探索性问题的常见类型及其求解策略
高考数学探索性问题解答模型策略

2019高考数学探索性问题解答模型策略探索性问题一般有以下几种类型:猜想归纳型、存在型问题、分类讨论型。
下面是高考数学探索性问题解答模型,希望对大家有帮助。
猜想归纳型问题:指在问题没有给出结论时,需要从特殊情况入手,进行猜想后证明其猜想的一般性结论。
它的思路是:从所给的条件出发,通过观察、试验、不完全归纳、猜想,探讨出结论,然后再利用完全归纳理论和要求对结论进行证明。
其主要体现是解答数列中等与n有关数学问题。
存在型问题:指结论不确定的问题,即在数学命题中,结论常以“是否存在”的形式出现,其结果可能存在,需要找出来,可能不存在,则需要说明理由。
解答这一类问题时,我们可以先假设结论不存在,若推论无矛盾,则结论确定存在;若推证出矛盾,则结论不存在。
代数、三角、几何中,都可以出现此种探讨“是否存在”类型的问题。
分类讨论型问题:指条件或者结论不确定时,把所有的情况进行分类讨论后,找出满足条件的条件或结论。
此种题型常见于含有参数的问题,或者情况多种的问题。
探索性问题,是从高层次上考查学生创造性思维能力的新题型,我们在学习中要重视对这一问题的训练,以提高我们的思维能力和开拓能力。
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
立体几何中的探索性问题求解策略(原卷版)

专题35 立体几何中的探索性问题求解策略【高考地位】立体几何中的探索性问题是高考几何的一个难点,尤常见于新高考的多选题中,其题目特点是灵活性较强,需要相对丰富的空间想象能力及计算能力,对所研究几何体进行深入的剖析与推理,其常见类型有两种:一、空间中位置关系的探索;二、空间角的探索.类型一空间中位置关系的探索方法一几何法-的所有棱长均为E,F分别是PC,AB的中点,M为棱PB上异于P,例1已知正四棱锥P ABCDB的一动点,现有以下结论:①线段EF的长度是△②EMF③存在点M使得PB⊥平面MEF;④EMF∠始终是钝角.其中不正确的结论共有()A.1个B.2个C.3个D.4个【来源】河北省沧州市2021届高三三模数学试题【变式演练1】(多选)在直角三角形ABC 中,∠B =2π,AC =2BC =4,D 为线段AC 的中点,如图,将∠ABD 沿BD 翻折,得到三棱锥P ﹣BCD (点P 为点A 翻折到的位置),在翻折过程中,下列说法正确的是( )A .∠PBD 的外接圆半径为2B .存在某一位置,使得PD ∠BDC .存在某一位置,使得PB ∠CDD .若PD ∠DC ,则此时三棱锥P ﹣BCD 的外接球的体积为323π 【来源】山东省百师联盟2021届高三二轮联考数学试题(二)方法二 向量法例2、3.已知长方体1111ABCD A B C D -中,12BB AB BC ==,点E 在线段1CC 上,()101CC λλ=≤≤平面α过线段1AA 的中点以及点1B 、E ,现有如下说法: (1)[]0,1λ∃∈,使得1BE B E ⊥;(2)若12,23λ⎡⎤∈⎢⎥⎣⎦,则平面α截长方体1111ABCD A B C D -所得截面为平行四边形;(3)若0λ=,2AB =,则平面α截长方体1111ABCD A B C D -所得截面的面积为以上说法正确的个数为( ) A .0B .1C .2D .3【来源】全国一卷2021届高中毕业班考前热身联合考试理科数学试题例3、(多选)在棱长固定的正方体1111ABCD A B C D -中,点E ,F 分别满足AE AB λ=,([0,1],[0,1])BF BC μλμ=∈∈,则( )A .当12μ=时,三棱锥11A B EF -的体积为定值 B .当12μ=时,存在λ使得1BD ⊥平面1B EF C .当12λ=时,点A ,B 到平面1B EF 的距离相等 D .当λμ=时,总有11A F C E ⊥【来源】江苏省苏州市2021-2022学年高三上学期期初调研数学试题【变式演练2】(多选)在棱长为1的正方体1111ABCD A B C D -中,点E 为线段1CD 上一动点(不包含端点),则下列说法正确的有( )A .1AB ⊥平面11A D EB .1DE A E +的最小值为1C .存在点E 使得1DE AD ⊥D .点D 到平面11A DE 【来源】全国新高考2021届高三数学方向卷试题(A )【变式演练3】如图所示,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AB AD ⊥,//AB CD ,24AB AD PA CD ====,G 为PD 的中点.(1)求证AG ⊥平面PCD ;(2)若点F 为PB 的中点,线段PC 上是否存在一点H ,使得平面GHF ⊥平面PCD ?若存在,请确定H 的位置;若不存在,请说明理由.【来源】湖北省恩施州2021-2022学年高三上学期第一次教学质量监测数学试题类型二 空间角的探索 方法一 几何法例3.如图,矩形ABCD 中,已知2,4,AB BC E ==为BC 的中点.将ABE △沿着AE 向上翻折至MAE 得到四棱锥M AECD -.平面AEM 与平面AECD 所成锐二面角为α,直线ME 与平面AECD 所成角为β,则下列说法错误的是( )A .若F 为AD 中点,则ABE △无论翻折到哪个位置都有平面AEM ⊥平面MBFB .若Q 为MD 中点,则ABE △无论翻折到哪个位置都有//CQ 平面AEM Csin αβ=Dcos αβ=【来源】湖北省武汉市华中师范大学第一附属中学2021届高三下学期5月高考押题卷文科数学试题 【变式演练4】(多选)在棱长为1的正方体1111ABCD A B C D -中,点P 满足1DP DD DA λμ=+,[0,1]λ∈,[0,1]μ∈,则以下说法正确的是( )A .当λμ=时,//BP 平面11CB D B .当12μ=时,存在唯一点P 使得DP 与直线1CB 的夹角为3π C .当1λμ+=时,CPD .