高压变频器结构原理及故障判断排除
高压变频器常见故障分析及处理

高压变频器常见故障分析及处理摘要:目前,当今社会越来越追求更加精益化的设备,对于具体的设备技艺也有着一定的要求,高压变频器在工业生产领域中的推广和应用,不仅有效提升了工业生产设备运行的安全性与稳定性,而且降低了设备运行的能耗,节省了企业的生产成本。
所以工业企业必须在日常生产过程中,切实做好高压变频器设备日常维护和检修工作,充分了解和掌握高压变频器的常见故障,促进维修人员故障排查和维修能力的有效提升,为高压变频器的安全稳定运行提供技术支持。
关键词:高压变频器;常见故障;处理引言电气设备对高压变频器运行有着重要影响,如何提高高压变频器安全是相关企业亟需解决的问题,如果变频器发生故障将对整个高压变频器运行产生不良影响,所以要对高压变频器检修试验引起注意,重点分析变频器对高压变频器的危害和防范措施,保证结果的准确性,及时消除安全隐患,确保高压变频器能够正常运转。
1高压变频器的概述1.1高压变频器的组成部分高压变频器是在机器运行时,电源的变流电经过高压变频器进行变化,变成直流进行运行,最后再变成变流电为机器的运行提供一定的电力,为了更好地提高在高压变频器的应用效果,首先需要对高压变频器进行组成构造分析,在高压变频器的电源处,首先接入的就是整个国家电网进行分布的区域电网的流入,对于整流电在应用到具体的机器上时,需要进行直流电以及变流电的转化,所以左侧是交流电源输入,经过高压变频器变成直流电,最终变成交流电进行运用,高压变频器主要由直流调速装置和交流调速装置构成,经过直流调速装置可以进行直流输出,进而流入直流电机,而交流电源输入经过交流调速装置,会产生交流输出,进而流入交流电机,之后这两个电机流入中间传动机构,最终可以进行机器的电流的运用,进而流入终端机器。
1.2高压变频器的工作原理高压变频器通常都是由多个电力电子部件组合而成的设备,电力电子部件的作用就是在电路之中起到阻断的作用。
高压变频器的主要作用就是调节电流,高压变频器采用不同的控制方法往往最终形成的调速结果都是不一样的。
高压变频器实际接线及常见故障处理

高压变频器实际接线及常见故障处理1.高压变频器主要由:输入模块、输出模块、CPU模块、控制模块、功率模块组成2.额定电压:6000KV3.联锁端子:开车接点(去打快开门):TB2-19/ESDTB2-20/ESD跳高压柜(断路器脱扣信号):TB2-31/X3-14TB2-32/X3-41回讯(马达电流信号输出):TB2 ELV-56/LTB2 ELV-57/N4.去现场端子:起动:TB2-3/SB1-13TB2-4/SB1-14停止:TB2-5/SB1-23TB2-6/SB1-245、变频器故障及代码5.运行以来高压变频器曾经发生过的故障及处理如下:6.故障检查及处理的具体步骤:例1 :2006年8月14日8:50 化工变监控系统报“歧化B104高压变频器报警”。
第一步:从监控系统确认歧化B104高压变频器报警第二步:变电所检查确认该柜6KV开关跳,高压变频器显示故障代码“TRIP -MV DOORS OPENED”“MEDIUM VOLTAGE LOW2 ”“MEDIUM VOLTAGE LOW FLT”检查高压变频器单元柜门联锁开关联锁动作跳闸第三步:拆除该联锁开关DS1,并短接该联锁接点。
第四步:9:22 恢复送电,开车正常。
第五步:分析原因:高压变频器单元柜门联锁开关动作。
REF542报警“ACCIDENT FAR TRIP”。
现已取消柜门联锁:B103A、B104例2:2008年1月16日22:00工艺反映B401A现场不能停机。
第一步:从监控系统曲线判断当时已停机,监控报PX B401A通讯中断第二步:去PX高配检查高压变频器上“RUN ”灯已灭,电源灯、报警灯亮,现场电流表指示30A,但变频器报警显示“KEYPAD COMM LOSS”无法复位,当时高压开关未跳,542无报警,第三步:将380V控制电源拉开,再送上,面板自检后仍报“KEYPAD COMM LOSS”无法复位。
17日上午处理B401A变频器面板死机问题,根据厂家建议下电检查控制面板与内部主控板之间的连接插件,上电后面板显示正常,11:37 试运行至13:00变频器输出又中断,变频器又报“KEYPAD COMM LOSS”无法复位。
高压变频器的工作原理和常见故障分析

高压变频器的工作原理和常见故障分析摘要:高压变频器作为现代工业中电机控制领域的重要设备,已经被广泛应用于各种工业生产领域。
本文首先介绍了高压变频器的工作原理和主要组成部分,然后分析了高压变频器的常见故障类型及其原因,并提出了相应的解决方法。
关键词:高压变频器;工作原理;故障分析引言:随着现代工业技术的不断发展,高压变频器已经成为各种工业领域中不可或缺的设备。
高压变频器作为电机控制领域的关键设备,其工作原理和性能对工业生产的安全、高效、稳定具有重要意义。
一、高压变频器的工作原理高压变频器是一种非常重要的电力电子设备,其主要功能是将电网交流电源转换为可变频率、可变幅值的交流电源,从而实现对电机的精确控制。
其工作原理基于矢量控制算法,通过控制变频器的输出电压和电流,实现对电机的速度和转矩控制。
高压变频器具有多种优点,包括精确控制、节能高效、使用寿命长等。
因此,它在工业生产中得到了广泛的应用。
高压变频器的工作原理主要包括三个方面:输入滤波、直流母线和逆变器。
输入滤波主要用于滤除电网噪声和谐波,确保变频器的正常工作;直流母线主要用于储存变频器输出的直流电,以提供稳定的电源;逆变器主要用于将直流电转换为可变频率的交流电。
高压变频器控制器通过检测电机转速和负载,根据控制算法生成逆变器的控制信号,从而实现对电机的速度和转矩控制。
二、高压变频器的常见故障类型及其原因2.1 高压变频器的过流故障高压变频器在运行过程中,由于负载突然增大或者其他原因导致输出电流大于额定值,就会引起过流故障。
过流故障的主要原因包括电机负载过大、电机堵转、逆变器失效等。
2.2 高压变频器的过压故障高压变频器在运行过程中,由于输入电压波动或者其他原因导致输出电压大于额定值,就会引起过压故障。
过压故障的主要原因包括电网电压异常、整流器失效等。
2.3 高压变频器的过热故障高压变频器在运行过程中,由于环境温度过高、散热不良或者其他原因导致温度升高,就会引起过热故障。
高压变频器的工作原理和常见故障分析周占金

