北京市高考数学考试(理科)(附详细答案)
2022年北京市高考数学试题(含答案解析)

所以,“ 是递增数列” “存在正整数 ,当 时, ”;
若存在正整数 ,当 时, ,取 且 , ,
假设 ,令 可得 ,且 ,
当 时, ,与题设矛盾,假设不成立,则 ,即数列 是递增数列.
所以,“ 是递增数列” “存在正整数 ,当 时, ”.
所以,“ 是递增数列”是“存在正整数 ,当 时, ”的充分必要条件.
A. B. C. D.
【答案】B
【解析】
【分析】求出以 为球心,5为半径的球与底面 的截面圆的半径后可求区域的面积.
【详解】
设顶点 在底面上的投影为 ,连接 ,则 为三角形 的中心,
且 ,故 .
因为 ,故 ,
故 的轨迹为以 为圆心,1为半径的圆,
而三角形 内切圆的圆心为 ,半径为 ,
故 的轨迹圆在三角形 内部,故其面积为
当 , 时,因 ,故此时二氧化碳处于超临界状态,故D正确.
故选:D
8.若 ,则 ()
A. 40B. 41C. D.
【答案】B
【解析】
【分析】利用赋值法可求 的值.
【详解】令 ,则 ,
令 ,则 ,
故 ,
故选:B.
9.已知正三棱锥 的六条棱长均为6,S是 及其内部的点构成的集合.设集合 ,则T表示的区域的面积为()
C.当 , 时,二氧化碳处于超临界状态
D.当 , 时,二氧化碳处于超临界状态
【答案】D
【解析】
【分析】根据 与 的关系图可得正确的选项.
【详解】当 , 时, ,此时二氧化碳处于固态,故A错误.
当 , 时, ,此时二氧化碳处于液态,故B错误.
当 , 时, 与4非常接近,故此时二氧化碳处于固态,
2024年北京高考数学试题+答案详解

2024年北京高考数学试题+答案详解(试题部分)一、单选题1.已知集合{|31}M x x =−<<,{|14}N x x =−≤<,则M N ⋃=( ) A .{}11x x −≤< B .{}3x x >− C .{}|34x x −<< D .{}4x x <2.已知1i iz=−−,则z =( ). A .1i −−B .1i −+C .1i −D .1i +3.圆22260x y x y +−+=的圆心到直线20x y −+=的距离为( )AB .2C .3D .4.在(4x 的展开式中,3x 的系数为( ) A .6B .6−C .12D .12−5.设 a ,b 是向量,则“()()·0a b a b +−=”是“a b =−或a b =”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.设函数()()sin 0f x x ωω=>.已知()11f x =−,()21f x =,且12x x −的最小值为π2,则ω=( ) A .1B .2C .3D .47.生物丰富度指数 1ln S d N−=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则( ) A .2132N N =B .2123N N =C .2321N N = D .3221N N =8.如图,在四棱锥P ABCD −中,底面ABCD 是边长为4的正方形,4PA PB ==,PC PD ==为( ).A .1B .2 CD9.已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 10.已知()(){}2,|,12,01M x y y x t xx x t ==+−≤≤≤≤是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值,S 是M 表示的图形的面积,则( )A .3d =,1S <B .3d =,1S >C .d 1S <D .d =1S >二、填空题11.抛物线216y x =的焦点坐标为 .12.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于原点对称.若ππ,63α⎡⎤∈⎢⎥⎣⎦,则cos β的最大值为 .13.若直线()3y k x =−与双曲线2214xy −=只有一个公共点,则k 的一个取值为 .14.汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为 65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为 mm ,升量器的高为 mm .15.设{}n a 与{}n b 是两个不同的无穷数列,且都不是常数列.记集合{}*|,N k k M k a b k ==∈,给出下列4个结论:①若{}n a 与{}n b 均为等差数列,则M 中最多有1个元素; ②若{}n a 与{}n b 均为等比数列,则M 中最多有2个元素; ③若{}n a 为等差数列,{}n b 为等比数列,则M 中最多有3个元素; ④若{}n a 为递增数列,{}n b 为递减数列,则M 中最多有1个元素. 其中正确结论的序号是 . 