当1λμ+=时,CP 与平面11BCC B 所成的角不可能为3π 【来源】湖北省恩施州2021-2022学年高三上学期第一次教学质量监测数学试题方法二 向量法例4.如图1,菱形ABCD 中120ABC ∠=︒,动点E ,F 在边AD ,AB 上(不含端点),且存在实数λ使EF BD λ→→=,沿EF 将AEF 向上折起得到PEF ,使得平面PEF ⊥平面BCDEF ,如图2所示.(1)若BF PD ⊥,设三棱锥P BCD -和四棱锥P BDEF -的体积分别为1V ,2V ,求12V V ;(2)试讨论,当点E 的位置变化时,二面角E PF B --是否为定值,若是,求出该二面角的余弦值,若不是,说明理由.【来源】重庆市南开中学2021届高三下学期第六次质量检测数学试题【变式演练5】O 中,平行四边形ABCD 是圆O 的内接四边形,AD ,点P 是半球面上的动点,且四棱锥P ABCD -的体积为83.(1)求动点P 的轨迹T 围成的面积;(2)是否存在点P 使得二面角P AD B --的大小为3π?请说明理由. 【来源】山西省临汾市2021届高三下学期二模数学(理)试题【高考再现】1.(2018年全国卷Ⅲ文数高考试题)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【反馈练习】1.(多选)已知梯形ABCD ,112AB AD BC ===,//AD BC ,AD AB ⊥,P 是线段BC 上的动点;将ABD △沿着BD 所在的直线翻折成四面体A BCD ',翻折的过程中下列选项中正确的是( )A .不论何时,BD 与A C '都不可能垂直B .存在某个位置,使得A D '⊥平面A BC ' C .直线A P '与平面BCD 所成角存在最大值 D .四面体A BCD '的外接球的表面积的最小值为4π【来源】广东省佛山市五校联盟2021届高三5月数学模拟考试试题2.(多选)已知某正方体的平面展开图如图所示,点E ,G 分别是棱BC ,BQ 的中点,F 是棱CR (不包含端点)上的动点,则下列说法正确的是( )A .四面体AEFP 的体积为定值B .存在点F 使得PC ⊥平面AEF C .存在点F 使得//PG 平面AEFD .当F 为棱CR 的中点时,平面AEF 截正方体所得上、下两个几何体的体积之比为17:7 【来源】2021新高考高考最后一卷数学第三模拟3.(多选)在棱长为1的正方体1111ABCD A B C D -中,已知E 为线段1B C 的中点,点F 和点P 分别满足111D F DC λ=,11D P D B μ=,其中,[0,1]λμ∈,则下列说法正确的是( ) A .当λ=12时,三棱锥P -EFD 的体积为定值 B .当µ=12时,四棱锥P -ABCD 的外接球的表面积是34πC .PE PF +D.存在唯一的实数对(,)λμ,使得EP∠平面PDF【来源】广东省2022届高三上学期新高考普通高中联合质量测评摸底数学试题4.如图,矩形BDEF所在平面与正方形ABCD所在平面互相垂直,2DB DE=,点P在线段EF上.给出下列命题:①直线PD⊥直线AC;②直线PD与平面ABCD所成角的正弦值的取值范围是⎤⎥⎣⎦;③存在点P,使得直线PD⊥平面ACF;④存在点P,使得直线//PD平面ACF.其中所有真命题的序号是______.【来源】四川省大数据精准联盟2021届高三第三次统一监测文科数学试题5.七面体玩具是一种常见的儿童玩具.在几何学中,七面体是指由七个面组成的多面体,常见的七面体有六角锥、五角柱、正三角锥柱、Szilassi多面体等.在拓扑学中,共有34种拓扑结构明显差异的凸七面体,它们可以看作是由一个长方体经过简单切割而得到的.在如图所示的七面体EABCFD中,EA⊥平面,//,//,,2, 4.ABCD EA FC AD BC AD AB AD AB BC FC EA⊥=====(1)在该七面体中,探究以下两个结论是否正确.若正确,给出证明;若不正确,请说明理由:①//EF平面ABCD;②AF⊥平面EBD;(2)求该七面体的体积.【来源】广东省珠海市第二中学2021届考前模拟数学试题6.如图,ABC 为正三角形,半圆O 以线段BC 为直径,D 是圆弧BC 上的动点(不包括B ,C 点)平面ABC ⊥平面BCD .(1)是否存在点D ,使得BD AC ⊥?若存在,求出点D 的位置,若不存在,请说明理由; (2)30CBD ∠︒=,求直线AC 与平面ABD 所成角的正弦值. 【来源】百强名校2021届高三5月模拟联考(A 卷)理科数学试题7.在滨海文化中心有天津滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1A C 与平面1A ED 所成角的正弦值; (2)求二面角1E A D F --的余弦值;(3)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.【来源】天津市河东区2021届高三下学期一模数学试题8.如图,已知矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,且2AB BP ==,1AD AE ==,AE AB ⊥,且//.AE BP(1)设点M 为棱PD 中点,求证//EM 平面ABCD ;(2)线段PD 上是否存在一点N ,使得直线BN 与平面PCD ?若存在,试求出线段PN 的长度;若不存在,请说明理由.【来源】湖北省新高考联考协作体2021-2022学年高三上学期新起点考试数学试题9.如图,在三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,12AB BC AC A A ====,E ,F 分别为11A C ,11B C 的中点.(∠)在四边形11ABB A 内是否存在点G ,使平面//GEF 平面1ABC ?若存在,求出该点的位置;若不存在,请说明理由;(∠)设D 是1CC 的中点,求DA 与平面1ABC 所成角θ的正弦值.【来源】“超级全能生”2021届高三3月份高考数学(理)联考试题(丙卷)10.在四棱锥S ABCD -中,底面ABCD 为菱形,60BAD ∠=︒,平面SAD ⊥平面ABCD ,SAD 是边长为2的正三角形,E ,F 分别为AD ,SB 的中点. (∠)证明://EF 平面SCD ;(∠)在棱SA 上是否存在一点P ,使得锐二面角P BC S --若存在,求出SP SA 的值;若不存在,请说明理由.【来源】2021届高三数学临考冲刺原创卷(三)。
