开放性和探索性问题
开放性和探索性问题

2020/5/6
例3:在棱长为a的正方体ABCD-A1B1C1D1中,E、F 分别是棱BC、CD上的点,且BE=CF.
长郡中学高三数学组
2020/5/6
解决这类问题的途径:通过分析判断, 演绎推理,观察联想,化归转化,尝试 探求,猜想验证等多种思维形式去寻找 解题途径。
探索性问题分条件探索性问题,结 论探索性问题和存在探索性问题。
2020/5/6
一、条件探索性问题 解决条件探索性问题的策略有: (1)模仿分析法。将题设和结论视为已知条件, 分别进行演绎再有机地结合起来,推导出所需寻求 的条件。 (2)设出题目中指定的探索条件,将此假设为已知, 结合题设条件列出满足结论的等量或不等量关系, 通过解方程或不等式,求出所需寻找的条件。
得x,y 1 ,1 a ,
当且仅当 a1时,12aa2,11aa221,1a
综上所述可知,
当 a 2,或 a 2,或 a 1 时,(AB) C为含有
两个元素的集合;
2020/5/6
当 a 2,或 a 0,或 a1时,(AB) C
为含有三个元素的集合
y n x
m
如图1
y
n x
m
如图2
2020/5/6
方便。而解法二通过换元,使得式子更为规范。
2020/5/6
例2、设集合 A x , y |a y 1 x , B x , y |x y a ,
C x ,y |x 2 y 2 1问:
开放性问题[整理]
![开放性问题[整理]](https://img.taocdn.com/s3/m/badd635ff5335a8103d2202e.png)
探索型问题一(开放性问题)【考点透视】习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使题目结论成立. 这两种情况所需补充的条件往往不惟一.例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC ∽△BCD ,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC ≌△FED (只需填写一个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC ;或∠A=∠DBC ;或BC ∶CD=AC ∶BC ;或BC 2=AC •CD 中的某一个)(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =⎧⎨=⎩和2,4x y =-⎧⎨=-⎩,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.解:2,8.y x xy =⎧⎨=⎩说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).B A CD 图7.1AB C DEF 图7.2本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是»BD的中点,过A 点的切线与CB 的延长线交于点E.(1)求证:AB •DA=CD •BE ;(2)若点E 在CB 延长线上运动,点A 在»BD上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.(1)证明:连结AC.∵A 是»BD 的中点,∴»»AB AD =,∠ACB=∠ACD.∵EA 切⊙O 于A ,∴∠EAB=∠ACB.又∵∠ABE=∠D ,∴△EAB ∽△ACD ,∴AB ∶CD=EB ∶AD , ∴AB •AD=CD •BE.(2)解:如图7.3.2中,若有△EAB ∽△ACD ,则原结论成立,故我们只需探求使△EAB ∽△ACD 的条件. 由于∠ABE=∠D ,所以只要∠BAE=∠DAC 即可,这只要»»BF CD =即可.所以本题只要»»BF AD =,原结论就成立.说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法.例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧»AC 上一点,DE ⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧»AC 的什么位置时,才能使AD 2=DE ·DF ?为什么? (2002年济南市中考题)分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可.由∠OCA=∠OAC ,∠PFC=∠AFH ,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE ·DF ,即AD DFDE AD=,也就是要使△DAF ∽△DEA , 这样问题就较容易解决了.解:(1)当PC=PF (或∠PCF=∠PFC ,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC.∵PC=PF ,∴∠PCF=∠PFC ,∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900, ∴PC 与⊙O 相切.图7.3.1图7.3.2 H BAEP O CD F 图7.4(2)当点D 是»AC 的中点时,AD 2=DE ·DF.连结AE.∵»»AD CD=,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA ,∴△DAF ∽△DEA , ∴AD DFDE AD=,即AD 2=DE ·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.二、结论开放题结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE ⊥AC 于E ,可得结论DE 是⊙O 的切线.问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE ⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.