三、解答题16.在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =. (1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分. 17.如图,在四棱锥P ABCD −中,//BC AD ,1AB BC ==,3AD =,点E 在AD 上,且PE AD ⊥,2PE DE ==.(1)若F 为线段PE 中点,求证://BF 平面PCD .(2)若AB ⊥平面PAD ,求平面PAB 与平面PCD 夹角的余弦值.18.某保险公司为了了解该公司某种保险产品的索赔情况,从合同险期限届满的保单中随机抽取1000份,记录并整理这些保单的索赔情况,获得数据如下表:假设:一份保单的保费为0.4万元;前3次索赔时,保险公司每次赔偿0.8万元;第四次索赔时,保险公司赔偿0.6万元.假设不同保单的索赔次数相互独立.用频率估计概率. (1)估计一份保单索赔次数不少于2的概率;(2)一份保单的毛利润定义为这份保单的保费与赔偿总金额之差. (i )记X 为一份保单的毛利润,估计X 的数学期望()E X ;(ⅱ)如果无索赔的保单的保费减少4%,有索赔的保单的保费增加20%,试比较这种情况下一份保单毛利润的数学期望估计值与(i )中()E X 估计值的大小.(结论不要求证明)19.已知椭圆E :()222210x y a b a b+=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.20.设函数()()()ln 10f x x k x k =++≠,直线l 是曲线()y f x =在点()()(),0t f t t >处的切线. (1)当1k =−时,求()f x 的单调区间. (2)求证:l 不经过点()0,0.(3)当1k =时,设点()()(),0A t f t t >,()()0,C f t ,()0,0O ,B 为l 与y 轴的交点,ACOS与ABOS分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S =△△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10<<,1.60ln51.61<<,1.94ln71.95<<)21.已知集合(){}{}{}{}{},,,1,2,3,4,5,6,7,8,M i j k w i j k w i j k w =∈∈∈∈+++且为偶数.给定数列128:,,,A a a a ,和序列12:,,s T T T Ω,其中()(),,,1,2,,t t t t t T i j k w M t s =∈=,对数列A 进行如下变换:将A 的第1111,,,i j k w 项均加1,其余项不变,得到的数列记作()1T A ;将()1T A 的第2222,,,i j k w 项均加1,其余项不变,得到数列记作()21T T A ;……;以此类推,得到()21sT T T A ,简记为()A Ω.(1)给定数列:1,3,2,4,6,3,1,9A 和序列()()():1,3,5,7,2,4,6,8,1,3,5,7Ω,写出()A Ω;(2)是否存在序列Ω,使得()A Ω为123456782,6,4,2,8,2,4,4a a a a a a a a ++++++++,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且1357a a a a +++为偶数,求证:“存在序列Ω,使得()A Ω的各项都相等”的充要条件为“12345678a a a a a a a a +=+=+=+”.2024年北京高考数学试题+答案详解(答案详解)一、单选题1.已知集合{|31}M x x =−<<,{|14}N x x =−≤<,则M N ⋃=( ) A .{}11x x −≤< B .{}3x x >− C .{}|34x x −<< D .{}4x x <【答案】C【详解】根据题意得{}|34M x x N ⋃=−<<. 故选C. 2.已知1i iz=−−,则z =( ). A .1i −− B .1i −+C .1i −D .1i +【答案】C【详解】根据题意得()i 1i i 1z =−−=−. 故选C.3.圆22260x y x y +−+=的圆心到直线20x y −+=的距离为( ) AB .2C .3D.【答案】D【详解】根据题意得22260x y x y +−+=,即()()221310x y −++=, 则其圆心坐标为()1,3−,则圆心到直线20x y −+==故选D.4.在(4x 的展开式中,3x 的系数为( ) A .6 B .6− C .12 D .12−【答案】A【分析】写出二项展开式,令432r−=,解出r 然后回代入二项展开式系数即可得解.【详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr r rr T x xr −−+==−=,令432r −=,解得2r =,即()224C 16−=. 