探索型问题的分类和解法(含解答)

探索型问题的解法和分类一、内容综述:1、探索存在型问题共有三种解法①直接解法:从已知条件出发,推导出所要求的结论。
②假设求解法:假设某一命题成立―――相等或矛盾,通过推导得出相反的结论。
③寻求模型法2、探索型问题分类①结论探索型问题:一般是由给定的已知条件探求相应的结论,解题中往往要求充分利用条件进行大胆而合理的猜想,发现规律,得出结论。
②条件探索型问题:条件探索型问题,一般是由给定的结论反思探索命题,应具备的条件。
二、例题精讲:例1.已知点A(0, 6), B(3,0), C(2,0), M(0,m),其中m<6,以M为圆心,MC为半径作圆,则(1)当m为何值时,⊙M与直线AB相切(2)当m=0时,⊙M与直线AB有怎样的位置关系?当m=3时,⊙M与直线AB有怎样的位置关系?(3)由第(2)题验证的结果,你是否得到启发,从而说出在什么范围内取值时,⊙M与直线AB相离?相交?((2),(3)只写结果,不要过程)(江苏常州)分析:如图(1)只需d=r。
作 MD⊥AB ,当MD=MC,直线和圆相切,MD用相似可求。
(2)d与r比较(3)(1)是三种位置关系中的临界位置说明:在解有关判定直线与圆的位置这类问题时,一般应先求出这一直线与圆位置相切时应满足的条件,然后再辅以图形运动,分别考察相离,相交的条件。
解:(1)连MC,MC=,过M作MD⊥AB于D,∴ RtΔADM∽RtΔAOB,∴,∴,∴ DM=(6-m)若⊙M与AB相切,∴ CM=DM,∴(6-m)∴ m2+3m-4=0∴ m=-4或m=1,经检均是,∵ m<6, ∴ m=1或m=-4时,直线AB与⊙M相切。
(2)当m=0时,MC=2,MD=,∴ MD>MC,AB与⊙M相离,当m=3时,MC=,MD=,∴ MD<MC,AB与⊙M相交。
(3)由(1),(2)知,当-4<m<1时,⊙M与直线AB相离,当1<m<6时或m<-4时,⊙M与AB相交。
探索性问题——精选推荐

探索性问题【考点梳理】一、探索性问题如果把一个数学问题看作是由条件、解题依据、解题方法和结论这四个要素组成的一个系统,那么我们把这四个要素中有两个是未知的数学问题称为探索性问题。
条件不完备和结论不确定是探索性问题的基本特征。
二、探索型问题的基本类型1.条件追溯型这类问题的外在形式是针对一个结论,条件未知需探究,或条件增删需确定,或条件正误需判断。
解决这类问题的基本策略是执果索因,先寻找结论成立的必要条件,再通过检验或论证找到结论成立的充分条件。
在执果索因的推理过程中,不考虑推理过程的可逆与否,误将必要条件当作充分条件,是一种常见错误,必须引起注意。
确定条件是否多余时要着眼于每个条件对所求(或所证)对象的确定性,判断条件正误时多从构造反例入手。
2.结论探索型这类问题的基本特征是有条件而无结论或结论的正确与否需要确定。
探索结论而后论证结论是解决这类问题的一般型式。
3.存在判断型判断存在型问题是指判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立的探索性问题,解决这类问题通常假设题中的数学对象存在(或结论成立)或暂且认可其中一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论的证明。
4.方法探究型这里指的是需要非常规的解题方法或被指定要用两种以上的方法解决同一个问题,难度较高的构造法即属此型。
在探究方法的过程中,常常需要研究简化形式但保持本质的特殊情形,运用类比、猜测、联想来探路,解题过程中创新成分比较高。
三、思想方法解决探索性问题,较少现成的套路和常规程序,需要较多的分析和数学思想方法的综合运用。
对观察、联想、类比、猜测、抽象、概括诸方面的能力有较高要求。
高考题中一般对这类问题有如下方法:1.直接法2.观察—猜测—证明3.赋值法4.数形结合 5.联想类比6.从特殊到一般7.从特殊到一般再到特殊8.等价转化四、怎样提高解探索问题的能力1.注重双基的训练,夯实基础知识。
中考数学探索性问题的解法

中考数学探索性问题的解法随着应试教育向素质教育的转轨,加强对学生各方面能力考察的题目成了近年来各省市中考试题中的热门问题,探索性问题便是其中一类应运而生的新题型,这一类问题对培养学生的创造性思维、想象能力和探索能力有很大帮助。
探索性问题又可分为结论探索型和存在探索型两种。
一、结论探索型问题此类题型一般是在给定题设条件下探求结论,它要求学生在对题设条件或图形认真分析的基础上,进行归纳,大胆猜想,然后通过推理、计算获得结论。
1.长方形的周长为24cm ,面积为64cm 2,则这样的长方体( ) (A )有一个 (B )有二个 (C )有无数个 (D )不存在2.在宽为a 的纸带中剪出直径为a 的圆5个,直径为2a的圆10个,排列方法如图1,计算所用纸带长度,请考虑能否再设计一种排列方法,使所用纸带的长度比原排列方法节省原材料?3.如图6、有四个动点P 、Q 、E 、F 分别从正方形ABCD 的顶点A 、B 、C 、D 同时出发,沿着AB 、BC 、CD 、DA 以同样的速 度向点B 、C 、D 、A 移动。
(1)证明四边形PQEF 是正方形;(2)PE 是否总过某一定点,并说明理由;(3)四边形PQEF 的顶点位于何处时其面积有最大值、最小值,各是多少?4.如图7,在直角坐标系中,点O′的坐标为(2,0),⊙O′与x 轴交于原点O 和点A ,又B 、C 、E 三点的坐标分别为(-1,0),(0,3),(0,b ),且0<B<3。
