杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解 第11章 齿轮传动【圣才出品】
杨可桢《机械设计基础》复习笔记和课后习题(含考研真题)详解(齿轮传动)

圣才电子书
(2)齿面点蚀
十万种考研考证电子书、题库视频学习平台
①产生原因
a.疲劳点蚀首先出现在齿根表面靠近节线处;
b.在该处同时啮合的齿数较少,接触应力较大;
c.在该区域齿面相对运动速度低,难于形成油膜润滑,故所受的摩擦力较大;
d.在摩擦力和接触应力作用下,容易产生点蚀现象。
6 / 36
圣才电子书 十万种考研考证电子书、题库视频学习平台
④传递动力的齿轮,其模数不宜小于 1.5mm。 ⑤对于开式传动,考虑到齿面磨损,可将算得的 m 值加大 10%~15%。
2.计算载荷
计算齿轮强度时,通常用计算载荷 KFn 代替名义载荷 Fn ,其中 K 为载荷系数。
五、直齿圆柱齿轮传动的齿面接触强度计算 齿面接触疲劳强度校核公式为
设计公式为
式中,“+”用于外啮合,“-”用于内啮合; ZE ——弹性系数; ZH ——区域系数,对于标准齿轮, ZH 2.5 。
H 应取配对齿轮中的较小的接触应力。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 11 章 齿轮传动
11.1 复习笔记
一、轮齿的失效形式和设计计算准则 1.轮齿的失效形式 轮齿的主要失效形式有 5 种:轮齿折断、齿面点蚀、齿面胶合、齿面磨损和齿面塑性 变形。 (1)轮齿折断 ①产生原因 轮齿折断一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中。 ②主要类型 a.过载折断 轮齿因短时意外的严重过载而引起的突然折断,称为过载折断。 b.疲劳折断 在载荷的多次重复作用下,弯曲应力超过弯曲疲劳极限时,齿根部分将产生疲劳裂纹, 裂纹的逐渐扩展最终将引起轮齿折断,这种折断称为疲劳折断。 ③单(双)侧工作 a.若轮齿单侧工作,就任一侧而言,其应力都是按脉动循环变化。 b.若轮齿双侧工作,则弯曲应力可按对称循环变化作近似计算。
杨可桢《机械设计基础》(第6版)复习笔记及课后习题详解(含考研真题)-平面连杆机构【圣才出品】

第2章平面连杆机构2.1复习笔记【通关提要】本章主要介绍了平面四杆机构的基本类型、基本特性和设计方法。
学习时需要掌握铰链四杆机构有整转副的条件、急回特性的应用和计算、压力角与传动角以及死点位置的分析等内容。
本章主要以选择题、填空题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、平面四杆机构的基本类型及其应用(见表2-1-1)表2-1-1平面四杆机构的基本类型及其应用二、平面四杆机构的基本特性(见表2-1-2)表2-1-2平面四杆机构的基本特性图2-1-1图2-1-2连杆机构的压力角和传动角2.2课后习题详解2-1试根据图2-2-1所注明的尺寸判断下列铰链四杆机构是曲柄摇杆机构、双曲柄机构还是双摇杆机构。
图2-2-1答:(a)40+110=150<70+90=160满足杆长条件,且最短杆为机架,因此是双曲柄机构。
(b)45+120=165<100+70=170满足杆长条件,且最短杆的邻边为机架,因此是曲柄摇杆机构。
(c)60+100=160>70+62=132不满足杆长条件,因此是双摇杆机构。
(d)50+100=150<100+90=190满足杆长条件,且最短杆的对边为机架,因此是双摇杆机构。
2-2试运用铰链四杆机构有整转副的结论,推导图2-2-2所示偏置导杆机构成为转动导杆机构的条件(提示:转动导杆机构可视为双曲柄机构)。
图2-2-2答:根据铰链四杆机构有整转副的结论,则A、B均为整转副。