故选A.5.设 a ,b 是向量,则“()()·0a b a b +−=”是“a b =−或a b =”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【详解】因为()()220a b a b a b +⋅−=−=,可得22a b =,即a b =,可知()()0a b a b +⋅−=等价于a b =,若a b =或a b =−,可得a b =,即()()0a b a b +⋅−=,可知必要性成立; 若()()0a b a b +⋅−=,即a b =,无法得出a b =或a b =−,例如()()1,0,0,1a b ==,满足a b =,但a b ≠且a b ≠−,可知充分性不成立; “()()0a b a b +⋅−=”是“a b ≠且a b ≠−”的必要不充分条件. 故选B.6.设函数()()sin 0f x x ωω=>.已知()11f x =−,()21f x =,且12x x −的最小值为π2,则ω=( ) A .1 B .2 C .3 D .4【答案】B【详解】根据题意可知:1x 为()f x 的最小值点,2x 为()f x 的最大值点, 则12min π22T x x −==,即πT =,且0ω>,所以2π2Tω==. 故选B.7.生物丰富度指数 1ln S d N−=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则( ) A .2132N N =B .2123N N =C .2321N N = D .3221N N = 【答案】D【分析】根据题意分析可得12112.1,3.15ln ln S S N N −−==,消去S 即可求解. 【详解】根据题意得12112.1, 3.15ln ln S S N N −−==,则122.1ln 3.15ln N N =,即122ln 3ln N N =,所以3221N N =. 故选D.8.如图,在四棱锥P ABCD −中,底面ABCD 是边长为4的正方形,4PA PB==,PC PD ==为( ).A .1B .2 CD 【答案】D【详解】底面ABCD 为正方形,当相邻的棱长相等时,不妨设4,PA PB AB PC PD =====分别取,AB CD 的中点,E F ,连接,,PE PF EF ,则,PE AB EF AB ⊥⊥,且PE EF E ⋂=,,PE EF ⊂平面PEF , 可知AB ⊥平面PEF ,且AB ⊂平面ABCD , 所以平面PEF ⊥平面ABCD ,过P 作EF 的垂线,垂足为O ,即PO EF ⊥, 由平面PEF 平面ABCD EF =,PO ⊂平面PEF , 所以PO ⊥平面ABCD ,根据题意可得:2,4PE PF EF ===,则222PE PF EF +=,即PE PF ⊥,则1122PE PF PO EF ⋅=⋅,可得PE PFPO EF⋅==当相对的棱长相等时,不妨设4PA PC ==,PB PD ==因为BD PB PD ==+,此时不能形成三角形PBD ,这样情况不存在. 故选D.9.已知()11,x y ,()22,x y 是函数2x y =的图象上两个不同的点,则( ) A .12122log 22y y x x ++< B .12122log 22y y x x ++> C .12212log 2y y x x +<+ D .12212log 2y y x x +>+ 【答案】B【详解】根据题意不妨设12x x <,因为函数2x y =是增函数,所以12022x x <<,即120y y <<,AB.可得121222222x xx x ++>=,即12122202x x y y ++>>, 根据函数2log y x =是增函数,所以121212222log log 222x x y y x x+++>=,A 正确,B 错误;C.例如120,1x x ==,则121,2y y ==,可得()12223log log 0,122y y +=∈,即12212log 12y y x x +<=+,C 错误;D.例如121,2x x =−=−,则1211,24y y ==,可得()122223log log log 332,128y y +==−∈−−,即12212log 32y y x x +>−=+,D 错误, 故选B. 10.已知()(){}2,|,12,01M x y y x t xx x t ==+−≤≤≤≤是平面直角坐标系中的点集.设d 是M 中两点间距离的最大值,S 是M 表示的图形的面积,则( )A .3d =,1S <B .3d =,1S > C.d 1S < D.d =1S >【答案】C【分析】先以t 为变量,分析可知所求集合表示的图形即为平面区域212y x y x x ⎧≤⎪≥⎨⎪≤≤⎩。
2019年普通高等学校招生全国统考北京理科数学卷附答案解析

