放缩法证明数列中的不等式ppt课件
用放缩法证明数列中的不等式

2n 2 n 1 2 n 1 奇偶型: ; 2n 2n 1 2n 1
2n 1 2n 1
奇偶型放缩为可求积
指数型可放缩 为等比模型
一. 放缩目标模型——可求和
(一)形如 a k (k为常数)
i i 1 n
1 1 1 1 例1 求证: 2 3 L n 1 (n N ) 2 2 2 2
* 2 2 2
证明
1 1 1 1 1 1 2 ( ) (n 2) Q 2 (2n 1) 4n 4n 4n(n 1) 4 n 1 n
1 1 1 1 1 1 ) 左边 1 (1 ) ( ) L ( 4 2 2 3 n 1 n 1 1 1 (1 ) 1 1 5 n 2 4 n 4 4
n
接求和,就先求和再放缩;若不能直接求和的,一般要 先将通项 an 放缩后再求和.
问题是将通项 an 放缩为可以求和且“不大不小”的 什么样的 bn 才行呢?其实,能求和的常见数列模型并不 多,主要有等差模型、等比模型、错位相减模型、裂项 相消模型等. 实际问题中, bn 大多是等比模型或裂项相 消模型.
评注
放缩法的证明过程就像“秋风扫落叶”一样干脆利落!
1 5 7 对 2 放缩方法不同,得到的结果也不同. 显然 2 , 3 4 n
故后一个结论比前一个结论更强,也就是说如果证明了变式 3,
1 那么变式 1 和变式 2 就显然成立. 对 2 的 3 种放缩方法体现了 n n 5 1 三种不同“境界” ,得到 2 的三个“上界” ,其中 最接近 3 k 1 k
用放缩法证明 数列中的不等式
张家界市第一中学 高三数学组
放缩法灵活多变,技巧性要求较高,所谓“放大一点 点就太大,缩小一点点又太小”,这就让同学们找不到头 绪,摸不着规律,总觉得高不可攀!
放缩法证明不等式

高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n knk (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn n n 21121)12(21--=- (6) n n n -+<+221 (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(13) 3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+ (15))2(1)1(1≥--<+n n n n n说明:1、用放缩法证明不等式,放缩要适应,否则会走入困境.例如证明4712111222<+++n .由k k k11112--<,如果从第3项开始放缩,正好可证明;如果从第2项放缩,可得小于2.当放缩方式不同,结果也在变化.2、放缩法一般包括:用缩小分母,扩大分子,分式值增大;缩小分子,扩大分母,分式值缩小;全量不少于部分;每一次缩小其和变小,但需大于所求,第一次扩大其和变大,但需小于所求,即不能放缩不够或放缩过头,同时放缩后便于求和.例18 求证2131211222<++++n . 分析:此题的难度在于,所求证不等式的左端有多项和且难以合并,右边只有一项.注意到这是一个严格不等式,为了左边的合并需要考查左边的式子是否有规律,这只需从21n 下手考查即可. 证明:∵)2(111)1(11112≥--=-<⋅=n nn n n n n n , ∴ +⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+<++++312121111131211222n 212111<-=⎪⎭⎫ ⎝⎛--+n n n201417. (12分)已知数列{}n a 满足111,31n n a a a +==+.(I)证明{12}n a +是等比数列,并求{}n a 的通项公式;(II)证明2111132n a a a +++<.【答案解析】解析:(I)∵131n n a a +=+11331111)223(22n n n n a a a a ++∴⇒+=+++=+ 1112132a a =+⇒= ∴{12}n a +是首项为32,公比为3的等比数列∴1*131333,2222n n n n n a a n N --⋅+==∈=⇒ (II)由(I)知,*13,2n n a n N -=∈,故 121213*********(13)n n a a a +++=++-+-- 12110331112()3333n n --+-≤+-+12111()11131331(1()).133323213nn n --=++++==⋅-<- 例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 (4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以 35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n。
利用放缩法证明数列型不等式

1 n(n 1)
1 n
-
1 n1
Sn
(1 1
1) 2
(1 2
1) 3
(1 n
1) n1
1
1 n
1
1
小结:可求和先求和,先裂项后放缩。
(2)先放缩后裂项
变式1.已知数列an 的通项公式为an
1 n2
, 且an 的前n项和为Sn,
求证 : Sn 2.