(1)求点A 的坐标和经过B 、C 两点的直线的解析式; (2)当点E 在线段OC 上移动时,直线BE 与⊙O′有哪几种位置关系?并求出每种位置关系时,b 的取值范围。
二、存在探索型问题这类问题是在题设条件下探索相应的数学对象是否存在,它要求学生充分利用题设条件,通常是先在“假设对象存在”的前提下,根据条件下进行计算或推理,从而对“是否存在的数学对象”作出正确推断。
数列中探索性问题的类型与破解策略

㊀㊀㊀数列中探索性问题的类型与破解策略◉江苏省大丰高级中学㊀姜兴荣1引言数列中的探索性问题是近年新课标高考中比较常见的一类创新性问题,根据数列中的定义㊁通项公式㊁求和公式以及相关性质等加以变形与应用,通过观察㊁分析㊁试验㊁归纳㊁运算㊁类比㊁猜想㊁论证来剖析与转化,创新成分非常高.2数列中的条件探索性问题此类问题的基本特征是:结合确定的结论,探寻未知条件,或确定条件的增删情况,或判定条件的正误等.解决此类数列问题的基本策略是执果索因,首先确定结论成立的必要条件,再检验或认证结论成立的充分条件.注意 执果索因 中推理过程是否可逆.例1㊀已知函数f(x)=l o g k x(k为常数,k>0且kʂ1).(1)在下列三个条件中选择一个,使{a n}是等比数列,并说明理由:①{f(a n)}是首项为2,公比为2的等比数列;②{f(a n)}是首项为4,公差为2的等差数列;③{f(a n)}是首项为2,公差为2的等差数列的前n项和构成的数列.(2)在(1)的条件下,当k=2时,设a n b n=2n+14n2-1,求数列{b n}的前n项和T n.分析:对第(1)问根据等比数列的定义,结合不同条件建立对应的f(a n)的关系式,通过数学运算与变形来分析;对第(2)问,结合(1)的结论与对应的条件,确定数列{b n}的通项公式,利用通项公式的裂项相消进行数列求和.解析:(1)条件①③不能使数列{a n}成等比数列,条件②可以.由题意知f(a n)=4+(n-1)ˑ2=2n+2,即l o g k a n=2n+2,得a n=k2n+2,且a1=k4ʂ0,则a n+1a n=k2(n+1)+2k2n+2=k2.因为常数k>0且kʂ1,所以k2为非零常数,因此,数列{a n}是以k4为首项,k2为公比的等比数列.(2)由(1)知a n=k4 (k2)n-1=k2n+2,则当k=2时,a n=2n+1.因为a n b n=2n+14n2-1,所以b n=14n2-1,即b n=1(2n-1)(2n+1)=1212n-1-12n+1æèçöø÷.所以T n=b1+b2+ +b n=121-13æèç+13-15+ +12n-1-12n+1öø÷=121-12n+1æèçöø÷=n2n+1.点评:涉及数列中的条件探索性问题,根据不同条件加以合理推理与转化,通过数列中定义㊁公式㊁性质等的应用来分析与运算.此类条件探索类问题,可以通过数列中的不同条件来分析对应的结论,也可以通过数列中的确定结论来反推满足题意的条件等.3数列中的结论探索性问题此类数列问题的基本特征是:给出确定的条件,自行确定对应的结论或判定结论的正误等.解决此类数列问题的基本策略是先探索结论而后去论证结论.注意从特殊情况入手加以观察,再合理分析,并归纳与猜想,最后论证.例2㊀已知各项均不为零的数列{a n}的前n项和为S n,且满足a1=4,a n+1=3S n+4(nɪN∗).(1)求数列{a n}的通项公式;(2)设数列{b n}满足a n b n=l o g2a n,数列{b n}的前n项和为T n,试比较T n与89的大小,并加以证明.分析:(1)由数列的递推关系式,合理变形,结合等比数列的定义确定数列类型,进而确定对应的通项公式;(2)通过第(1)问的结论以及条件中关系式确定b n的表达式,利用错位相减法进行数列求和,借助不等式的放缩法来确定大小关系.解析:(1)因为a n+1=3S n+4,所以a n=3S n-1+4(nȡ2),两式相减,得a n+1-a n=3a n,即a n+1=4a n(nȡ2).又a2=3a1+4=16=4a1,a1=4ʂ0,则47复习备考解法探究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年8月上半月Copyright博看网. All Rights Reserved.㊀㊀㊀a n +1=4a n (n ɪN ∗),得a n +1a n=4,所以,数列{a n }是首项为4,公比为4的等比数列,于是得a n =4n.(2)T n <89.证明如下:由a n b n =l o g 2a n ,a n =4n,得b n =2n 4n .所以T n =241+442+643+ +2n 4n ①14T n =242+443+644+ +2n 4n +1②①式G②式,得34T n =241+242+243+244+ +24n -2n 4n +1=2ˑ141-14n æèçöø÷1-14-2n 4n +1=23-23ˑ4n -2n 4n +1=23-6n +83ˑ4n +1.所以,T n =89-6n +89ˑ4n <89.点评:涉及数列中的结论探索性问题,一定要先确定一个相应的结论,再进行合理推理论证.对比较大小的问题,经常可以通过构建函数,利用函数的基本性质来分析,也可利用放缩法加以变形转化等.4数列中的存在探索性问题此类数列问题的基本特征是根据确定的条件,判断数列对象是否存在或相应结论是否成立.解决此类数列问题的基本策略是:先假定存在性,再在此条件下加以合理推理,推理正确则肯定结论,推理矛盾则否定假设.注意反证法的应用.例3㊀在①S 4是a 2与a 21的等差中项,②a 7是S 33与a 22的等比中项,③数列{a 2n }的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题:已知{a n }是公差为2的等差数列,其前n 项和为S n ,.(1)求数列{a n }的通项公式.