函数图像的分析与判断
函数的图像与性质分析

函数的图像与性质分析函数是数学中的一个重要概念,它是数学中最基本的工具之一。
我们常常会通过观察函数的图像来了解函数的性质。
在本文中,我将通过几个例子来说明函数的图像与性质分析的方法和技巧。
例一:线性函数首先,我们来看一个简单的例子,即线性函数。
线性函数的图像是一条直线,它的一般形式为y = kx + b,其中k和b是常数。
我们可以通过观察直线的斜率k 和截距b来了解函数的性质。
如果k>0,那么直线是上升的,表示函数是增函数;如果k<0,那么直线是下降的,表示函数是减函数。
而截距b表示函数与y轴的交点,可以用来判断函数的零点。
例如,对于函数y = 2x + 1,我们可以知道它是一条上升的直线,斜率为2,截距为1。
这意味着函数是增函数,并且与y轴交于点(0,1)。
例二:二次函数接下来,我们来看一个稍微复杂一些的例子,即二次函数。
二次函数的图像是一条抛物线,它的一般形式为y = ax^2 + bx + c,其中a、b和c是常数。
我们可以通过观察抛物线的开口方向、顶点坐标以及对称轴来了解函数的性质。
如果a>0,那么抛物线开口向上,表示函数是上凸的;如果a<0,那么抛物线开口向下,表示函数是下凸的。
顶点坐标表示抛物线的最低点或最高点,可以用来判断函数的极值。
对称轴是抛物线的中轴线,可以用来判断函数的对称性。
例如,对于函数y = x^2 - 2x + 1,我们可以知道它是一条开口向上的抛物线,顶点坐标为(1,0),对称轴为x = 1。
这意味着函数是上凸的,并且在x = 1处取得极小值。
例三:指数函数最后,我们来看一个指数函数的例子。
指数函数的图像是一条逐渐增长或逐渐衰减的曲线,它的一般形式为y = a^x,其中a是常数。
我们可以通过观察曲线的增长趋势和与坐标轴的交点来了解函数的性质。
如果a>1,那么曲线逐渐增长;如果0<a<1,那么曲线逐渐衰减。
与x轴的交点表示函数的零点,可以用来判断函数的定义域。
函数图像的基本特征与应用

函数图像的基本特征与应用函数图像是数学中的重要内容之一,函数通常是指一个变量集合与另一个变量集合之间的映射关系。
在我们日常生活中,很多经济、科学和技术问题都可以用函数来描述。
通过观察函数图像的形态,我们可以发现很多特征,了解函数的性质,对于问题的解决有极大的帮助。
本文将介绍函数图像的基本特征与应用。
一、函数的基本特征函数图像的基本特征有:定义域、值域、单调性、奇偶性、周期性和渐近线等。
1. 定义域和值域函数的定义域和值域是该函数的两个基本元素。
其中,定义域是指函数所能取到的所有自变量的取值范围,值域是指函数在定义域内所能取到的所有因变量的取值范围。
在函数图像中,定义域通常是横轴上的一段区间,值域通常是纵轴上的一段区间。
2. 单调性函数的单调性是指当定义域内的自变量增大时,函数值是单调递增还是单调递减。
如果函数单调递增,其图像将呈现出从左向右逐渐上升的曲线形态,如果函数单调递减,则图像将呈现出从左向右逐渐下降的曲线形态。
3. 奇偶性函数的奇偶性是指,当自变量变为相反数时,函数值是否改变。
如果函数在变化后值不变,则称函数为偶函数,反之为奇函数。
偶函数的图像通常呈现出轴对称的形状,奇函数的图像通常呈现出中心对称的形状。
4. 周期性函数的周期性是指,如果存在一个正数T,使得对于所有自变量x,都有f(x+T) = f(x),那么函数就具有周期T。
周期函数的图像通常呈现出一段重复出现的形态,可以用周期推断函数的性质。
5. 渐近线当函数的定义域趋于无穷时,函数图像可能会趋于一条直线,这个直线称为函数的渐近线。
函数的渐近线可以判断函数的增长趋势和极限值。
二、函数图像的应用函数图像的应用非常广泛,既可以用于科学和工程领域中的建模,也可以用于纯数学研究。
以下是几个常见的应用。
1. 数值计算我们可以用函数图像的形态来计算函数在某些特定点的值。
当自变量x取某一具体值时,函数图像的纵坐标即是函数的值。
同时,我们还可以用函数图像的单调性、奇偶性等特征来进行加速计算,这对于数据密集的计算任务有很大的优化效果。
函数的图像与性质分析方法

函数的图像与性质分析方法函数是数学中的重要概念,它描述了自变量和因变量之间的关系。
通过分析函数的图像和性质,我们可以深入理解函数的行为和特点。
本文将介绍一些常用的函数图像与性质分析方法。
一、函数的图像分析方法1. 函数的定义域和值域分析:首先确定函数的定义域,即自变量的取值范围。
然后通过对函数进行计算,确定其对应的值域,即函数的取值范围。
这样我们可以得到函数的定义域和值域的范围,从而有利于后续的图像分析。