(1)当A为整转副时,要求AF能通过两次与机架共线的位置。
如图2-2-3中位置ABC′F′和ABC′′F′′。
在Rt△BF′C′中,因为直角边小于斜边,所以l AB +e<l BC。
同理,在Rt△BF′′C′′中,有l AB-e<l BC(极限情况取等号)。
综上,得l AB+e<l BC。
(2)当B为整转副时,要求BC能通过两次与机架共线的位置。
如图2-2-3中位置ABC1F1和ABC2F2。
杨可桢《机械设计基础》(第6版)笔记和课后习题详解(齿轮传动)

第11章齿轮传动11.1 复习笔记【通关提要】本章主要介绍了标准直齿圆柱齿轮传动、标准斜齿圆柱齿轮传动及标准直齿锥齿轮传动的作用力和强度计算。
学习时需要掌握齿轮传动的作用力分析及计算、失效形式及设计准则、计算载荷及参数选择,多以选择题、填空题和简答题的形式出现。
针对三种齿轮传动的强度计算,由于计算难度较大,通常以选择题和简答题的方式考查其中的重难点,比如设计计算中,许用应力的计算和选取,齿轮的受力分析等。
复习本章时不应以计算为重点,需理解记忆其中要点。
【重点难点归纳】一、轮齿的失效形式和设计计算准则1.轮齿的失效形式(见表11-1-1)表11-1-1 轮齿的失效形式2.齿轮设计计算准则(1)对于闭式齿轮传动,必须计算轮齿弯曲疲劳强度和齿面接触疲劳强度。
对于高速重载齿轮传动,还必须计算其抗胶合能力。
对于一般的传动,选择恰当的润滑方式和润滑油的牌号和粘度。
(2)对于开式传动,只需计算轮齿的弯曲疲劳强度,以免轮齿疲劳折断。
二、齿轮材料及热处理(见表11-1-2)表11-1-2 齿轮材料及热处理三、齿轮传动的精度1.误差对传动的影响(1)影响传递运动的准确性;(2)影响传动的平稳性;(3)影响载荷分布的均匀性。
2.齿轮传动精度等级的选用齿轮的精度按国家标准规定,可分为13个精度等级:0级最高,12级最低。
常用的是6~9级精度。
四、直齿圆柱齿轮传动的作用力及计算载荷(见表11-1-3)表11-1-3 直齿圆柱齿轮传动的作用力及计算载荷五、直齿圆柱齿轮传动的齿面接触强度计算(见表11-1-4)表11-1-4 直齿圆柱齿轮传动的齿面接触强度计算六、直齿圆柱齿轮传动的轮齿弯曲强度计算(见表11-1-5)表11-1-5 直齿圆柱齿轮传动的轮齿弯曲强度计算七、圆柱齿轮材料和参数的选取与计算方法(见表11-1-6)表11-1-6 圆柱齿轮材料和参数的选取与计算方法八、斜齿圆柱齿轮传动1.轮齿的作用力(见表11-1-7)表11-1-7 斜齿圆柱齿轮的作用力2.强度计算(见表11-1-8)。
杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解(第1~4章)【圣才出品】

圣才电子书 十万种考研考证电子书、题库视频学习平台
从动件是指机构中随原动件运动而运动的其余活动构件。其中输出预期运动的从动件称 为输出构件,其他从动件则起传递运动的作用。
三、平面机构的自由度 活动构件的自由度总数减去运动副引入的约束总数称为机构自由度,以 F 表示。 1.平面机构自由度计算公式
四、速度瞬心及其在机构速度分析上的应用
3 / 103
圣才电子书
1.速度瞬心及其求法
十万种考研考证电子书、题库视频学习平台
(1)速度瞬心
①定义
两刚体上绝对速度相同的重合点称为瞬心。
a.若两构件都是运动的,其瞬心称为相对瞬心;
b.若两构件中有一个是静止的,其瞬心称为绝对瞬心。
图 1-1-1 平面运动副的表示方法 2.构件的表示方法 构件的表示方法如图 1-1-2 所示。
图 1-1-2 构件的表示方法 3.机构中构件的分类 (1)机架(固定构件) 机架是用来支承活动构件的构件。 (2)主动件(原动件) 主动件是运动规律已知的活动构件,其运动是由外界输入的,又称输入构件。 (3)从动件