解析: an
1 n2
1 n(n 1)
(n 2)
3 2
.
解析 : 3n
-
2n
(1
2)n
2n
1
C
1 n
2
C
2 n
22
C
n n
2n
2n
C
2 n
22
2n(n
1)
(n 3)
1
1
1 1 1
3n
- 2n
2n(n 1)
2
(n
1)
n
(n 3)
当n
1时 ,S1
1
3 2
当n
2时 ,S 2
1
1 5
3 2
当n
3时 ,Sn
1
1 5
1 2
(1 2
1) 3
1 2
1
3 2
当n
2时 ,Sn
1
1 31
1 32
1 33
1 3n1
1
(1
1 3n
1 1
)
3 2
(1
1 3n
)
3 2
3
小结:先放缩构造成等比数列,再求和,最后二次放缩.
3.二项式定理放缩
5.3放缩法与反证法证明不等式课件(人教A版选修4-5)

2 2
2
∴n > 2时,
log n (n 1) log n (n 1) 1
log n n 1 2
课堂练习
2、若p>0,q>0,且p3+q3=2,
求证:p+q≤2
课堂小结
证明不等式的特殊方法: (1)放缩法:对不等式中的有关式子进行 适当的放缩实现证明的方法。 (2)反证法:先假设结论的否命题成立, 再寻求矛盾,推翻假设,从而证明结 论成立的方法。
例1、若a, b, c, dR+,求证:
a b c d 1 2 abd bca cd b d ac
证:记m =
a b c d abd bca cd b d ac
∵a, b, c, dR+
m a b c d 1 abcd abca cd ab d abc
例题
例2、已知a + b + c > 0,ab + bc + ca > 0, abc > 0, 求证:a, b, c > 0 证:设a < 0, ∵abc > 0, ∴bc < 0 又由a + b + c > 0, 则b + c > a > 0 ∴ab + bc + ca = a(b + c) + bc < 0 与题设矛盾 若a = 0,则与abc > 0矛盾, ∴必有a > 0 同理可证:b > 0, c > 0
1 1 1 1 2 3 n 2[( 1 0) ( 2 1) ( 3 2) ( n n 1)] 2 n.
2.3 反证法与放缩法 课件(人教A选修4-5)

z x 3 +(y+ )+(z+ )= (x+y+z). 2 2 2
(1)利用放缩法证明不等式,要根据不等式两端
的特点及已知条件(条件不等式),审慎地采取措施,
进行恰当地放缩,任何不适宜的放缩都会导致推证 的失败. (2)一定要熟悉放缩法的具体措施及操作方法, 利用放缩法证明不等式,就是采取舍掉式中一些正
[例 2]
2
已知实数 x、y、z 不全为零.求证:
2 2 2 2 2
3 x +xy+y + y +yz+z + z +zx+x > (x+ y+ 2 z).
[思路点拨] 解答本题可对根号内的式子进行配方
后再用放缩法证明.
[证明] = ≥
x2+xy+y2 y2 3 2 x+ + y 2 4 y2 x+ 2
点击下图进入创新演练
②依据假设推理论证;③推出矛盾以说明
而断定原命题成立.
2.不等式的证明方法——放缩法 放缩法证明的定义: 证明不等式时,通常把不等式中的某些部分的值 放大
或 缩小 ,简化不等式,从而达到证明的目的.
3.放缩法的理论依据主要有 (1)不等式的传递性; (2)等量加不等量为 不等量 ; (3)同分子(分母)异分母(分子)的两个分式大小的比较.