(2)如果AB=AC=5cm, sinA=35,那么圆心O 在AB 的什么位置时,⊙O与AC 相切? (2001年黑龙江省中考题)分析:(1)连OD. ∵OB=OD ,∴∠OBD=∠ODB=∠C ,∴ OD ∥AC , 从而可得OD ⊥DE ,结论仍然成立.(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt △AOF 中可 求得OF=158,即OB=158. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB. 又AB=AC ,∴∠B=∠C ,∴∠ODB=∠C , ∴OD ∥AC.∵DE ⊥AC ,∴OD ⊥DE , ∴DE 是⊙O 的切线.(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,则OF ⊥AC ,即△AOF 是直角三角形,∴sinA=355OF OB AO OB ==-, ∴OB=158, 即当OB=158时,⊙O 与AC 相切.说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用方法.图7.5.1AOBECD图7.5.2ABCO F图7.5.3例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE ⊥AB ,在»CB上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M.(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ;(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在»EB上,仍作直线CD 、ED ,分别交直线 AB 于点F 、M. 试判断:此时是否仍有△FDM ∽△COM ?证明你的结论. (2003年苏州市中考题)(1)解:∵AB 是⊙O 的直径,CE ⊥AB ,∴»»AC CE,CG=EG. 在Rt △COG 中,∵OG=12OC ,∴∠OCG=30o ,∴∠COA=60o . 又∠CDE 的度数=12¼CAE 的度数=»AC 的度数=∠COA=60o ,∴∠FDM=180o -∠COA=120o .(2)证明:∵∠COM=180o -∠COA=120o ,∴∠COM=∠FDM. 在Rt △CGM 和Rt △EGM 中, GM=GM ,CG=EG ,∴Rt △CGM ≌Rt △EGM , ∴∠GMC=∠GME.又∠DMF=∠GME ,∴∠OMC=∠DMF , ∴△FDM ∽△COM.(3)解:结论仍然成立.∵∠FDM=180o -∠CDE , ∴∠CDE 的度数=12¼CAE 的度数=»AC 的度数=∠COA , ∴∠FDM=180o -∠COA=∠COM.∵AB 为直径,CE ⊥AB ,∴在Rt △CGM 和Rt △EGM 中, GM=GM ,CG=EG ,∴Rt △CGM ≌Rt △EGM , ∴∠GMC=∠GME , ∴△FDM ∽△COM.说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.三、解题策略开放题解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含150角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.(2000年荆州市中考题)DAF C EDM OG BAF CEMO G B 图7.6.1图7.6.2分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角. 解:如图所示. 图7.7.1中就包含有两中构造方法, ∠ABD 和∠ACD 都等于15o ;图7.7.2中,∠EFG=15o .请同学们试着拼出其它的图形.说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.例8 如图,把边长为2cm 的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm ×1cm ).(1)不是正方形的菱形(一个); (2)不是正方形的矩形(一个); (3)梯形(一个);(4)不是矩形和菱形的平行四边形(一个); (5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)解:(1) (2)3)(4)(5) (6)说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,例9有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下: (1)_____________________;(2)________________________;(3)_________________________. 另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实就是有理数的运算.本题具有开放性,答案是不唯一的.AB C D E F G图7.7.1 图7.7.1图7.8解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.四、题目结构开放题以看作是一个条件开放题.例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?设摩托车比运货汽车早到x 分钟,则4040603545x ⎛⎫-⨯= ⎪⎝⎭,x=4021.答:摩托车比运货汽车早到4021分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×60x= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?运货汽车走完全程需408357=小时,摩托车走完全程需408459=小时, 摩托车比运货汽车少用88167963-=小时.∵1610906360126-=>, ∴摩托车在运货汽车到达乙地前能追上.解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.答:经过4小时摩托车可追上运货汽车.