F 3n 2PL PH 3 8 2 11 0 2
(5)图 1-2-13 所示机构的自由度为
8 / 103
圣才电子书 十万种考研考证电子书、题库视频学习平台
F 3n 2PL PH 3 6 2 8 1 1
(6)图 1-2-14 中,滚子 1 处有一个局部自由度,则该机构的自由度为
d.当两构件组成滑动兼滚动的高副时,接触点的速度沿切线方向,其瞬心应位于过接
触点的公法线上。
②根据三心定理确定
三心定理:作相对平面运动的三个构件共有三个瞬心,这三个瞬心位于同一直线上。
机械设计基础课后问题详解(杨可桢)

1-1至1-4解机构运动简图如下图所示。
图 1.11 题1-1解图图1.12 题1-2解图图1.13 题1-3解图图1.14 题1-4解图1-5 解1-6 解1-7 解1-8 解1-9 解1-10 解1-11 解1-12 解1-13解该导杆机构的全部瞬心如图所示,构件 1、3的角速比为:1-14解该正切机构的全部瞬心如图所示,构件 3的速度为:,方向垂直向上。
1-15解要求轮 1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即,和,如图所示。
则:,轮2与轮1的转向相反。
1-16解( 1)图a中的构件组合的自由度为:自由度为零,为一刚性桁架,所以构件之间不能产生相对运动。
( 2)图b中的 CD 杆是虚约束,去掉与否不影响机构的运动。
故图 b中机构的自由度为:所以构件之间能产生相对运动。
题 2-1答 : a ),且最短杆为机架,因此是双曲柄机构。
b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。
c ),不满足杆长条件,因此是双摇杆机构。
d ),且最短杆的对边为机架,因此是双摇杆机构。
题 2-2解 : 要想成为转动导杆机构,则要求与均为周转副。
( 1 )当为周转副时,要求能通过两次与机架共线的位置。
见图 2-15 中位置和。
在中,直角边小于斜边,故有:(极限情况取等号);在中,直角边小于斜边,故有:(极限情况取等号)。
综合这二者,要求即可。
( 2 )当为周转副时,要求能通过两次与机架共线的位置。
见图 2-15 中位置和。
在位置时,从线段来看,要能绕过点要求:(极限情况取等号);在位置时,因为导杆是无限长的,故没有过多条件限制。
( 3 )综合( 1 )、( 2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是:题 2-3 见图 2.16 。
图 2.16题 2-4解 : ( 1 )由公式,并带入已知数据列方程有:因此空回行程所需时间;( 2 )因为曲柄空回行程用时,转过的角度为,因此其转速为:转 / 分钟题 2-5解 : ( 1 )由题意踏板在水平位置上下摆动,就是曲柄摇杆机构中摇杆的极限位置,此时曲柄与连杆处于两次共线位置。
杨可桢《机械设计基础》修订版考研笔记和考研真题

杨可桢《机械设计基础》修订版考研笔记和考研真题第1章平面机构的自由度和速度分析1.1 复习笔记【通关提要】本章是本书的基础章节之一,主要介绍了平面机构自由度的计算和平面机构的速度分析。
学习时需要掌握平面机构运动简图的绘制、自由度的计算和速度瞬心的应用等内容。
本章主要以选择题、填空题和计算题的形式考查,复习时需把握其具体内容,重点记忆。
【重点难点归纳】一、运动副及其分类(见表1-1-1)表1-1-1 运动副及其分类二、平面机构运动简图机构运动简图指用简单线条和符号来表示构件和运动副,并按比例定出各运动副的位置,来表明机构间相对运动关系的简化图形。
1机构中运动副表示方法机构运动简图中的运动副的表示方法如图1-1-1所示。