1.不等式的证明方法——反证法 (1)反证法证明的定义:先假设要证明的命题不成立,
然后由 此假设出发,结合已知条件,应用公理、定义、定
理、性质等,进行 正确的推理 ,得到和命题的条件 (或已证明的定理、性质、明显成立的事实等)矛盾的结论, 以说明 假设 不成立,从而证明原命题成立. (2)反证法证明不等式的一般步骤:①假设命题不成立; 假设不成立 ,从
(
)
B.a,b,c中至多有一个为0
放缩法大全

a −1 + 1 − 2a − ln x 解(1):令g ( x) = f ( x) − ln x = ax + x 1 (a , x 1) 2 a − 1 1 ax 2 − x + 1 − a [ax − (1 − a)]( x − 1) g ( x) = a − 2 − = = 2 x x x x2 1 a[ x − ( − 1)]( x − 1) a g ( x) = 0 (或用二次函数图象分 析) 2 x
1 1 1 1 1 1 + + ... + dx + dx + ... + dx 2 3 n +1 1 x x x 2 n
n +1 2 3 n +1
n
=
1
1 dx = ln( n + 1) x
1 n
n +1
n
1 dx = ln( n + 1) − ln n x
同理证右。
n +1 1 n ln( ) ln( ) n n n −1
所以:
ln n 2 f (n) − f (n − 1) 2 n
由
ln n 2 f (n) − f (n − 1) 2 n
取n=2,3,…,n累加
ln 2 2 ln 32 ln n 2 2n 2 − n − 1 + 2 + ... + 2 f (n) − f (1) = 2 2 3 n 2(n + 1)
1 m an = 4n − 3, { }前n项和为S n , 若S 2 n +1 − S n 恒成立, an 15 求整数m的最小值。
1 1 1 m 解: + + ... + 对n N + 恒成立, an +1 an + 2 a2 n +1 15 1 1 1 令f ( n ) = + + ... + , an +1 an + 2 a2 n +1 1 1 1 f (n − 1) = + + ... + an an +1 a2 n −1
放缩法证明不等式

放缩法证明不等式所谓放缩法,就是针对不等式的结构特征,运用不等式及有关的性质,对所证明的不等式的一边进行放大或缩小或两边放大缩小同时兼而进行,以达到证明结果的方法。
但无论是放大还是缩小都要遵循不等式传递性法则,保证放大还是缩小的连续性,不能牵强附会,须做到步步有据。
比如:证a <b ,可先证a <h 1,成立,而h 1<b 又是可证的,故命题得证。
数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。
“放缩法”可以和很多知识内容结合,对应变能力有较高的要求。
因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。
利用放缩法证明不等式,既要掌握放缩法的基本方法和技巧,又须熟练不等式的性质和其他证法。
做到放大或缩小恰到好处,才有利于问题的解决。
一、用放缩法证明不等式的基本策略1、运用放大、缩小分母或分子的办法来达到放缩的目的分式的放缩对于分子分母均取正值的分式,如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可.还可利用真分数的分子和分母加上同一个正数,则分数值变大;假分数的分子和分母加上同一个正数,则分数值变小来进行放缩. 例1、若a ,b ,c ,d 是正数.求证:12a b c d a b ca b db c da c d<+++<++++++++证明:a b c d a b c a b db c d a c d+++++++++++1abc da b c d a b c d a b c d a b c d>+++=++++++++++++又2a b c d a b c da b c a b d b c d a c d a b a b c d c d+++<+++=++++++++++++ 或a b c d a b ca b d b c da c d +++++++++++2a bb ca cb d a bcd a b c da b c da b c d++++<+++=++++++++++++(利用(0)a a mm b b m+<>+) ∴12a bcda b ca b d b c d a c d <+++<++++++++例2、求证:213121112222<++++n证明:∵nn n n n111)1(112--=-<∴2222111111*********232231nn nn++++<+-+-++-=-<-【变式】2222111171234n++++<∵nn n n n111)1(112--=-<∴2222211111111151171()()1232231424nn nn++++<++-++-=+-<-本题说明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即放不能太宽、缩不能太窄,真正做到恰到好处。