2. 函数的奇偶性分析:对于定义在对称区间上的函数,可以通过奇偶性来判断其图像是否对称。
若函数满足$f(x)=f(-x)$,则函数为偶函数,其图像关于y轴对称;若函数满足$f(x)=-f(-x)$,则函数为奇函数,其图像关于原点对称。
3. 函数的单调性分析:通过计算函数的导数或利用函数的增减性质,可以判断函数在定义域上的单调性。
若函数的导数恒大于0,则函数在该区间上单调递增;若函数的导数恒小于0,则函数在该区间上单调递减。
4. 函数的极值点和拐点分析:通过计算函数的导数和二阶导数,可以确定函数的极值点和拐点。
函数的极值点对应函数图像上的局部最大值或最小值,而拐点则对应函数图像上的转折点。
5. 函数的渐近线分析:函数的渐近线是指函数图像在无穷远处的趋势。
常见的渐近线包括水平渐近线、垂直渐近线和斜渐近线。
通过计算函数在无穷大或无穷小处的极限值,可以确定函数的渐近线。
二、函数的性质分析方法1. 函数的周期性分析:对于周期函数,可以通过计算函数的周期来确定其周期性。
周期函数的图像在一个周期内重复出现,具有明显的重复性。
2. 函数的对称性分析:函数的对称性可以分为轴对称和中心对称两种情况。
轴对称函数的图像关于某条直线对称,而中心对称函数的图像关于某个点对称。
3. 函数的增减性分析:通过计算函数的导数或利用函数的增减性质,可以判断函数在定义域上的增减情况。
函数的增减性对应函数图像上的上升和下降趋势。
4. 函数的凹凸性分析:通过计算函数的二阶导数或利用函数的凹凸性质,可以判断函数在定义域上的凹凸情况。
根据函数解析式确认函数图像的技巧

利用函数解析式确认函数图像技巧一:定义域影响函数定义域的限制条件主要有以下五种情况:①分式中的分母不为0②偶次方根下的式子大于等于0③对数函数的真数大于0④0的非正数次方无意义⑤正切函数y=tanx,x≠kπ+π/2(k∈Z)技巧二:奇偶性在函数定义域关于y轴对称的前提下,判断f(x)与f(-x)的关系:如果f(x)+f(-x)=0,则为奇函数,函数图像关于原点对称如果f(x)=f(-x),则为偶函数,函数图像关于y轴对称常见的奇函数有:①f(x)=a‧x n m,(其中m,n均为奇数)②f(x)=A‧sinwx③f(x)=A‧tanwx④f(x)=a x-a-x⑤f(x)=a x−a−xa x+a−x⑥f(x)=log a b−xb+x⑦f(x)=∣ax+b∣-∣ax-b∣常见的偶函数有:①f(x)= a‧x n m,(其中m为奇数,n为偶数)②f(x)=A‧coswx③f(x)=a x+a-x④f(x)=∣ax+b∣+∣ax-b∣奇偶性的四则运算①奇函数+奇函数=奇函数②偶函数+偶函数=偶函数③奇函数×(或÷)奇函数=偶函数④奇函数×(或÷)偶函数=奇函数⑤偶函数×(或÷)奇函数=奇函数⑥偶函数×(或÷)偶函数=偶函数技巧三:特殊值点根据函数表达式,当x取特殊值时(主要是x=0,定义域的端点值或者根据题目的特点得到其他的特殊值),进而得到y的取值或取值范围,从而确定大致的图像位置。
技巧四:极限思想极限思想是分析问题了解决问题的一种数学思想,将一个问题极限化,考虑最极端的情况,忽略过程,得出结果,它是判断函数的图像的一种重要方法,主要将自变量取如下的极限:①x→+∞②x→-∞③x→0+ ④x→0- ⑤x→a+ ⑥x→a-备注:对于⑤⑥中a的取值是视题目中的实际条件而定。
针对极限思想判断函数的取值时,首先判断函数式的正负,再判断大小。
高中数学函数图像题解题技巧

高中数学函数图像题解题技巧在高中数学中,函数图像题是一个非常重要的考点。
理解和掌握函数图像的特点和性质,能够帮助学生更好地解决相关的问题。
本文将介绍一些解题技巧,并通过具体的题目来说明。
一、函数图像的基本性质在解决函数图像题之前,我们首先需要了解函数图像的基本性质。
对于一般的函数y=f(x),我们可以通过以下几个方面来分析和描述它的图像:1. 定义域和值域:确定函数的定义域和值域,可以帮助我们限定函数图像的范围。
2. 对称性:判断函数是否具有对称性,比如奇偶性、周期性等。
对称性可以帮助我们简化图像的绘制和分析。
3. 单调性:判断函数的单调性,可以通过导数的正负性来确定。
单调性可以帮助我们确定函数图像的增减趋势。
4. 零点和极值点:求解函数的零点和极值点,可以帮助我们确定图像的交点和极值点的位置。
5. 渐近线:确定函数的水平渐近线和垂直渐近线,可以帮助我们更好地理解函数图像的趋势和特点。
二、解题技巧1. 利用函数的性质在解决函数图像题时,我们可以利用函数的性质来简化问题。
例如,对于奇偶函数,我们只需要绘制函数图像的一个对称部分,然后利用对称性来得到整个函数图像。