2019年普通高等学校招生全国统考北京理科数学卷本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数z =2+i ,则z z ⋅=(A )3 (B )5(C )3 (D )5(2)执行如图所示的程序框图,输出的s 值为(A )1(B )2(C )3(D )4(3)已知直线l 的参数方程为13,24x t y t=+=+⎧⎨⎩(t 为参数),则点(1,0)到直线l 的距离是(A )15(B )25(C )45(D )65(4)已知椭圆22221x y a b +=(a >b >0)的离心率为12,则 (A )a 2=2b 2(B )3a 2=4b 2(C )a =2b(D )3a =4b(5)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为(A )−7(B )1(C )5(D )7(6)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 (A )1010.1(B )10.1(C )lg10.1(D )10−10.1(7)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y+=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2;③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 (A )①(B )②(C )①②(D )①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2019年高考理科数学北京卷理数(附参考答案和详解)

绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(北京卷)数学(理工农医类)总分:150分考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I卷一、选择题:本题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019北京卷·理)已知复数2iz=+,则z z⋅=()A.3B.5C.3D.5【解析】因为2iz z⋅=+⋅-=.故选D.z=+,所以2iz=-,所以(2i)(2i)5【答案】D2.(2019北京卷·理)执行如图所示的程序框图,输出的s值为()A.1B.2C.3D.4【解析】1,1k s ==;第一次循环:2s =,判断3,2k k <=;第二次循环:2s =,判断3,3k k <=;第三次循环:2s =,判断3k =.故输出2,故选B. 【答案】B3.(2019北京卷·理)已知直线l 的参数方程为13,24x t y t=+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是( )A.15B.25C.45D.65【解析】由题意可知直线l 的普通方程为4320x y -+=,由点到直线的距离公式可得点(1,0)到直线l的距离65d ==.故选D. 【答案】D4.(2019北京卷·理)已知椭圆22221(0)x y a b a b+=>>的离心率为12,则( )A.222a b =B.2234a b =C.2a b =D.34a b =【解析】因为椭圆的离心率为12c e a ==,所以224a c =.又222a b c =+,所以2234a b =.故选B. 【答案】B5.(2019北京卷·理)若x ,y 满足||1x y ≤-,且1y ≥-,则3x y +的最大值为( )A.7-B.1C.5D.7【解析】由||1x y ≤-,且1y ≥-,得10,10,1.x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩作出可行域如图阴影部分所示.设3z x y =+,则3y x z =-+,作直线0:3l y x =-,并进行平移.显然当0l 经过点(2,1)A -时,z 取得最大值,max 3215z =⨯-=.故选C. 【答案】C6.(2019北京卷·理)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足12125lg2E m m E -=,其中星等为k m 的星的亮度为(1,2)k E k =.已知太阳的星等是26.7-,天狼星的星等是 1.45-,则太阳与天狼星的亮度的比值为( )A.10.110B.10.1C.lg10.1D.10.110-【解析】由题意知,126.7m =-,2 1.45m =-,代入所给公式得1251.45(26.7)lg 2EE ---=,所以12lg10.1E E =,所以10.11210EE =.故选A. 【答案】A7.