说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.习题七一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD ≌△ACD ,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).(2003年无锡市中考题)4.先根据要求编写应用题,再解答你所编写的应用题.编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为120120110x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外公切线,A 、B 为切点,AB 与TP 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD ⊥AB ;②BE ⊥AC ;③AE=CE ;④∠ABE=30o ;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________; (2)从论断①②③④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组 成一道证明题,画出图形,写出已知、求证,并加以证明.(2003年徐州市中考题) 8.如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点.(1)求证:AF ⊥CD ;(2)在你连接BE 后,还能得出什么新的结论?请写出三个(不要求证明). (2002年江西省中考题)图1 图2 图3 图4 第3题A BP TO O 第6题 A BD C E第7题 B A C D E第8题9.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.(2000年北京市崇文区中考题)10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28o.(1)求∠ACM的度数;(2)在MN上是否存在点D,使AB•CD=AC•BC?为什么?(2001年广州市中考题)参考答案:1.(1(2)1,-1(或4,-4;或11,-11)2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD(或AD平分∠BAC)等.3.略.4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.5.方案(2):若这角是直角,则这两个三角形全等.方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.6.AB=2PT. 证明略.7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别在AB、AC上,CD⊥AB,AE=CE,∠ABE=30o. 求证:CD=BE. 证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,∴EF⊥AB. 在Rt△EFB中,∠EFB=90o,∠EBF=30o,∴BE=2EF,∴CD=BE. 图要正确.8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=AD. 又∵F为CD的中点,∴AF⊥CD.(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出其它的结果)9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,C5(2),C6(2,.10.(1)∵AB是直径,∠ACB=90o. 又∠A=28o,∴∠B=62o.又MN是切线,C为切点,∴∠ACM=62o.(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,∴∠B=∠ACD,∴△ABC∽△ACD,∴AB BCAC CD=,即AB•CD=AC•BC.A BCMN第10题ACBDEF第7题。
教师的教育方法 挖掘学生潜能的引导与开发策略

教师的教育方法挖掘学生潜能的引导与开发策略教育是一项重要的任务,而教师则扮演着关键的角色。
他们不仅要传授知识,还要引导学生发现和开发他们的潜能。
本文将介绍几种教师常用的教育方法,以及如何通过这些方法来挖掘学生的潜能。
一、激发学生兴趣培养学生的兴趣是挖掘他们潜能的首要任务。
当学生对某个主题或领域感兴趣时,他们会更加投入学习并表现出更好的学习效果。
教师可以通过以下几种方法激发学生的兴趣:1. 创设情境:将学习内容与学生的生活经验联系起来,创造出互动的情境,激发学生对学习的兴趣。
2. 实践体验:组织实地考察、实验操作等实践活动,让学生亲身参与和体验,从而增强他们的学习兴趣。
3. 利用多媒体教具:运用多媒体素材、教学软件等现代教育技术手段,增加学习内容的呈现方式,提高学生的学习兴趣。
二、个性化教学每个学生都是独特的个体,他们的学习方式和学习进度也会有所差异。
个性化教学可以根据学生的特点和需求,量身定制教学计划,挖掘他们的潜能。
以下是几种个性化教学的方法:1. 差异化教学:根据学生的学习情况,提供不同层次和难度的学习任务,满足学生个体差异化的学习需求。
2. 分组活动:将学生分成不同的小组,让他们在小组中合作学习并互相激发,促进潜能的开发。
3. 个别辅导:针对学习较差的学生,提供额外的辅导和支持,帮助他们克服困难,发掘潜能。
三、鼓励积极参与学生的积极参与是潜能开发的关键。
教师可以通过以下几种方法鼓励学生积极参与学习:1. 提供奖励机制:设立积分或奖品制度,奖励那些积极参与课堂活动和展示出色表现的学生,激发学生的参与积极性。
2. 鼓励互动讨论:创建良好的课堂氛围,鼓励学生主动提问、回答问题和与同学进行互动讨论,激发他们的思维和表达能力。
3. 提供反馈:对学生的表现进行及时的评价和鼓励,让他们感受到自己的进步和成长,从而激发学习动力。
四、启发式问题引导启发式问题是激发学生思维和挖掘潜能的有效方法。
通过提出开放性问题,让学生思考和探索,引导他们主动寻找解决问题的途径,培养他们的创新能力。
开放性与探索性问题