对于周期函数,我们只需要绘制一个周期内的函数图像,然后根据周期性来得到整个函数图像。
2. 利用变量的取值范围在解决函数图像题时,我们可以利用变量的取值范围来确定函数图像的特点。
例如,对于二次函数y=ax^2+bx+c,当a>0时,函数图像开口向上,当a<0时,函数图像开口向下。
当a=0时,函数图像是一条直线。
通过对变量的取值范围进行分析,可以帮助我们更好地理解函数图像的特点。
三、具体题目分析下面通过几个具体的题目来说明函数图像题的解题技巧。
例题1:已知函数y=x^2的图像上有一点A(-2,4),求点A关于y轴的对称点B 的坐标。
解析:根据函数y=x^2的对称性,点B的横坐标为2,纵坐标与点A相同,即B(2,4)。
通过对函数图像的对称性的分析,我们可以简化问题的解答过程。
2022年高考数学函数的微专题复习专题01 函数图象的识别与辨析(解析版)

2022年高考数学函数的微专题复习专题01函数图象的识别与辨析题型一、由函数的解析式识别图象函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例1、【2020年天津卷】.函数241xy x =+的图象大致为()A.C.变式1、【2020年浙江卷】.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为()A. B.C. D.变式2、(江苏省连云港市2021届高三调研)函数3ln |2|()(2)-=-x f x x 的部分图象大致为().A .B .C .D .变式3、(2021·山东德州市·高三期末)函数22sin 3()cos x xf x x x +=+在[,]-ππ的图象大致为()A .B .C .D .题型二、由函数的图象辨析函数的解析式由函数的图象确定解析式,首先要观察函数的图象,可以从以下几个方面入手:(1)观察函数的对称性,判断函数的奇偶性;(2)观察图象所在象限,判断函数的定义域和值域;(3)从图象中观察一些特殊位置以及图象的发展趋势;结合上面的信息进行对函数解析式的排除。
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项例2、(山东省2020-2021学年高三调研)已知函数()y f x =的图象如图所示,则此函数可能是()A .()2e e 2x xf x x x --=+-B .()2e e 2x xf x x x --=+-C .()22e e x xx x f x -+-=-D .()22e e x xx x f x -+-=-变式1、(2021·江苏苏州市·高三期末)在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是()A .22sin 1x y x =+B .221xy x =+C .x xxx e e y e e ---=+D .x xxxe e y e e --+=-变式2、(山东省青岛市2020-2021学年高三模拟)已知函数()f x 的部分图象如下所示,则()f x 可能为()A .cos 1()22x xx f x -+=+B .cos sin ()22x xx x x f x -+=+C .cos sin ()22x xx x x f x -+=-D .cos sin ()22x xx x x f x -+=+题型三、情景问题中解析式情景问题中的解析式问题关键要从问题情景中挖掘有用的信息,从情景中理解所给的函数解析式所具有的特点,然后再结合具体的解析式研究性质等问题。
第09讲 函数图像的信息获取和判断的秒杀方法(带答案)

第09讲函数图像的信息获取和判断的秒杀方法(原卷)题型一:函数图像的判断判断函数的图像并不需要把每段函数的解析式完整的求出来!秒杀方法:1.判断一次函数关系:只要判断出结果的未知数的次数,并不需要把解析数求出来,当次数是1时即为一次函数,然后通过k判断结果;2.判断二次函数关系:一般在求面积的时候,会有两个含未知数的式子相乘,即结果为二次函数关系,然后通过该二次项系数的正负判断函数的开口方向即可;3.判断反比例函数关系:只要判断出结果的未知数是不是在分母里即可。
【例1】如图,在矩形ABCD中,AB=2cm,BC=43cm,E是AD的中点,连接BE,CE.点P从点B出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q 从点B出发,以1cm/s的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()【答案】D【解析】由题意得:BE=4cm,bc=4cm,则Q从B到E需要4s,从E到C需要4s,共8s;P从B到C需要4s。