(2019北京卷·理)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】因为设点A ,B ,C 不共线,由向量加法的三角形法则,可知BC AC AB =-,所以||||AB AC BC +>等价于||||AB AC AC AB +>-,因模为正,故不等号两边平方得22222||||cos 2||||cos AB AC AB AC AC AB AC AB θθ++⋅⋅>+-⋅⋅(θ为AB 与AC 的夹角),整理得4||||cos 0AB AC θ⋅⋅>,故cos 0θ>,即θ为锐角.又以上推理过程可逆,所以“AB 与AC 的夹角为锐角”是“AB AC BC +>”的充分必要条件.故选C. 【答案】C8.(2019北京卷·理)数学中有许多形状优美、寓意美好的曲线,曲线22:1||C x y x y +=+就是其中之一(如图).给出下列三个结论: ①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C③曲线C 所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是( )A.①B.②C.①②D.①②③【解析】由221||x y x y +=+,当0x =时,1y =±;当0y =时,1x =±;当1y =时,01x =±,.故曲线C 恰好经过6个整点:(0,1)A ,(0,1)B -,(1,0)C ,(1,1)D ,(1,0)E -,(1,1)F -,所以①正确.由基本不等式,当0y >时,22221||1||12x y x y x y xy ++=+=+≤+,所以222x y +≤222x y +≤②正确.如图,由①知矩形CDFE 的面积为2,△BCE 的面积为1,所以曲线C 所围成的“心形”区域的面积大于3,故③错误.故选C. 【答案】C第Ⅱ卷二、填空题:本题共6小题,每小题5分。
2021年北京高考理科数学真题及答案

2021年北京高考理科数学真题及答案本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试完毕后,将本市卷和答题卡一并交回。
第一局部〔选择题共40分〕一、选择题共8小题,每题5分,共40分。
在每题列出的四个选项中,选出符合题目要求的一项。
〔1〕假设集合{}21A x x =-<<,{}13B x x x =<->或,那么AB =〔 〕。
〔A 〕{}21x x -<<- 〔B 〕{}23x x -<< 〔C 〕{}11x x -<< 〔D 〕{}13x x <<【答案】A【难度】容易【点评】此题在高考数学〔理〕进步班讲座 第一章?集合?中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
〔2〕假设复数()()1i a i -+在复平面内对应的点在第二象限,那么实数a 的取值范围是〔 〕。
〔A 〕(),1-∞i 〔B 〕(),1-∞-〔C 〕()1,+∞〔D 〕(1,)-+∞【答案】B 【难度】容易【点评】此题在高二数学〔理〕下学期课程讲座 第四章?复数?中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
〔3〕执行如下图的程序框图,输出的s 值为〔 〕。
〔A〕2〔B〕3 2〔C〕5 3〔D〕8 5【答案】C【难度】容易【点评】此题在高考数学〔理〕进步班讲座第十三章?算法与统计?中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
〔4〕假设,x y满足3,2,,xx yy x≤⎧⎪+≥⎨⎪≤⎩那么2x y+的最大值为〔〕。
〔A〕1〔B〕3〔C〕5〔D〕9 【答案】D【难度】容易【点评】此题在高考数学〔理〕进步班讲座 第二章?函数?中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
〔5〕函数()133xx f x ⎛⎫=- ⎪⎝⎭,那么()f x 〔 〕。
〔A 〕是奇函数,且在R 上是增函数 〔B 〕是偶函数,且在R 上是增函数 〔C 〕是奇函数,且在R 上是减函数 〔D 〕是偶函数,且在R 上是减函数【答案】A 【难度】中等【点评】此题在高考数学〔理〕进步班讲座 第三章?函数的性质及其应用?中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。
高考数学试卷(理科)

交付金额(元)
支付方式
(0,1000]
(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;
(Ⅱ)已知数列{an}的长度为p的递增子列的末项的最小值为 ,长度为q的递增子列的末项的最小值为 .若p<q,求证: < ;
(Ⅲ)设无穷数列{an}的各项均为正整数,且任意两项均不相等.若{an}的长度为s的递增子列末项的最小值为2s–1,且长度为s末项为2s–1的递增子列恰有2s-1个(s=1,2,…),求数列{an}的通项公式.