探索型问题一(开放性问题)【考点透视】习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使题目结论成立. 这两种情况所需补充的条件往往不惟一.例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC∽△BCD,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC≌△FED(只需填写一个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC;或∠A=∠DBC;或BC∶CD=AC∶BC;或BC 2=AC•CD 中的某一个)(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =⎧⎨=⎩和2,4x y =-⎧⎨=-⎩,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.解:2,8.y x xy =⎧⎨=⎩说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).B A CD 图7.1AB C DEF 图7.2本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是BD 的中点,过A 点的切线与CB 的延长线交于点E.(1)求证:AB•DA=CD•BE;(2)若点E 在CB 延长线上运动,点A 在BD 上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.(1)证明:连结AC.∵A 是BD 的中点,∴AB AD =,∠ACB=∠ACD.∵EA 切⊙O 于A ,∴∠EAB=∠ACB.又∵∠ABE=∠D,∴△EAB∽△ACD,∴AB∶CD=EB∶AD, ∴AB•AD=CD•BE.(2)解:如图7.3.2中,若有△EAB∽△ACD,则原结论成立,故我们只需探求使△EAB∽△ACD 的条件. 由于∠ABE=∠D,所以只要∠BAE=∠DAC 即可,这只要BF CD =即可.所以本题只要BF AD =,原结论就成立.说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法. 例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧AC 上一点,DE⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE·DF?为什么? (2002年济南市中考题)分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可. 由∠OCA=∠OAC,∠PFC=∠AFH,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE·DF,即AD DFDE AD=,也就是要使△DAF∽△DEA, 这样问题就较容易解决了.解:(1)当PC=PF (或∠PCF=∠PFC,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC.∵PC=PF,∴∠PCF=∠PFC,图7.3.1图7.3.2H BAEP O CD F 图7.4∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900, ∴PC 与⊙O 相切.(2)当点D 是AC 的中点时,AD 2=DE·DF. 连结AE.∵AD CD =,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA,∴△DAF∽△DEA, ∴AD DF DE AD=,即AD 2=DE·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.二、结论开放题结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE⊥AC 于E ,可得结论DE 是⊙O 的切线.问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.(2)如果AB=AC=5cm, sinA=35,那么圆心O 在AB 的什么位置时,⊙O与AC 相切? (2001年黑龙江省中考题)分析:(1)连OD. ∵OB=OD,∴∠OBD=∠ODB=∠C,∴ OD∥AC, 从而可得OD⊥DE,结论仍然成立.(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt△AOF 中可 求得OF=158,即OB=158. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB. 又AB=AC ,∴∠B=∠C,∴∠ODB=∠C, ∴OD∥AC.∵DE⊥AC,∴OD⊥DE, ∴DE 是⊙O 的切线.(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,则OF⊥AC,即△AOF 是直角三角形,∴sinA=355OF OB AO OB ==-, ∴OB=158, 即当OB=158时,⊙O 与AC 相切.说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用图7.5.1AOBECD图7.5.2ABCO F图7.5.3方法.例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE⊥AB,在CB 上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M.(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM∽△COM;(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在EB 上,仍作直线CD 、ED ,分别交直线 AB 于点F 、M. 试判断:此时是否仍有△FDM∽△COM? 证明你的结论. (2003年苏州市中考题)(1)解:∵AB 是⊙O 的直径,CE⊥AB,∴AC CE ,CG=EG.