①当Q在线段BE上运动时,如图,作QF⊥BC,B=,Q=B=,则y=⋅Q⋅Q,即可得函数为二次函数,且二次项系数>0,开口向上,排除AC;②4s时,P到达终点,不再运动;点Q依然在运动,所以面积公式里只有一个变量,则对应函数为一次函数,因此选D。
1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S,则S与的函数关系式的大致图象为()A.B.C.D.2.(2022·青海西宁·统考中考真题)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.5.(2022·广西河池·t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S ,则S 与的函数关系式的大致图象为()A .B .C .D .【答案】B【分析】观察图形,在运动过程中,S 随的变化情况,得到开始随时间的增大而增大,当圆在正方形内时改变,而重合面积等于圆的面积不变,再运动,随的增大而减小,根据以上结论判断即可.【详解】解:∵半径为的圆沿水平线从左向右匀速穿过正方形,开始至完全进入正方形S 随时间的增大而增大,∴选项A 、D 错误;∵当圆在正方形内时,改变,重合面积等于圆的面积,S 不变,再运动,S 随的增大而减小,∴选项C 错误,选项B 正确;故选:B .【点睛】本题主要考查动图形问题的函数图象,熟练掌握函数图象形状变化与两图形重合部分形状、大小变化的关系,是解决此题的关键.2.(2022·青海西宁·统考中考真题)如图,△ABC 中,BC =6,BC 边上的高为3,点D ,E ,F 分别在边BC ,AB ,AC 上,且EF ∥BC .设点E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致是()A.B.C.D.【答案】A【分析】过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,根据相似比可知:,即,解得:EF=2(3-x),则△DEF的面积y=×2(3-x)x=-x2+3x=-(x-)2+,故y关于x的函数图象是一个开口向下、顶点坐标为(,)的抛物线.故选:A.【点睛】本题考查了二次函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【分析】根据平移过程,可分三种情况,当时,当时,当时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.【详解】过点C作CM⊥AB于N,,在等腰中,,,①当时,如图,,,,∴,y随x的增大而增大;②当时,如图,,∴当时,y是一个定值为1;③当时,如图,,,,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.【答案】D【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.【详解】当0≤t≤1时,∵正方形ABCD的边长为2,点O为正方形的中心,∴直线EO垂直BC,∴点P到直线BC的距离为2-t,BQ=t,∴S=;当1<t≤2时,∵正方形ABCD的边长为2,点F分别为边,中点,点O为正方形的中心,∴直线OF∥BC,∴点P到直线BC的距离为1,BQ=t,∴S=;故选D.【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.5.(2022·广西河池·统考中考真题)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【答案】C【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答. 题型二:根据已知图像获取相关信息把图像和运动情况结合起来,了解每一个转折点,每条线的具体含义。
函数 图像的分析与判断

专题一:函数图像的分析与判断1. 如图,一只蚂蚁从点O出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁的运动时间为t 时,蚂蚁与O点的距离为s,则s关于t的函数图象大致是()2. (2016许昌一模)如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.2+13C.5 D.4+133. (2016重庆A卷)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发。