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A ①B. ②C. ①②D. ①②③
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分。
数f(x)=sin22x的最小正周期是__________.
10.设等差数列{an}的前n项和为Sn,若a2=−3,S5=−10,则a5=__________,Sn的最小值为__________.
普通高等学校招生全国统一考试
数 学(理)(北京卷)
本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)
一、选择题共8小题,每小题5分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知复数z=2+i,则
普通高等学校招生全国统一考试理科数学(北京卷)精校版(含答案)

号位封座密号场不考订装号证考准只卷名姓此级班2021 年普通高等学校招生全国统一考试( 北京卷 )理科数学考前须知:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2 .选择题的作答:每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第 I卷一、选择题:在每题给出的四个选项中,只有一项为哪一项符合题目要求的,每题 5 分,共 40 分.1.集合 A x x2, B–2,0,1,2 ,那么A IB 〔〕A . 0,1B .–1,0,1C.–2,0,1,2 D .–1,0,1,22.在复平面内,复数1的共轭复数对应的点位于〔〕1iA .第一象限B .第二象限C.第三象限 D .第四象限3.执行如下图的程序框图,输出的s 值为〔〕A .1B .5C.7D .7266124.“十二平均律〞是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要奉献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于12 2 .假八个单音频率为〔〕A .3 2 f312B. 22 f C. 25 f D5.某四棱锥的三视图如下图,在此四棱锥的侧面中,直角三角形的个数为〔A . 1B. 2C.3D6.设a,b均为单位向量,那么“a3b 3a b 〞是“〞的〔〕a bA .充分而不必要条件B .必要而不充分条件C.充分必要条件 D .既不充分也不必要条件7.在平面直角坐标系中,记 d 为点 P cos,sin到直线 x my 20的最大值为〔〕A . 1B. 2C.3D8.设集合 A x, y x y 1,ax y4, x ay2,那么〔〕A .对任意实数 a ,2,1AB .对任意实数a, 2,1AC.当且仅当 a 0 时, 2,1AD.当且仅当 a3 时,2,1A2第II 卷二、填空题共 6 小题,每题 5 分,共 30 分.9.设 a n是等差数列,且 a1 3 , a2a536,那么a n的通项公式为 _10.在极坐标系中,直线cos sin a a0与圆2cos 相切,11.设函数 f x cos xπ0,假设f x fπ对任意的实数64_________.12.假设x, y 满足 x1y 2 x ,那么 2y x 的最小值是 __________ .13.能说明“假设 f x f0对任意的 x0,2 都成立,那么 f x在 0,2 上是增函数〞为假命题的一个函数是 __________.2222x y x y1 .假设双曲线 N 的两条渐近线与椭圆M14.椭圆 M :a2b2 1 a b 0 ,双曲线 N:m2n2的四个交点及椭圆 M 的两个焦点恰为一个正六边形的顶点,那么椭圆M 的离心率为__________;双曲线 N 的离心率为 __________.三、解答题:本大题共 6 小题,共80 分,解容许写出文字说明,证明过程或演算步骤.15.〔本小题 13 分〕在△ ABC 中, a7 , b8 , cosB 1 .7〔 1〕求 A ;〔 2〕求AC 边上的高.16.〔本小题 14 分〕如图,在三棱柱ABC A1B1C1中, CC1平面 ABC , D ,E ,F ,AC BB的中点,AB BC5,AC AA2.AC , 1 1,11〔 1〕求证: AC平面 BEF ;(2〕求二面角 B CD C1的余弦值;(3〕证明:直线 FG 与平面 BCD 相交.17.〔本小题12 分〕电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.2015.0.250.201.好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.〔 1〕从电影公司收集的电影中随机选取 1 部,求这部电影是获得好评的第四类电影的概率;〔 2〕从第四类电影和第五类电影中各随机选取 1 部,估计恰有 1 部获得好评的概率;18.