) = 2 0, π π ≤ x≤ ; 2 2 其它.
求 E( X ) 和 D( X ).
解
g( t ) = 2∫
π
t ∈ R.
性质3 随机变量X的特征函数 性质 随机变量 的特征函数 g (t )在R上一致 上一致 连续,即对 连续 即对
ε > 0, δ > 0, 使 h < δ 时,对t 一致地有 对
g(t + h) g(t ) < ε
一般, 一般,δ =δ( ,t) ε
性质4 特征函数是非负定的函数, 性质 特征函数是非负定的函数,即对任意 正整数n, 任意复数 1, z2 ,…, zn,及 t r ∈ R, r = 1,2,L, n, 正整数 任意复数z 有
记 X ( s ) = E ( s ) = ∑ Pk s ,
X k k
称为随机变量X的母函数 称为随机变量 的母函数.
如X~P(λ),则 ~ 则
( s ) =
k =0
∑e
∞
λ
λ k λ (λs ) s = ∑e =e λ ( s 1) k! k! k =0
k
∞
k
母函数性质 母函数性质 1)有限个相互独立的随机变量之和的母函数 ) 等于各个随机变量的母函数之和; 等于各个随机变量的母函数之和; 2) (1) = 1, )
1
t it λ = λ 2 2 + iλ 2 2 = 1 . λ λ +t λ +t
二、特征函数性质 性质1 任意随机变量的特征函数均存在,并满足: 性质 任意随机变量的特征函数均存在,并满足:
1)
证
g ( t ) ≤ g (0 ) = 1;
2) g(t ) = g(t ).
g ( t ) = E (e itX ) ≤ E e itX = 1.
itX
是定义在(Ω 上的随机变量, 定义 设X是定义在(Ω P )上的随机变量,称 是定义在(Ω,F, 上的随机变量
g( t ) = E e
( )= ∫
itX
+∞
∞
e itx dF ( x )
特征函数. 为X 的特征函数.
关于X的分布函数 是eitx 关于 的分布函数 富里埃的富里埃-司蒂阶变换
当X 是连续型随机变量 当X 是离散型随机变量
2
0
1 cosx costx dx 2
(Q f ( x ) =
f ( x ))
1 π = ∫02 [cos ( t + 1) x + cos ( t 1) x ]dx 2
1 1 π 1 π sin( t + 1) + sin( t 1) , t ∈ R. = 2 t + 1 2 t 1 2
( )
= ∫ ∞ costxdF ( x ) + i ∫ ∞ sintxdF ( x )
+∞
+∞
=
∫ ∞ e
E (e
+∞
itx
dF( x )
注
1) t ∈ R, costx和sintx 均为有界函数 故 ) 均为有界函数, 和
) 总存在. 总存在. itX 2) E (e )是实变量t 的函数. 是实变量t 的函数.
n n
∑ ∑ g (t
r =1 s =1
r
t s )z r z s ≥ 0.
注 以上性质中 g (0) = 1, 一致连续性,非负定性 一致连续性, 是本质性的. 是本质性的
波赫纳—辛钦定理 波赫纳 辛钦定理 函数为特征函数的充分必 上一致连续, 要条件是 g(t ) 在R上一致连续,非负定且 g(0) = 1. 上一致连续 性质5 特征函数与矩的关系,若随机变量 若随机变量X的 性质 特征函数与矩的关系 若随机变量 的 n阶矩存在,则X的特征函数 g (t ) 的k 阶导数 g (t ) 阶矩存在, 阶矩存在 的特征函数
g ( t1 , t 2 ) = ∑ ∑ e
r s
pr , s .
维随机向量( 定义 n维随机向量 X1,X2,…,Xn)的分布函数 维随机向量 的分布函数 为F(x1,x2,…,xn),则它的特征函数为 ,
g ( t 1 , t 2 , L , t n ) = E [e ] ∞ ∞ i (t1 x1 + L + t n x n ) L e dF ( x ,L, x =
Ex.4 设Y~N(μ,σ2),求其特征函数. 求其特征函数. ~ μ,σ ),求其特征函数 解:设X~N( 0,1),有Y=σX+, 且 ~ ,
g X (t ) = e
1 t2 2
, t ∈ R.
1 σ 2t 2 2
g Y ( t ) = e i t g X (σ t ) = e i t e
,
gY ( t ) = ∏ g X k ( t ) = ( q + pe it ) n
k =1
n
k =1
Ex.8 若X1,X2,…,Xn相互独立,且Xk~N(0,1), 相互独立,
1 n 也服从N(0,1)分布. 分布. 证明 Y = 分布 ∑ X k 也服 ) = e
E( X ) = ′(1), E( X 2 ) = ′′(1) + ′(1) .
3)非负整数值的随机变量的分布列由母函数唯 ) 一确定
F ( x ) φ(t )
问题 能否由 的特征函数唯一确定其分布函数? 能否由X的特征函数唯一确定其分布函数 的特征函数唯一确定其分布函数?
φ(t ) F ( x )
φ(t )
F ( x) ?
四、独立随机变量和的特征函数 随机变量X 相互独立, 定理 随机变量 1 ,X2 ,…,Xn相互独立,令 Y = ∑ X k 则
1 ′ ( 0 ) = 0, ′′ ( 0 ) = 2 π 2 . 因 φ 4
故
E ( X ) = i g′(0) = 0;
1
1 2 1 2 D( X ) = E ( X ) = i g′′(0) = 2 π = π 2. 4 4