不等式放缩法

利用放缩法证明数列型不等式一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
裂项放缩法主要有两种类型:(1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。
例1设数列{}n a 的前n 项的和14122333n n n S a +=-⨯+,1,2,3,n =。
设2nn nT S =,1,2,3,n =,证明:132ni i T =<∑。
点评: 关键是将12(21)(21)n n n +--裂项成1112121n n +---,然后再求和,即可达到目标。
(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。
例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 71112n +≥。
点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成1122112222n n n n S S S S S S S ----+-++-+的和,从而找到了解题的突破口。
2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。
用于解决积式问题。
例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。
若3*3log 2(),n n c a n N =-∈证明对任意的*n ∈N ,不等式12111(1)(1+)(1+)nc c c +⋅⋅>点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。
33131(1+)()32n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131()323231332n n n n n n n n n n --++>⋅⋅=----,而通项式为31{}32n n +-的数列在迭乘时刚好相消,从而达到目标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2n 1)(2n 1) 2 2n 1 2n 1
左边 1 [(1 1) (1 1) L ( 1 1 )]
2 3 35
2n 1 2n 1
1 (1 1 ) 1 表面是证数列不等式, 2 2n 1 2 实质是数列求和
11
变式1 求证:1 1 1 L 1 2 (n N)
22 32
n2
分析 左边不能求和,应先将通项放缩为裂项相消
模型后求和.
Q 1 1 1 1 (n 2) n2 n(n 1) n 1 n
保留第一项, 从第二项开
始放缩
左边 1 (1 1) (1 1) L ( 1 1)
2 23
n 1 n
11 1 2 ቤተ መጻሕፍቲ ባይዱn 2) n
当n = 1时,不等式显然也成立.
1 22
1 32
L
1 n2
7 4
(n N)
变式3
求证:1
1 22
1 32
L
1 n2
5 3
(n N)
10
例2 (2013广东文19第(3)问)
求证: 1 1 1 L
1
1 (n N)
13 35 57
(2n 1)(2n 1) 2
分析 左边可用裂项相消法求和,先求和再放缩.
Q
1
1( 1 1 )
2 22 23
2n
2n
8
【方法总结之一】
n
放缩法证明与数列求和有关的不等式,若 ai 可直 i 1
接求和,就先求和再放缩;若不能直接求和的,一般要
先将通项 an 放缩后再求和.
问题是将通项 an 放缩为可以求和且“不大不小”的 什么样的 bn 才行呢?其实,能求和的常见数列模型并不
多,主要有等差模型、等比模型、错位相减模型、裂项
1 2 3 L n 2 n 2 2
2 22 23
2n
2n
表面是证数列不等式, 实质是数列求和
6
变式2
求证: 2
1 1
1 22 1
1 23 1
L
1 2n
1
1
(n N)
分析 左边不能直接求和,须先将其通项放缩后 求和,如何放缩?
注意到 1 1 2n 1 2n
将通项放缩为 等比数列
左边 1 1 2 22
12
变式2 (2013广东理19第(3)问)
求证:1
1 22
1 32
L
1 n2
7 4
(n N)
分析 变式2的结论比变式1强,要达目的,须将
变式1放缩的“度”进行修正,如何修正?
思路一 将变式1的通项从第三项才开始放缩.
1 n2
1 n(n 1)
1 n 1
1 n
(n 3)
保留前两项,从 第三项开始放缩
2n n
4
例1
求证:1 2
1 22
1 23
L
1 2n
1
(n N)
分析 不等式左边可用等比数列前n项和公式求和.
左边
1 (1 2
1 )
2n
1
1
1
1 1
2n
2
表面是证数列不等式,
实质是数列求和
5
变式1
求证:1 2
2 22
3 23
L
n 2n
2
(n N)
分析 不等式左边可用“错位相减法”求和.