〔本小题 13 分〕设函数f x ax24a 1 x 4a 3 e x.〔 1〕假设曲线 y f x 在点 1, f 1处的切线与 x 轴平行,求 a ;〔 2〕假设 f x 在 x 2 处取得极小值,求a的取值范围.〔 3〕假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ k 1 〞表示第 k 类电影得到人们喜欢,“k0 〞表示第 k 类电影没有得到人们喜欢〔k1, 2, 3, 4, 5, 6〕.写出方差D 1, D 2, D 3, D 4, D 5, D 6的大小关系.19.〔本小题 14 分〕抛物线 C : y 22 px 经过点 P 1,2 .过点 Q 0,1 的直线 l 与抛物线 C 有两个 不同的交点 A , B ,且直线 PA 交 y 轴于 M ,直线 PB 交 y 轴于 N .〔 1〕求直线 l 的斜率的取值范围;uuuruuur uuur uuur1为定值.〔 2〕设 O 为原点, QMQO , QNQO ,求证:120.〔本小题 14分〕设 n 为正整数,集合 A=t 1,t 2,L , t n , t n 0,1 , k 1,2,对于集合 A 中的任意元素x 1 , x 2 ,L , x n 和y 1 , y 2 ,L , y n ,记 M, 1 x 1 y 1x 2y 2x 2y 2Lx n y nx n y n.x 1 y 12〔 1〕当 n 3 时,假设 1,1,0 , 0,1,1 ,求 M , 和 M, 的值;〔 2〕当 n 4 时,设 B 是 A 的子集, 且满足: 对于 B 中的任意元素 , ,当 ,相同奇数;当,不同时, M,是偶数.求集合B 中元素个数的最大值;〔 3〕给定不小于 2 的 n ,设 B 是 A 的子集,且满足:对于B 中的任意两个不同的元M, 0 .写出一个集合 B ,使其元素个数最多,并说明理由.2021 年普通高等学校招生全国统一考试( 北京卷 )理 科 数学 答 案第 I卷一、选择题:在每题给出的四个选项中,只有一项为哪一项符合题目要求的,每题5 分,共 40 分. 题号 1 2 3 4 5678 答案ADBDCCCD第 II 卷二、填空题:本大题共6 小题,每题 5 分,共 30 分.9. 【答案】 a n 6n 3 10. 【答案】 1211. 【答案】2312. 【答案】 313. 【答案】 y sin x 〔答案不唯一〕 14. 【答案】 3 1 ; 2三、解答题共 6 小题,共 80 分。
2024年北京市高考数学卷含答案 .

2024年北京市高考数学卷一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合M ={x|−4<x ≤1} N ={x|−1<x <3} 则M ∪N =( )。
A .{x|−4<x <3}B .{x|−1<x ≤1}C .{0,1,2}D .{x|−1<x <4}2.已知zi =i −1,则z =( )。
A .1−iB .−iC .−1−iD .13.求圆x 2+y 2−2x +6y =0的圆心到x −y +2=0的距离( )。
A .2√3B .2C .3√2D .√64.(x −√x)4的二项展开式中x 3的系数为( )。
A .15B .6C .−4D .−13 5.已知向量a ⃗ 和b ⃗ ,则(a +b ⃗ )·(a −b⃗ )=0是a ⃗ =b ⃗ 或a ⃗ =−b ⃗ 的( )条件。
A .必要而不充分条件 B .充分而不必要条件 C .充分且必要条件D .既不充分也不必要条件6.已知f(x)=sinωx(ω>0) f(x 1)=−1 f(x 2)=1 |x 1−x 2|min =π2则ω=( )。
A .1 B .2 C .3 D .47.记水的质量为d =S−1lnn并且d 越大水质量越好。
若S 不变 且d 1=2.1 d 2=2.2 则n 1与n 2的关系为( )。
A .n 1<n 2 B .n 1>n 2C .若S <1,则n 1<n 2;若S >1,则n 1>n 2;D .若S <1,则n 1>n 2;若S >1,则n 1<n 2;8.已知以边长为4的正方形为底面的四棱锥。
四条侧棱分别为4 4 2√2 2√2。
则该四棱锥的高为( )。
A .√22B .√32C .2√3D .√39.已知(x 1,y 1),(x 2,y 2)是函数y =2x 图象上不同的两点,则下列正确的是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C.充分必要条件D.既不充分也不必要条件
7.(5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )
A.3 ﻩB.2 ﻩC.2 ﻩD.2
8.(5分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与 最接近的是()
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.