在Rt△COG 中,∵OG=12OC ,∴∠OCG=30,∴∠COA=60. 又∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA=60,∴∠FDM=180-∠COA=120.(2)证明:∵∠COM=180-∠COA=120,∴∠COM=∠FDM. 在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME.又∠DMF=∠GME,∴∠OMC=∠DMF, ∴△FDM∽△COM.(3)解:结论仍然成立.∵∠FDM=180-∠CDE, ∴∠CDE 的度数=12CAE 的度数=AC 的度数=∠COA, ∴∠FDM=180-∠COA=∠COM.∵AB 为直径,CE⊥AB,∴在Rt△CGM 和Rt△EGM 中, GM=GM ,CG=EG ,∴Rt△CGM≌Rt△EGM, ∴∠GMC=∠GME, ∴△FDM∽△COM.说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.三、解题策略开放题解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含15DAF C EDM OG BAF CEMO G B 图7.6.1图7.6.20角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.(2000年荆州市中考题)分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角.解:如图所示. 图7.7.1中就包含有两中构造方法,∠ABD和∠ACD都等于15;图7.7.2中,∠EFG=15.请同学们试着拼出其它的图形.说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.例8 如图,把边长为2cm的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm×1cm).(1)不是正方形的菱形(一个);(2)不是正方形的矩形(一个);(3)梯形(一个);(4)不是矩形和菱形的平行四边形(一个);(5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)解:(1)(2)3)(4)(5)(6)说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,例9 有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下:(1)_____________________;(2)________________________;(3)_________________________.AB CD EFG图7.7.1 图7.7.1图7.8另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实就是有理数的运算.本题具有开放性,答案是不唯一的.解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.四、题目结构开放题以看作是一个条件开放题.例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?设摩托车比运货汽车早到x 分钟,则4040603545x ⎛⎫-⨯= ⎪⎝⎭,x=4021.答:摩托车比运货汽车早到4021分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×60x= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?运货汽车走完全程需408357=小时,摩托车走完全程需408459=小时, 摩托车比运货汽车少用88167963-=小时.∵1610906360126-=>, ∴摩托车在运货汽车到达乙地前能追上.解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.答:经过4小时摩托车可追上运货汽车.说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.习题七一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD≌△ACD,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).(2003年无锡市中考题)4.先根据要求编写应用题,再解答你所编写的应用题.编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为120120110x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外公切线,A 、B 为切点,AB 与TP 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD⊥AB;②BE⊥AC;③AE=CE;④∠ABE=30;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________;(2)从论断①②③④中选取3个作为条件,将论断⑤作为结论, 组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组图1 图2 图3 图4 第3题A BP TO O 第6题ABD C E第7题BAE成一道证明题,画出图形,写出已知、求证,并加以证明.(2003年徐州市中考题)8.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.(1)求证:AF⊥CD;(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明).(2002年江西省中考题)9.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.(2000年北京市崇文区中考题)10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28.