由错位相减法得
2
常见的数列不等式大多与数列求和或求积有关,
其基本结构形式有如下 4 种:
n
n
①形如 ai k ( k 为常数);②形如 ai f (n) ;
i 1
i 1
n
n
③形如 ai f (n) ;④形如 ai k ( k 为常数).
i 1
i 1
3
一. 放缩目标模型——可求和
n
(一)形如 a k (k为常数) i
相消模型等. 实际问题中, bn 大多是等比模型或裂项相
消模型.
9
例2 (2013广东文19第(3)问)
求证: 1 1 1 L
1
1 (n N)
13 35 57
(2n 1)(2n 1) 2
变式1
求证:1
1 22
1 32
L
1 n2
2
(n N)
变式2 (2013广东理19第(3)问)
求证:1
1 23
L
1 2n
1 (1 1 ) 2 2n
1 1
1 1
2n
1
2
7
变式3
求证: 2
1
1
22
2
2
23
3
3
L
n 2n n 2
(n N)
分析 左边不能直接求和,须先将其通项放缩后求
和,如何放缩?
注意到 n n
2n n 2n
将通项放缩为 错 位相减模型
左边 1 2 3 L n 2 n 2 2
(n 3)
保留前两项, 从第三项开
始放缩
左边
1
1 22
1 2
(
1 2
1 4
)
(1 3
1 5
)
L
(
n
1 1
n
11)
1 1 1 (1 1 1 1 ) 1 1 1 (1 1) 5 (n 3)
2 2 n n1
2 24
当n = 1时,不等式显然也成立.
14
变式3
求证:1
1 22
1 32
L
1 n2
5 3
(n N)
分析 变式3的结论比变式2更强,要达目的,须将
变式2放缩的“度”进一步修正,如何修正?
思路一 将变式2思路二中通项从第三项才开始放缩.
1 n2
1 n2 1
1( 1 1 ) 2 n 1 n 1
i 1
例1 求证:1 1 1 L 1 1 (n N)
2 22 23
2n
变式1
求证:1 2
2 22
3 23
L
n 2n
2
(n N)
变式2
求证: 2
1 1
1 22 1
1 23 1
L
1 2n 1
1
(n N)
变式3 求证: 1 2 3 L n 2 (n N)
2 1 22 2 23 3
左边
1
1 22
(1 1) (1 1) L 23 34
( 1 1) n 1 n
1 1 1 1 7 1 7 (n 3) 42n 4n 4
当n = 1, 2时,不等式显然也成立.
13
变式2 (2013广东理19第(3)问)
求证:1
1 22
1 32
L
1 n2
7 4
(n N)
分析 变式2的结论比变式1强,要达目的,须将变
式1放缩的“度”进行修正,如何修正?
思路二 将通项放得比变式1更小一点. 保留第一项,
从第二项开
1 n2
1 n2
1
1( 1 2 n 1
1) n 1
(n
2)
始放缩
左边
1
1 2
(1
1) 3
(
1 2
1 4
)
L
(
n
1 1
1 n
1)
1 1 (1 1 1 1 ) 1 1 (1 1) 7 (n 2)
用放缩法证明 数列中的不等式
1
放缩法证明数列不等式是数列中的难点内容.放缩法 灵活多变,技巧性要求较高,所谓“放大一点点就太大, 缩小一点点又太小”,这就让同学们找不到头绪,摸不着 规律,总觉得高不可攀!高考命题专家说:“放缩是一种 能力.” 如何把握放缩的“度”,使得放缩“恰到好处”, 这正是放缩法的精髓和关键所在!其实,任何事物都有其 内在规律,放缩法也是“有法可依”的,本节课我们一起 来研究数列问题中一些常见的放缩类型及方法,破解其思 维过程,揭开其神秘的面纱,领略和感受放缩法的无限魅 力!