(2)设b n =34æèçöø÷na n ,是否存在k ɪN ∗,使b k >278若存在,求出k 的值;若不存在,请说明理由.分析:(1)根据选择的条件,从不同角度,结合不同数列类型加以变形与转化,进而确定数列{a n }的通项公式;(2)结合第(1)问的结论与对应的条件来确定b n 的表达式,利用作差比较法进行合理变形,通过项数n 的取值情况确定数列{b n }中的最大项,进而确定数列的存在性问题.解析:(1)若选①S 4是a 2与a 21的等差中项,则2S 4=a 2+a 21,即24a 1+4ˑ32ˑ2æèçöø÷=(a 1+2)+(a 1+20ˑ2),得a 1=3,所以a n =3+2(n -1)=2n +1.若选②a 7是S 33与a 22的等比中项,则a 27=S 33a 22,即(a 1+6ˑ2)2=a 1+3-12ˑ2æèçöø÷(a 1+21ˑ2),解得a 1=3,所以a n =3+2(n -1)=2n +1.若选③数列{a 2n }的前5项和为65,则a 2(n +1)-a 2n =[2(n +1)-2n ]ˑ2=4,因为a 2=a 1+2,所以{a 2n }是首项为a 1+2,公差为4的等差数列.由{a 2n }的前5项和为65,得5(a 1+2)+5ˑ42ˑ4=65,解得a 1=3,所以a n =3+2(n -1)=2n +1.(2)由题意得b n =34æèçöø÷na n =(2n +1) 34æèçöø÷n.因为b n +1-b n =(2n +3) 34æèçöø÷n +1-(2n +1)34æèçöø÷n=3n4n +1[3(2n +3)-4(2n +1)]=3n4n +1(5-2n ),所以,当n =1,2时,b n +1>b n ;当n ȡ3,n ɪN ∗时,b n +1-b n <0,即b n +1<b n .所以b 1<b 2<b 3>b 4>b 5>b 6>,因此,{b n }中的最大项为b 3=7ˑ2764,显然b 3<8ˑ2764=278.所以,对任意的n ɪN ∗,b n <278,即不存在k ɪN ∗,使b k >278.点评:遇到含多个变量的数列存在探索性问题,在假设存在的情况下,确定满足条件的关系再进一步寻找相关的条件,而根据条件推出矛盾则说明不存在.破解此类问题一般可以利用数列的函数性质㊁重要不等式㊁函数的值域或取值范围等的判断来确定对应的存在性问题.5结束语处理数列中的探索性问题,应充分利用已知条件或对应的结论,合理根据数列前几项的特点透彻分析㊁发现规律㊁猜想条件或结论的存在性等,综合不等式的性质(包括放缩法等)㊁函数的性质等加以合理运算与推理,从而得以解决探索性问题,提升数学应用与创新能力.综合数学知识㊁数学思想方法和数学能力的应用,养成良好的数学品质,培养数学核心素养.W572022年8月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀解法探究复习备考Copyright 博看网 . All Rights Reserved.。
【精品】高三复习专题:探索性问题的常见类型及其求解策略.doc

高三复习专题:探索性问题的常见类型及其求解策略在近儿年的高考试题中,有关探索性问题频频出现,涉及代数、三角、儿何, 成为高考的热点之一。
正因如此,初等数学中有关探索性问题也就成为大家研究的热点。
多年来笔者对此也做了一些探讨。
探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备。
要求解答者自己去探索,结合己有条件,进行观察、分析、比较和概括。
它对学生的数学思想、数学意识及综合运用数学方法的能力提出了较高的要求。
它有利于培养学生探索、分析、归纳、判断、讨论与证明等方面的能力,使学生经历一个发现问题、研究问题、解决问题的全过程。
探索性问题一般可分为:条件追溯型,结论探索型、条件重组型,存在判断型,规律探究型,实验操作型。
每一种类型其求解策略乂有所不同。
因此,我们在求解时就必须首先要明辨它是哪一种类型的探索问题,然后再根据所属类型制定解题策略。
下面分别加以说明:一、条件追溯型这类问题的基本特征是:针对一个结论,条件未知需探索,或条件增删需确定,或条件正误需判断。
解决这类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件。
在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意。
例1. (2002年上海10)设函数/•⑴= sin2x,若是偶函数,贝Ut的一个可能值是o 分析与解答::/(x + r) = sin2(x + r) = sin(2x + 2r).X/(x + 偶函数/. f(x + t) = f(-x + r)B|Jsin(2x + It) = sin(-2x + 2r)。
由此可得、2k +12x + 2r = -2x + 2/ + + t = TT-(-2X +2t) + 2ki(k E Z) /. t = --- 7r(k e Z)4 评注:本题为条件探索型题目,其结论明确,需要完备使得结论成立的充分条件,可将题设和结论都视为已知条件,进行演绎推理推导出所需寻求的条件.这类题要求学生变换思维方向,有利于培养学生的逆向思维能力.二、结论探索型这类问题的基本特征是:有条件而无结论或结论的正确与否需要确定。
高考数学二轮复习 立体几何中的探索性问题的解题策略