(1)求∠ACM的度数;(2)在MN上是否存在点D,使AB•CD=AC•BC?为什么?(2001年广州市中考题)参考答案:1. (1(2) 1,-1(或4,-4;或11,-11)2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD (或AD平分∠BAC)等.3.略.4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.5.方案(2):若这角是直角,则这两个三角形全等.方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.6.AB=2PT. 证明略.7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别在AB、AC上,CD⊥AB,AE=CE,∠ABE=30. 求证:CD=BE. 证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,∴EF⊥AB. 在Rt△EFB中,∠EFB=90,∠EBF=30,∴BE=2EF,∴CD=BE. 图要正确.8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=A D. 又∵F为CD的中点,∴AF⊥CD.(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出其它的结果)9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,A BCMN第10题ACBDEF第7题C5(2),C6(2,.10.(1)∵AB是直径,∠ACB=90. 又∠A=28,∴∠B=62.又MN是切线,C为切点,∴∠ACM=62.(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN 于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,∴∠B=∠ACD,∴△ABC∽△ACD,∴AB BCAC CD,即AB•CD=AC•BC.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
技术人员面试提问技巧

技术人员面试提问技巧在招聘技术人员的过程中,面试被视为最重要的环节之一。
面试时,面试官通过提问来了解应聘者的技术能力、专业知识和解决问题的能力。
本文将介绍几个技术人员面试的提问技巧,帮助面试官有效评估应聘者的能力。
1. 开放性问题:面试官可以通过开放性问题来了解应聘者的思维方式和解决问题的能力。
开放性问题要求应聘者详细解释自己的思路和展示解决问题的能力。
例如,面试官可以询问应聘者在处理复杂技术问题时的思考过程,或者要求应聘者解释一个技术概念。
2. 行动性问题:行动性问题可以帮助面试官了解应聘者在特定情况下如何采取行动。
这些问题要求应聘者提供实际的解决方案,而不仅仅停留在理论层面。
例如,面试官可以要求应聘者描述一个技术项目的实施过程,包括计划、执行和评估。
3. 探索性问题:探索性问题用于评估应聘者的深度和广度。
面试官可以通过这些问题来了解应聘者对技术领域的全面理解。
这些问题通常需要应聘者进行实际操作,展示他们的技术知识和技能。
例如,面试官可以要求应聘者编写一个简单的程序或解释一个复杂的算法。
4. 填空问题:填空问题可以帮助面试官评估应聘者对技术领域的熟悉程度。
面试官可以提供一些相关的技术术语或概念,并要求应聘者填写具体的定义或解释。
这些问题要求应聘者在短时间内提供准确的答案。
5. 心理学问题:心理学问题可以帮助面试官了解应聘者外在条件和内在素质。
这些问题可以从应聘者的个人发展和团队合作等方面进行提问。
例如,面试官可以询问应聘者在遇到困难时如何应对,或者能否适应不同的工作环境。
通过运用上述提问技巧,面试官能够更好地了解应聘者的技术能力和解决问题的能力。
在面试过程中,面试官还应该注意综合考虑应聘者的实际经验、专业技能和团队协作能力,以便做出全面的评估。
当然,面试官在提问时应该遵循公平公正的原则,以确保面试的公正性和准确性。
总结起来,技术人员面试提问技巧至关重要。
开放性问题、行动性问题、探索性问题、填空问题和心理学问题都是评估应聘者能力的有效方法。
教师进行有效提问的技巧

教师进行有效提问的技巧
以下是教师进行有效提问的一些技巧:
1. 开放性问题:使用开放性问题可以鼓励学生进行深入思考和表达自己的观点。
避免使用闭合性问题,这些问题只需要简单的答案。
2. 多样性:确保提问涵盖不同的思维层次和学生的不同理解能力。
3. 指导性提问:在学生回答问题时,可以提供适当的指导和提示,引导他们思考和探究。
4. 探索性问题:使用探索性问题可以帮助学生建立新的联系和发现新的知识。
这种问题要求学生进行推理和分析。
5. 反馈提问:用提问来检测学生对所学知识的掌握情况,并为学生提供反馈。
6. 层次性提问:使用不同的层次提问,从基础知识到高级思维,以逐步引导学生深入思考和理解。
7. 学生参与:鼓励学生参与提问,让他们的问题成为课堂讨论和思考的一部分。
8. 非评价性提问:避免使用评价性的提问,这些问题会使学生感到紧张和压力,
影响他们的思考和表达。
9. 策略性提问:使用策略性提问,帮助学生发展解决问题的策略和方法。
10. 激发兴趣:提问时,可以选择与学生相关的实例和故事,以激发他们的兴趣和积极参与讨论。
重视开放性、探索性问题教学提高学生思维品质

五、 探究定理的证明, 拓宽定理的应用 目 前, 世界上可以查到的证明勾股定理的方法有 几百种。 教材中虽然已对勾股定理进行了证明, 但在教 学中, 若能够根据学生的能力,适当引导补充一些证 法, 不仅有利于定理的应用和理解, 而且能使学生获得 探究解决问题的新方法, 更有利于培养学生的创造性
学科教学
重_ 开欢性一 o 问题教_ 视 一 探索rm 学
开远布第‘中学 普 一 母
由于开放性问题要么条件不完备 ,要么结论不确
4 !产_ c * 0** f i/ 71 ,* v4 4
庚,曾建议发射一种勾股定理的图形,如果宇宙人是 “ 文明的人”那么他们一定会认识这种“ , 语言” 你认 的,
为这有可能吗?