图1-1-1 平面运动副的表示方法2构件的表示方法构件的表示方法如图1-1-2所示。
图1-1-2 构件的表示方法3机构中构件的分类(见表1-1-2)表1-1-2 机构中构件的分类三、平面机构的自由度活动构件的自由度总数减去运动副引入的约束总数称为机构自由度,以F表示。
1平面机构自由度计算公式F=3n-2P L-P H式中,n为机构中活动构件的数目;P L为低副的个数;P H为高副的个数。
机构具有确定运动的条件是:机构的自由度F>0且F等于原动件数目。
2计算平面机构自由度的注意事项(见表1-1-3)表1-1-3 计算平面机构自由度的注意事项四、速度瞬心及其在机构速度分析上的应用(见表1-1-4)表1-1-4 速度瞬心及其应用本书是杨可桢《机械设计基础》(第6版)教材的学习辅导书,主要包括以下内容:1.整理名校笔记,浓缩内容精华。
在参考了国内外名校名师讲授该教材的课堂笔记基础上,复习笔记部分对该章的重难点进行了整理,因此,本书的内容几乎浓缩了该教材的知识精华。
2.解析课后习题,提供详尽答案。
本书参考了该教材的国内外配套资料和其他教材的相关知识对该教材的课(章)后习题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(NEW)杨可桢《机械设计基础》(第6版)笔记和课后习题(含考研真题)详解(修订版)

第1章 平面机构的自由度和速度分析 1.1 复习笔记 1.2 课后习题详解 1.3 名校考研真题详解
第2章 平面连杆机构 2.1 复习笔记 2.2 课后习题详解 2.3 名校考研真题详解
第3章 凸轮机构
3.1 复习笔记 3.2 课后习题详解 3.3 名校考研真题详解 第4章 齿轮机构 4.1 复习笔记 4.2 课后习题详解 4.3 名校考研真题详解 第5章 轮 系 5.1 复习笔记 5.2 课后习题详解
图1-2-1 唧筒机构
图1-2-2 回转柱塞泵
图1-2-3 缝纫机下针机构
图1-2-4 偏心轮机构 答:机构运动简图分别如图1-2-5~图1-2-8所示。
1-5至1-13.指出(图1-2-9~图1-2-17)机构运动简图中的复合铰链、局
部自由度和虚约束,计算各机构的自由度。
解:(1)图1-2-9所示机构的自由度为 (2)图1-2-10中,滚子1处有一个局部自由度,则该机构的自由度为 (3)图1-2-11中,滚子1处有一个局部自由度,则该机构的自由度为 (4)图1-2-12所示机构的自由度为
(5)图1-2-13所示机构的自由度为 (6)图1-2-14中,滚子1处有一个局部自由度,则该机构的自由度为 (7)图1-2-15中,滚子1处有一个局部自由度,A处为三个构件汇交的 复合铰链,移动副B、B'的其中之一为虚约束。则该机构的自由度为 (8)图1-2-16中,A处为机架、杆、齿轮三构件汇交的复合铰链。则该 机构的自由度为 (9)图1-2-17所示机构的自由度为 1-14.求出图1-2-18导杆机构的全部瞬心和构件1、3的角速比。
2015研、厦门大学2011研]
【答案】自由度大于0,且自由度数等于原动件数
2.两构件通过______或______接触组成的运动副称为高副。[常州大学 2015研]
机械设计基础课后答案(杨可桢)

1-1至1-4解机构运动简图如下图所示。
图1.11 题1-1解图图1.12 题1-2解图图1.13 题1-3解图图1.14 题1-4解图1-5 解1-6 解1-7 解1-8 解1-9 解1-10 解1-11 解1-12 解1-13解该导杆机构的全部瞬心如图所示,构件1、3的角速比为:1-14解该正切机构的全部瞬心如图所示,构件3的速度为:,方向垂直向上。
1-15解要求轮1与轮2的角速度之比,首先确定轮1、轮2和机架4三个构件的三个瞬心,即,和,如图所示。
则:,轮2与轮1的转向相反。