立体几何中的探索性问题的解题策略[策略诠释]1.主要类型:(1)对平行或垂直关系的探索.(2)对条件或结论不完备的开放性问题的探索.2.解题思路:首先假设其存在,然后在这个假设下推理论证,如果通过推理得到了合乎情理的结论就肯定假设,若推出了矛盾就否定假设.3.注意事项:(1)解决此类问题的关键是通过条件与所求把要探索的问题确定下来.(2)在转化过程中要有理有据,不能凭空猜测.【典例1】(2014·四川高考)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形.(1)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(2)设D,E分别是线段BC,CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.[审题](1)切入点:先利用线面垂直的判定定理证明AA1⊥平面ABC,再证明直线BC⊥平面ACC1A1.关注点:注意条件AC⊥BC的应用.(2)切入点:由于D,E分别是线段BC,CC1的中点,易猜想M应为线段AB的中点.关注点:只要在平面A1MC内找到一条与DE平行的直线即可.[解题]【解】(1)因为四边形ABB1A1和ACC1A1都是矩形,所以AA1⊥AB,AA1⊥AC.2分因为AB,AC为平面ABC内两条相交的直线,所以AA1⊥平面ABC.4分因为直线BC⊂平面ABC,所以AA1⊥BC.又由已知,AC⊥BC,AA1,AC为平面ACC1A1内两条相交的直线,所以BC⊥平面ACC1A1.6分(2)取线段AB 的中点M ,连接A 1M ,MC ,A 1C ,AC 1,设O 为A 1C ,AC 1的交点. 由已知,O 为AC 1的中点.8分连接MD ,OE ,则MD ,OE 分别为△ABC,△ACC 1的中位线,所以,MD 綊12AC ,OE 綊12AC ,因此MD 綊OE.9分连接OM ,从而四边形MDEO 为平行四边形, 则DE∥MO.因为直线DE ⊄平面A 1MC ,MO ⊂平面A 1MC , 所以直线DE∥平面A 1MC.11分即线段AB 上存在一点M(线段AB 的中点),使直线DE∥平面A 1MC.12分 [变题]1.(2014·北京东城模拟)在如图所示的几何体中,四边形ABCD 是菱形,ADNM 是矩形,平面ADNM⊥平面ABCD ,P 为DN 的中点.(1)求证:BD⊥MC.(2)线段AB 上是否存在点E ,使得AP∥平面NEC ,若存在,说明在什么位置,并加以证明;若不存在,说明理由.【解】(1)连接AC,因为四边形ABCD是菱形,所以AC⊥BD.又ADNM是矩形,平面ADNM⊥平面ABCD,所以AM⊥平面ABCD.因为BD⊂平面ABCD,所以AM⊥BD.因为AC∩AM=A,所以BD⊥平面MAC.又MC⊂平面MAC,所以BD⊥MC.(2)当E为AB的中点时,有AP∥平面NEC.取NC的中点S,连接PS,SE.因为PS∥DC∥AE,PS=AE=12 DC,所以四边形APSE是平行四边形,所以AP∥SE.又SE⊂平面NEC,AP⊄平面NEC,所以AP∥平面NEC.【典例2】(12分)(2014·北京丰台模拟)如图(1),在Rt△ABC中,∠C=90°,BC=3,AC=6.D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图(2).(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由. [审题](1)切入点:先从折叠前后关系入手证明DE ⊥AC. 关注点:折叠前后线面间的位置关系.(2)切入点:先由条件建立空间直角坐标系,求面平面A 1BE 的法向量. 关注点:线面角与方向向量和法向量所求角的关系. (3)切入点:首先假设存在点P.关注点:由平面A 1DP 与平面A 1BE 垂直知其法向量垂直. 【解】 (1)证明:∵AC ⊥BC ,DE ∥BC , ∴DE ⊥AC.∴DE ⊥A 1D ,DE ⊥CD , ∴DE ⊥平面A 1DC. ∴DE ⊥A 1C.又∵A 1C ⊥CD ,且DE∩CD=D , ∴A 1C ⊥平面BCDE. (2)如图所示,以C 为坐标原点,建立空间直角坐标系Cxyz,则A 1(0,0,23),D(0,2,0),M(0,1,3),B(3,0,0),E(2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0,n ·BE →=0. 又A 1B →=(3,0,-23),BE →=(-1,2,0),∴⎩⎨⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z =3, ∴n =(2,1,3).6分设CM 与平面A 1BE 所成的角为θ.∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=|n ·CM →|n |·|CM →||=48×4=22.∴CM 与平面A 1BE 所成角的大小为π4.8分(3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.理由如下: 假设这样的点P 存在,使其坐标为(p,0,0),其中p ∈[0,3]. 设平面A 1DP 的法向量为m =(x ′,y ′,z ′),则m ·A 1D →=0,m ·DP →=0. 又A 1D →=(0,2,-23),DP →=(p ,-2,0),∴⎩⎨⎧2y ′-23z ′=0,px ′-2y ′=0.令x ′=2,则y ′=p ,z ′=p3, ∴m =(2,p ,p3).10分平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.∴线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.12分 【变题】2.(2014·贵州贵阳质检)如图,正方形AA 1D 1D 与矩形ABCD 所在平面互相垂直,AB =2AD =2.(1)若点E 为AB 的中点,求证:BD 1∥平面A 1DE ;(2)在线段AB 上是否存在点 E ,使二面角D 1-EC -D 的大小为π6?若存在,求出AE 的长;若不存在,请说明理由.【解】 (1)四边形ADD 1A 1为正方形,连接AD 1,A 1D ∩AD 1=F ,则F 是AD 1的中点,又因为点E 为AB 的中点,连接EF ,则EF 为△ABD 1的中位线,所以EF ∥BD 1.