定, 因此这类试题具有新颖 、 灵活、 发散的特点。 而且解
答这类问题往往没有固定 的模式 ,需要应用观察 、 类
比、 归纳、 推测等多种思维活动来寻找解题的策略, 具
有较为广阔的思维空间,因而更能考查学生的探索能
力和创新精神。
此问题提出后, 学生会展开激烈的争论, 调动了学
生思维的积极性, 急于知道新知识的欲火被点燃 , 激发
七 2 一一 户T 图 (4 )
。I_ \ /
C比
说明:对于此例的研究, 不仅使学生掌握了多种证 明问题的方法, 培养其思维能力, 而且丰富了研究数学
问题的方法和手段。
C B
E
D
这样的问题系列富有探索性,学生纷纷动脑、 动 口、 动手, 积极参与探索, 不仅获得了知识, 而且自己总
结了一般规律, 真正感受到了探索的艰难和成功的欣
球的“ , 人”向宇宙发出了许多信号。 如地球上的人类的 语言 、 、 音乐 各种图形等, 说我国著名的 学家华罗
学术论文撰写中的开放性问题和探索性研究

学术论文撰写中的开放性问题和探索性研究学术论文是研究者交流和传播研究成果的重要方式,它不仅要求准确地表达研究结果,还要能够引发读者的思考和进一步的探索。
然而,在学术论文撰写中存在一些开放性问题,如何进行探索性研究也是一个值得关注的话题。
一、开放性问题1. 数据的可信性和可重复性在学术研究中,数据的可信性和可重复性是保证研究结果可靠性的基础。
然而,一些研究中的数据来源不明确,或者数据处理方法不透明,导致读者对研究结果的可信性产生怀疑。
此外,一些研究结果无法被其他研究者重复,也给学术界带来了困扰。
2. 结果的解释和推广学术论文中的研究结果需要进行合理的解释和推广,以便读者能够理解和应用。
然而,有时候研究者在解释结果时过于简单或过于复杂,导致读者无法真正理解研究的意义和应用价值。
此外,一些研究结果的推广性也存在问题,因为不同研究对象和环境的差异可能导致结果的不适用性。
3. 方法的创新和改进学术研究需要不断创新和改进研究方法,以提高研究的准确性和有效性。
然而,一些研究中的方法可能存在局限性,或者没有充分考虑到研究对象的特点。
因此,研究者需要思考如何创新和改进研究方法,以解决现有方法存在的问题。
二、探索性研究1. 深入挖掘问题背后的原因和机制学术研究应该不仅仅关注问题的表面现象,还要深入挖掘问题背后的原因和机制。
通过探索问题的本质,研究者可以更好地理解和解决问题。
例如,对于一个社会问题,研究者可以通过深入调查和分析,找出问题的根源和影响因素,从而提出更有效的解决方案。
2. 跨学科研究的重要性在学术研究中,跨学科研究可以帮助研究者从不同角度理解和解决问题。
通过与其他学科的专家合作,研究者可以借鉴其他学科的理论和方法,为自己的研究提供新的思路和视角。
例如,生物学和计算机科学的结合可以推动生物信息学的发展,为生物研究提供更多的工具和方法。
3. 鼓励创新性思维和实践学术研究需要鼓励创新性思维和实践,以推动学术界的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又由2得 2x22a xa210的判别式 4(2a2)
于是当 a 2 ,或 a 2 时,BC:
当 a 2 时,BCa2, a2
此时显然
12aa2
,1a2 1a2
a2,a2
当 2a 2 时,BC有两个元素,其中
2020/7/8
a 1,则 AB
a 1 则由
ax y 1
x
2
y2
1
,
得x,y 1 ,1 a ,
长郡中学高三数学组
2020/7/8
解决这类问题的途径:通过分析判断, 演绎推理,观察联想,化归转化,尝试 探求,猜想验证等多种思维形式去寻找 解题途径。
探索性问题分条件探索性问题,结 论探索性问题和存在探索性问题。
2020/7/8
一、条件探索性问题 解决条件探索性问题的策略有: (1)模仿分析法。将题设和结论视为已知条件, 分别进行演绎再有机地结合起来,推导出所需寻求 的条件。 (2)设出题目中指定的探索条件,将此假设为已知, 结合题设条件列出满足结论的等量或不等量关系, 通过解方程或不等式,求出所需寻找的条件。
因此,无论E、F在何位置均有B1F⊥D1E.