在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示。
则乙到终点时,甲距终点的距离是__________米。
4.(2016新乡一模)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发以1cm/s的速度沿着边BA向A点运动,到达A点停止运动. 设P点运动时间为x(s),△BPQ的面积为y(cm²),则关于x的函数图象是()5. (2016安阳二模)如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=4.点D是AC边的中点.点E在线段AD上,过点E作EF∥AB交BD于点F,连接AF,设AE=x,△AEF的面积为y,则能表示y与x函数关系的大致图象是()6.(2016开封一模)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A-B-C的方向运动,到达点C时停止。
设点M运动的路程为x,MN²=y,则y关于x的函数图象大致为( )A. B. C. D.7.(2014年北京中考、2015新乡一模)已知点A为某封闭图形边界上一定点,动点P从点A 出发,沿其边界顺时针匀速运动一周。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一:函数图像的分析与判断
1.如图,一只蚂蚁从点0出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁的运动时间为t
3. (2016重庆A卷)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度
匀速跑步米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发。
在跑步的整个过程中, 甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示。
贝U乙到终点时,甲距
4. (2016新乡一模)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发以1cm/s的速度沿着
边BA向A点运动,到达A点停止运动.设P点运动时间为x (s), △ BPQ的面积为y (cm2),
点.点E在线段AD上,过点E作EF // AB交BD于点F,连接AF,设AE=x , △ AEF的面积为
动点M从点A出发,沿A-B-C的方向运动,到达点C时停止。
设点M运动的路程为x, MN
2=y,则y关于x的函数图象大致为()
P从点A 出发,沿其边界顺时针匀速运动一周。
设点P运动的时间为x,线段AP的长为y,表示y和x
的路径移动,设P点经过的路径长为x,△ BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()
ACB=90
°,角
A=30 °,
AB=16 ,点P是斜边AB 上一点•过点P作PQ丄AB,垂足为P,交边AC (或边CB)于点Q.设AP=x, △ APQ的面积
为y,则y与x之间的函数图象大致是(
10. (2015南阳二模)如图,过半径为6的圆O上一点A作圆0的切线I , P为圆0上的一个动点,作PH丄I于点H,连接PA •如果PA=x , AH=y ,那么下列图象中,能大致表示y
11. (2015昆明模拟)如图,在正方形ABCD中,AB=2 , E是AB的中点,动点P从点B开始,
沿着边BC、x, EP=y,那么能表示y与x函数关系的
o
o
图象大致是
(
13.(2016万维定心卷)如图
,△ ABC 是边长为4cm 的等边三角形,动点P 从点A 出发,以
2cm/s
A. B. C. D.
12. (2016万维黑白卷)如图,若动点P 从平行四边形ABCD 的顶点A 出发,沿AD-DC 的路线 向C 点运动,则△ PBC 的面积与运动时间 t 之间的函数关系的大致图象是 (
的速度沿A-C-B运动,到达B点即停止运动,过点P作PD丄AB于点D.设运动时间为x( s), △ ADP的面积为y (cm2),贝U能够反映y与x之间函数关系的图象大致是
J1)A D
14. (2015郑州模拟、2016黔南州中考)如图,边长分别为1和的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止。
设
小三角形移动的距离为,两个三角形重叠面积为,则关于的函数图象是()。