又因为BD 1⊄平面A 1DE ,EF ⊂平面A 1DE , 所以BD 1∥平面A 1DE .(2)根据题意得DD 1⊥平面ABCD ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则D (0,0,0),A 1(1,0,1),D 1(0,0,1),C (0,2,0).设满足条件的点E 存在, 令E (1,y 0,0)(0≤y 0≤2), EC →=(-1,2-y 0,0),D 1C →=(0,2,-1), 设n 1=(x 1,y 1,z 1)是平面D 1EC 的法向量,则⎩⎪⎨⎪⎧n 1·EC →=0,n 1·D 1C →=0,得⎩⎪⎨⎪⎧-x 1+2-y 0y 1=0,2y 1-z 1=0.令y 1=1,则平面D 1EC 的法向量为n 1=(2-y 0,1,2),由题知平面DEC 的一个法向量n 2=(0,0,1).由二面角D 1-EC -D 的大小为π6得cos π6=|n 1·n 2||n 1|·|n 2|=22-y 02+1+4=32,解得y 0=2-33∈[0,2],3 3时,二面角D1-EC-D的大小为π6.所以当AE=2-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索性问题的常见类型及其求解策略在近几年的高考试题中,有关探索性问题频频出现,涉及代数、三角、几何,成为高考的热点之一。
正因如此,初等数学中有关探索性问题也就成为大家研究的热点。
多年来笔者对此也做了一些探讨。
探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备。
要求解答者自己去探索,结合已有条件,进行观察、分析、比较和概括。
它对学生的数学思想、数学意识及综合运用数学方法的能力提出了较高的要求。
它有利于培养学生探索、分析、归纳、判断、讨论与证明等方面的能力,使学生经历一个发现问题、研究问题、解决问题的全过程。
探索性问题一般可分为:条件追溯型,结论探索型、条件重组型,存在判断型,规律探究型,实验操作型。
每一种类型其求解策略又有所不同。
因此,我们在求解时就必须首先要明辨它是哪一种类型的探索问题,然后再根据所属类型制定解题策略。
下面分别加以说明:一、条件追溯型这类问题的基本特征是:针对一个结论,条件未知需探索,或条件增删需确定,或条件正误需判断。
解决这类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件。
在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意。
例1.(2002年上海10)设函数)(,2sin )(t x f x x f +=若是偶函数,则t 的一个可能值是 。
分析与解答:∵是偶又)().22sin()(2sin )(t x f t x t x t x f ++=+=+函数 ∴ )22sin()22sin()()(t x t x t x f t x f +-=++-=+即。
由此可得)(2)22(222222Z k k t x t x k t x t x ∈++--=+++-=+πππ或∴)(412Z k k t ∈+=π 评注:本题为条件探索型题目,其结论明确,需要完备使得结论成立的充分条件,可将题设和结论都视为已知条件,进行演绎推理推导出所需寻求的条件.这类题要求学生变换思维方向,有利于培养学生的逆向思维能力.二、结论探索型这类问题的基本特征是:有条件而无结论或结论的正确与否需要确定。
解决这类问题的策略是:先探索结论而后去论证结论。
在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来作一番猜测,得出结论,再就一般情形去认证结论。
例2. (2020年上海文12)若干个能惟一确定一个数列的量称为该数列的“基本量”。
设{}n a 是公比为q 的无穷等比数列,下列{}n a 的四组量中,一定能成为该数列“基本量”的是第 组。
(写出所有符合要求的组号)。
①S 1与S 2;②a 2与S 3;③a 1与a n ;④q 与a n . 其中n 为大于1的整数,S n 为{}n a 的前n 项和。
分析与解答:(1)由S 1和S 2,可知a 1和a 2。
由q a a =12可得公比q ,故能确定数列是该数列的“基本量”。
(2)由a 2与S 3,设其公比为q ,首项为a 1,可得211132112,,q a q a a S qa a q a a ++=== ∴q a a qa S 2223++=∴0)(23222=+-+a q S a q a满足条件的q 可能不存在,也可能不止一个,因而不能确定数列,故不一定是数列{}n a 的基本量。
(3)由a 1与a n ,可得1111,a a q qa a nn n n ==--,当n 为奇数时,q 可能有两个值,故不一定能确定数列,所以也不一定是数列的一个基本量。
(4)由q 与a n ,由1111,--==n nn n qa a q a a 可得,故数列{}n a 能够确定,是数列{}n a 的一个基本量。
故应填①、④评注:数学需要解题,但题海战术绝对不是学习数学的最佳策略。
本题考查确定等比数列的条件,要求正确理解等比数列和新概念“基本量”的意义。