A.{x|﹣2<x<﹣1}B.{x|﹣2<x<3}C.{x|﹣1<x<1}D.{x|1<x<3}
【分析】根据已知中集合A和B,结合集合交集的定义,可得答案.
【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},
∴A∩B={x|﹣2<x<﹣1}
故选:A.
【点评】本题考查的知识点集合的交集运算,难度不大,属于基础题.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
19.(13分)已知函数f(x)=excosx﹣x.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0, ]上的最大值和最小值.
20.(13分)设{an}和{bn}是两个等差数列,记cn=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.
∴ ,解得a<﹣1.
则实数a的取值范是(﹣∞,﹣1).
A.2ﻩB. C. D.
4.(5分)若x,y满足 ,则x+2y的最大值为()
A.1B.3ﻩC.5D.9
5.(5分)已知函数f(x)=3x﹣( )x,则f(x)()
A.是奇函数,且在R上是增函数ﻩB.是偶函数,且在R上是增函数
C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数
6.(5分)设 , 为非零向量,则“存在负数λ,使得 =λ ”是“ • <0”的()
(1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时, >M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.
ﻬ
2017年北京市高考数学试卷(理科)
参考答案与试题解析
一、选择题.(每小题5分)
1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()
(参考数据:lg3≈0.48)
A.1033B.1053ﻩC.1073ﻩD.1093
二、填空题(每小题5分)
9.(5分)若双曲线x2﹣ =1的离心率为 ,则实数m=.
10.(5分)若等差数列{an}和等比数列{bn}满足a1=b1=﹣1,a4=b4=8,则 =.
11.(5分)在极坐标系中,点A在圆ρ2﹣2ρcosθ﹣4ρsinθ+4=0上,点P的坐标为(1,0),则|AP|的最小值为.
北京市高考数学考试(理科)(附详细答案)
———————————————————————————————— 作者:
———————————————————————————————— 日期:
2017年北京市高考数学试卷(理科)
一、选择题.(每小题5分)
1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},则A∩B=()
A.{x|﹣2<x<﹣1}ﻩB.{x|﹣2<x<3}ﻩC.{x|﹣1<x<1}ﻩD.{x|1<x<3}
2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()
A.(﹣∞,1)B.(﹣∞,﹣1)ﻩC.(1,+∞)D.(﹣1,+∞)
3.(5分)执行如图所示的程序框图,输出的S值为()
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
17.(13分)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.
2.(5分)若复数(1﹣i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()
A.(﹣∞,1)ﻩB.(﹣∞,﹣1)C.(1,+∞)D.(﹣1,+∞)
【分析】复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,可得 ,解得a范围.
【解答】解:复数(1﹣i)(a+i)=a+1+(1﹣a)i在复平面内对应的点在第二象限,
12.(5分)在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα= ,则cos(α﹣β)=.
13.(5分)能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为.
14.(5分)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
(1)记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是.
(2)记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是.
三、解答题
15.(13分)在△ABC中,∠A=60°,c= a.
(1)求sinC的值;
(2)若a=7,求△ABC的面积.
16.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.