1-16解(1)图a中的构件组合的自由度为:自由度为零,为一刚性桁架,所以构件之间不能产生相对运动。
(2)图b中的CD 杆是虚约束,去掉与否不影响机构的运动。
故图b中机构的自由度为:所以构件之间能产生相对运动。
题2-1答: a ),且最短杆为机架,因此是双曲柄机构。
b ),且最短杆的邻边为机架,因此是曲柄摇杆机构。
c ),不满足杆长条件,因此是双摇杆机构。
d ),且最短杆的对边为机架,因此是双摇杆机构。
题2-2解: 要想成为转动导杆机构,则要求与均为周转副。
(1 )当为周转副时,要求能通过两次与机架共线的位置。
见图2-15 中位置和。
在中,直角边小于斜边,故有:(极限情况取等号);在中,直角边小于斜边,故有:(极限情况取等号)。
综合这二者,要求即可。
(2 )当为周转副时,要求能通过两次与机架共线的位置。
见图2-15 中位置和。
在位置时,从线段来看,要能绕过点要求:(极限情况取等号);在位置时,因为导杆是无限长的,故没有过多条件限制。
(3 )综合(1 )、(2 )两点可知,图示偏置导杆机构成为转动导杆机构的条件是:题2-3 见图2.16 。
图2.16题2-4解: (1 )由公式,并带入已知数据列方程有:因此空回行程所需时间;(2 )因为曲柄空回行程用时,转过的角度为,因此其转速为:转/ 分钟题2-5解: (1 )由题意踏板在水平位置上下摆动,就是曲柄摇杆机构中摇杆的极限位置,此时曲柄与连杆处于两次共线位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11章齿轮传动
11.1复习笔记
一、轮齿的失效形式和设计计算准则
1.轮齿的失效形式
轮齿的主要失效形式有5种:轮齿折断、齿面点蚀、齿面胶合、齿面磨损和齿面塑性变形。
(1)轮齿折断
①产生原因
轮齿折断一般发生在齿根部分,因为轮齿受力时齿根弯曲应力最大,而且有应力集中。
②主要类型
a.过载折断
轮齿因短时意外的严重过载而引起的突然折断,称为过载折断。
b.疲劳折断
在载荷的多次重复作用下,弯曲应力超过弯曲疲劳极限时,齿根部分将产生疲劳裂纹,裂纹的逐渐扩展最终将引起轮齿折断,这种折断称为疲劳折断。
③单(双)侧工作
a.若轮齿单侧工作,就任一侧而言,其应力都是按脉动循环变化。
b.若轮齿双侧工作,则弯曲应力可按对称循环变化作近似计算。
(2)齿面点蚀
①产生原因
a.疲劳点蚀首先出现在齿根表面靠近节线处;
b.在该处同时啮合的齿数较少,接触应力较大;
c.在该区域齿面相对运动速度低,难于形成油膜润滑,故所受的摩擦力较大;
d.在摩擦力和接触应力作用下,容易产生点蚀现象。
②抗点蚀能力
齿面抗点蚀能力主要与齿面硬度有关,齿面硬度越高,抗点蚀能力越强。
(3)齿面胶合
①定义
在高速、重载传动中,齿面间压力大,相对滑动速度高,因摩擦发热而使啮合区温度升高而引起润滑失效,致使两齿面金属直接接触并相互粘连,而随后的齿面相对运动,较软的齿面沿滑动方向被撕下而形成沟纹,这种现象称为齿面胶合。
②增强抗胶合能力的措施
a.提高齿面硬度;
b.减小表面粗糙度;
b.对于低速传动,采用粘度较大的润滑油;
c.对于高速传动,采用含抗胶合添加剂的润滑油。
(4)齿面磨损
齿面磨损通常有磨粒磨损和跑合磨损两种。
①磨粒磨损
a.产生原因
由于灰尘、硬屑粒等进入齿面间而引起的磨粒磨损,在开式传动中是难以避免的。
b.防止或减轻磨损的方法
采用闭式传动、减小齿面表面粗糙度值和保持良好的润滑。
②跑合磨损
新的齿轮副,受载时只有部分峰顶接触。
接触处压强很高,因而在开始运转期间,磨损速度和磨损量都较大,磨损到一定程度后,摩擦面逐渐光洁,压强减小,磨损速度缓慢,这种磨损称为跑合。
(5)齿面塑性变形
在重载下,较软的齿面上可能产生局部的塑性变形,使齿廓失去正确的齿形。