如何能够跳出题海,事半功倍,全面考察问题的各个方面,不仅可以训练自己的思维,而且可以纵观全局,从整体上对知识的全貌有一个较好的理解. 例3(2002上海).规定()()11!mx x x x m C m --+=L ,其中x R ∈,m 是正整数,且01x C =,这是组合数mn C (n ,m 是正整数,且m n ≤)的一种推广. (Ⅰ)求515C -的值;(Ⅱ)组合数的两个性质:①m n m n n C C -=;②11m m mn n n C C C -++=是否都能推广到(x R ∈,m 是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由;(Ⅲ)我们知道,组合数mn C 是正整数.那么,对于mx C ,x R ∈,m 是正整数,是否也有同样的结论?你能举出一些m x C R ∈成立的例子吗?分析与解答:(Ⅰ)()()()515151619116285!C ----==-L .(Ⅱ)一个性质是否能推广的新的数域上,首先需要研究它是否满足新的定义.从这个角度很快可以看出:性质①不能推广.例如当x =1无意义. 性质②如果能够推广,那么,它的推广形式应该是:11m m mx x x C C C -++=,其中x R ∈,m 是正整数.类比于性质①的思考方法,但从定义上是看不出矛盾的,那么,我们不妨仿造组合数性质的证明过程来证明这个结论.事实上,当1m =时,10111x x x C C x C ++=+=.当2m ≥时,()()()()()()()()()()()111112!1!121 11!121 !m m x x m x x x x m x x x m C C m m x x x m x m m m x x x m x m C -+--+--++=+---+-+⎛⎫=+⎪-⎝⎭--++==L L L L由此,可以知道,性质②能够推广.(Ⅲ)从m x C 的定义不难知道,当x Z ∉且0m ≠时,mx C Z ∈不成立,下面,我们将着眼点放在x Z ∈的情形.先从熟悉的问题入手.当x m ≥时,mx C 就是组合数,故mx C Z ∈.当x Z ∉且x m <时,推广和探索的一般思路是:能否把未知的情形(mx C ,x Z ∉且x m <)与已知的结论mn C Z ∈相联系?一方面再一次考察定义:()()11!mx x x x m C m --+=L ;另一方面,可以从具体的问题入手.由(Ⅰ)的计算过程不难知道:551519C C -=-.另外,我们可以通过其他例子发现类似的结论.因此,将515C -转化为519C 可能是问题解决的途径. 事实上,当0x <时,()()()()()()()1111111!!m m m mx x m x x x m x m x x C C m m -+---+-+--+-==-=-L L .①若1x m m -+-≥,即1x ≤-,则1mx m C -+-为组合数,故mx C Z ∈.②若1x m m -+-<,即0x m ≤<时,无法通过上述方法得出结论,此时,由具体的计算不难发现:43C =0……,可以猜想,此时0mx C Z =∈.这个结论不难验证.事实上,当0x m ≤<时,在,1,,1x x x m --+L 这m 个连续的整数中,必存在某个数为0.所以,0mx C Z =∈.综上,对于x Z ∈且m 为正整数,均有mx C Z ∈.评注:类比是创造性的“模仿”,联想是“由此及彼”的思维跳跃.在开放题的教学中,引导学生将所求的问题与熟知的信息相类比,进行多方位的联想,将式子结构、运算法则、解题方法、问题的结论等引申、推广或迁移,可由已知探索未知,由旧知探索新知,这既有利于培养学生的创新思维能力,又有利于提高学生举一反三、触类旁通的应变灵活性.三条件重组型这类问题是指给出了一些相关命题,但需对这些命题进行重新组合构成新的复合命题,或题设的结求的方向,条件和结论都需要去探求的一类问题。
此类问题更难,解题要有更强的基础知识和基本技能,需要要联想等手段。
一般的解题的思路是通过对条件的反复重新组合进行逐一探求。
应该说此类问题是真正意义上的创新思维和创造力。
例4 (1999年全国)α、β是两个不同的平面,m 、n 是平面α及β之外 的两条不同的直线,给出四个论断:①m ⊥n ②α⊥β ③n ⊥β ④m ⊥α以其中的三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题 。
分析:本题给出了四个论断,要求其中三个为条件,余下一个为结论,用枚举法分四种情况逐一验证。
分析与解答:依题意可得以下四个命题:(1)m ⊥n , α⊥β, n ⊥β⇒ m ⊥α;(2)m ⊥n , α⊥β, m ⊥α⇒n ⊥β; (3)m ⊥α, n ⊥β, m ⊥α⇒ α⊥β;(4)α⊥β,n ⊥β,m ⊥α⇒m ⊥n 。
不难发现,命题(3)、(4)为真命题,而命题(1)、(2)为假命题。
故填上命题(3)或(4)。
例5. (2020年北京)已知三个不等式:0,0,0>->->bda c ad bc ab (其中a ,b ,c ,d 均为实数),用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成的正确命题的个数是( )A 、0B 、1C 、2D 、3分析与解答:若0,0,0>-=->->abad bc b d a c ad bc ab 则∴00,0>-⇒>->bda c ad bc ab 若0,0,0>->->abadbc b d a c ab 则0,0,00,0,000,0,0>⇒>->->∴>->->->-⇒>->>-∴ab bda c ad bc ab abadbc b d a c ad bc ad bc bda c ab ad bc 即则若即故三个命题均为真命题,选D 。
四、存在判断型这类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立。
解决这类问题的基本策略是:通常假定题中的数学对象存在(或结论成立)或暂且认可其中的一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论。
其中反证法在解题中起着重要的作用。
例6、(2020年福建)已知[]11)(324)(32,R x x ax x x f -∈-+=在区间上是增函数。
(1)求实数a 的值组成的集合A ; (2)设关于x 的方程3312)(x x x f +=的两个非常零实根为x 1、x 2,试问:是否存在实数m ,使得不等式2121x x tm m -≥++对任意[]1,1-∈∈t A a 及恒成立?若存在,求m 的取值范围;若不存在,请说明理由。