(2)解:VC1CE Fa 6[(xa 2)2a42]
当
x
a 2
时,三棱锥C1-CEF的体积最大,这时E、F分别 为
BC、CD的中点 连结AC交EF于G点,连结C1G,则AC⊥EF
所以当 a 2 ,或 a0,或 a1时,(AB)C
为含有三个元素的集合。
评注:本题给出了两种探究方式,解法一的方式是从式子的 意义出发,联立方程组求解,运用了分类讨论的数学思想, 对思维的严谨性要求较高。解法二的方式是从直观图形出发, 找到了思维的依靠点,这样便于找到各种情况,很难出现遗 漏。
2020/7/8
12
12
2020/7/8
解法二:
令x=0, x=1 由已知条件可知 sin0,co s0
当 x0,1 ,原不等式变为 1x2sin1xcos0
x
x
令 1 x t t R 即 t2sin tco s0
x
令 f(t) t2si n t co s si tn 1 2 co s1
为x轴、y轴、z轴建立空间直角坐标系, B1
设BE=x,则有B1(a,0,a),D1(0,a,a), A E(a,x,0),F(a-x,a,0)
2020/7/8
B
E x
D1
C1
D y
G F
C
∴ B 1 F ( x ,a , a ), D 1 E ( a ,x a , a )
∴ B 1 F D 1 E a a x (x a ) ( a ) ( a ) 0
2020/7/8
解法一:
因为 ( A B ) C ( A C ) ( B C ) ,而 AC 与
B C 分别为方程组
1
ax x2
y y2
1 1
xya
2
x
2
y2
1
的解集
当 a 0时,由 1 得,AC0,1; 当 a 0时, 由 1得,AC0,1,12aa2,11 aa22
2020/7/8
例3:在棱长为a的正方体ABCD-A1B1C1D1中,E、F 分别是棱BC、CD上的点,且BE=CF.
(1)当E、F在何位置时,B1F⊥D1E;
(2)当E、F在何位置时三棱锥C1-CEF的体积取得最大 值,并求此时二面角C1-EF-C的大小.
z
A1
解: (1) 以A为原点,分别以AB、AD、AA1
方便。而解法二通过换元,使得式子更为规范。
2020/7/8
例2、设集合 A x , y |a y 1 x , B x , y |x y a ,
C x ,y |x 2 y 2 1问:
(1)当a为何值时, (AB)C为含有两个元素的集合? (2)当a为何值时, (AB)C为含有三个元素的集合?
( 1 co ssi)x n 2 ( 1 2 si)x n sin
( 1 co ss i ) x n 2 2 1 c 2 s o 2 s is n i 2 n si 4 n 1 1 c 2 s o s i 2n s i n
由 sin0,co s0
2020/7/8
例1:已知当 x0,1时,不等式
x 2 co x 1 s x 1 x 2 si 0 n 恒成立,
试求 的取值范围
2020/7/8
解法一:
令x=0, x=1 由已知条件可知,sin0,co s0
设 f( x ) x 2 co x 1 s x 1 x 2 sin
为平行系,这两条直线与单位圆相交。如上图 (1)如图1,直线m与单位圆相交于(0,1)与另外一点,
而直线n与单位圆相离,(或直线m与直线n重合。 a=1时, 两条直线与单位圆相交于两点。
所以当 a 2 ,或 a 2 ,或a=1时 (AB)C
为含有两个元素的集合;
2020/7/8
(2)如图2,直线m与单位圆相交于(0,1)与另外一点, 而直线n与单位圆相切,或直线m与单位圆相切,直线n与单 位圆相交于两点,或直线m与直线n相交于(0,1)时,两 条直线与单位圆相交于三点。
2 si n
4 sin
所以 f(t)min cos4s1in0
2020/7/8
解得 sin 2 1 所以 5 (k Z)
2
12
12
评注: 从特殊的个体考察普遍的规律是高中阶段必须掌握的思维
方式,本题先令x=0和x=1得到 sin0,co s0,
大大的缩小了 的考察范围,为后面的解答提供的很大的
当且仅当 a1时,12aa2,11aa221,1a
综上所述可知,
当 a 2,或 a 2,或 a 1 时,(AB)C为含有
两个元素的集合;
2020/7/8
当 a 2,或 a 0,或 a1时,(AB)C
为含有三个元素的集合
y n x
m
如图1
y
n x
m
如图2
2020/7/8
解法二:
由已知:直线m:axy1为定点系,直线n:xya
可知 1 co s si n 0 ,0 1 2 sin 1 2 2 co 2 s sin
2020/7/8
结合原不等式对任意 x0,1 恒成立可知
sin 0
cos 0
f
(x)mins
in
12sin2
4(1cos sin)
0
可得 sin 2 1
2
所以 2k2k5 (k Z)