这种损坏常在过载严重和起动频繁的传动中遇到。
2.齿轮设计计算准则
(1)对于闭式齿轮传动,必须计算轮齿弯曲疲劳强度和齿面接触疲劳强度。
对于高速重载齿轮传动,还必须计算其抗胶合能力。
对于一般的传动,选择恰当的润滑方式和润滑油的牌号和粘度。
(2)对于开式传动,只需计算轮齿的弯曲疲劳强度,以免轮齿疲劳折断。
二、齿轮材料及热处理
1.常用齿轮材料
包括:(1)优质碳钢;(2)铸钢;(3)铸铁;(4)合金结构钢。
2.齿轮常用热处理方法
包括:(1)表面淬火;(2)渗碳淬火;(3)调质;(4)正火;(5)渗氮。
3.齿轮材料的选择原则
(1)当大小齿轮都是软齿面时,一般取小齿轮齿面硬度比大齿轮高20~50HBS;
(2)硬齿面齿轮需专门设备磨齿,常用于要求结构紧凑或生产批量大的齿轮;
(3)当大、小齿轮都是硬齿面时,小齿轮的硬度应略高,也可和大齿轮相等。
三、齿轮传动的精度
1.误差对传动的影响
(1)影响传递运动的准确性;
(2)影响传动的平稳性;
(3)影响载荷分布的均匀性。
2.齿轮传动精度等级的选用
齿轮的精度按国家标准规定,可分为13个精度等级:0级最高,12级最低。
常用的是6~9级精度。
四、直齿圆柱齿轮传动的作用力及计算载荷
1.轮齿上的作用力(1)力的大小
圆周力1t 1
2T F d =径向力r t tan F F α=法向力t n cos F F α
=式中,1T ——小齿轮上的转矩
66111109.5510P
P T n ω==⨯⋅(N mm)P ——所传递的功率(kW);
1ω——小齿轮上的角速度,112=rad /s 60n πω;
1n ——小齿轮的转速(r /min );
1d ——小齿轮的分度圆直径,mm ;
α——压力角。
(2)力的方向
圆周力t F :在主动轮上与运动方向相反,在从动轮上与运动方向相同。
径向力r F :对于主、从动轮都是由作用点指向各自的轮心。
2.计算载荷
计算齿轮强度时,通常用计算载荷n KF 代替名义载荷n F ,其中K 为载荷系数。
五、直齿圆柱齿轮传动的齿面接触强度计算齿面接触疲劳强度校核公式为
11221212
21
cos sin 11()H F u d u b E E αασμμπ±=--+设计公式为
213112.32()[]
E d H KT Z u d mm u φσ±≥式中,“+”用于外啮合,“-”用于内啮合;
E Z ——弹性系数;
H Z ——区域系数,对于标准齿轮,H 2.5Z =。
[]H σ应取配对齿轮中的较小的接触应力。
lim []H H H
MPa
S σσ=
式中,lim H σ——试验齿轮失效概率为1/100时的接触疲劳强度极限;S H ——安全系数。
六、直齿圆柱齿轮传动的轮齿弯曲强度计算(1)轮齿弯曲强度的验算公式
11211
22[]Fa Sa Fa Sa F F KTY Y KTY Y MPa bd m bm z σσ==≤(11-1-1)其中13212[]Fa Sa d F Y Y KT m mm z φσ≥(11-1-2)
式中,d φ——齿宽系数,d 1
b d φ=;Fa Y ——齿形系数,只与齿形中的尺寸比例有关而与模数无关;
Sa Y ——应力修正系数。
(2)许用弯曲应力
FE F F
[]=
MPa S σσ(3)说明①用式(11-1-1)验算弯曲强度时,应该对大、小齿轮分别进行验算。
②用式(11-1-2)计算m 时,应比较111/[]Fa Sa F Y Y σ与222/[]Fa Sa F Y Y σ,以大值代入公式求m。
③算得的m 值是必需的最小值,还应按教材表4-1圆整为标准模数值才能制造出来。
④传递动力的齿轮,其模数不宜小于1.5mm。
⑤对于开式传动,考虑到齿面磨损,可将算得的m 值加大10%~15%。