高压变频器的工作原理和常见故障分析周占金发布时间:2021-06-10T11:03:58.997Z 来源:《中国科技信息》2021年7月作者:周占金[导读] 变频器使用过程中必须结合高压变频器基本性质,在探究高压变频器重要控制策略的基础上,根据企业实际工业生产情况,针对性地对高压变频器的改造方案、改造技术等进行优化改良,对比分析高压变频器改造效益,为企业良好经济价值的取得奠定更坚实的基础。
国投新疆罗布泊钾盐有限责任公司周占金 839000摘要:变频器使用过程中必须结合高压变频器基本性质,在探究高压变频器重要控制策略的基础上,根据企业实际工业生产情况,针对性地对高压变频器的改造方案、改造技术等进行优化改良,对比分析高压变频器改造效益,为企业良好经济价值的取得奠定更坚实的基础。
关键词:高压变频器;工作原理;常见故障前言随着我国高新科技应用水平的不断成熟,高压变频器技术理论体系不断完善,实践应用水平逐步提高,高压变频器在冶金、电力等诸多行业得到了较为广泛的应用。
一般而言,高压变频器在冶金、电力等诸多行业上的巨大应用潜力和节能价值以及其优良的调速性能等,使高压变频器具备了较为广阔的未来市场发展空间和发展前景,也为电力、冶金等诸多行业提供了源源不竭的发展动力。
目前,高压变频技术已成为电力电能领域以及冶金冶炼行业的重要关注内容,为大功率传动装备的应用和企业经济效益的达成提供了重要支撑,因此,对高压变频器特性及应用的探讨与研究具备重要理论意义和现实价值。
1高压变频器概述高压变频器主要是指实际输人电源电压超于3000V以上的大功率变频器。
通常情况下,高压变频器主要有高低高、低高和高高等三大类型区分。
传统模式下的高压变频器主要采用空硅整流的方式,晶闸管逆变器等基本元件为组成部分,其整体运行时谐波较大,对电动机以及区域电网甚至机械设备等都有着较大不良影响。
随着近理代电力电子理论技术和实践经验的不断成熟,计算机传感器技术、控制技术、通信技术等迅速发展,新型器件逐步改变了传统模式下晶闸管逆变器件性能较差这劣势,IGBT、ICCT等全新构件构成的高压变频器谐波较小,性能优良,功率系数有着较大幅度的提升。
高压变频器的工作原理和常见故障分析及处理

高压变频器的工作原理和常见故障分析及处理摘要:作为一种高压变频设备,高压变频器及其功率单元体结构复杂,如果一个部件出现故障,将无法正常运行。
维修人员掌握高压变频器的工作原理,掌握高压变频器常见故障分析,可以改善提高维修人员的专业技术维护和大修水平,并提供足够的理论支持,以便长期不断地汇总和积累工作经验。
关键词:高压变频器;原理;故障1变频器概述高压变频器一种电力变换装置,利用电力工程中功率半导体元器件的开关通断作用,把工频电源转换成频率可调整的交流电源,并向电动机提供变频电源,完成对电动机速度的改变。
目前多数高压变频器采用功率单元串联多重化叠加技术。
2高压变频器的优点2.1节能效果显著引风机或离心泵常规的调速方法是通过调整进、出口挡板或阀门的开度来控制压力和流量,输入功率大,而且能耗也大。
在选用变频调速时,如果压力和流量相对较小,所有正常运行规则都可以通过降低引风机或离心泵的转速比来达到。
它是节能环保的一种调节方式,大大减少对进、出口挡板或阀门的破坏,进而实现环保节能。
2.2 延长设备使用寿命采用变频器开机时,整个开机过程对电机影响不大,起动时绝缘层损耗降低,工作压力和流量更稳定;降低了引风机颤动或离心水泵水锤效应,降低了对机械设备的冲击和损坏,延长了机械设备的使用寿命。
2.3提高自动化水平该转换器输出频率可在0〜50 HZ之间任意调整,调整精度高,真正实现了无级变速,便于数字化、机械自动化的完成,提高了生产过程控制水平和产品质量。
2.4减小对电网的启动冲击采用变频器启动时,电动机已经软启动,启动电流较小,限制在额定电压范围内,对电网的影响较小,电动机的启动频率不受限制,能满足机械设备经常启动和停止的要求。
经调试,谐波电流较小,减少了对电网的污染。
2.5减少电源的功率储备当机械和设备启动时,为了保证电源电压不会维持在正常范围内,必须增加开关电源的输出功率储备。
采用逆变器原理后,由于启动电流较小,对电源电压危害较小,可大大降低开关电源输出功率。
32个高压变频器常见故障与排除处理方法

32个高压变频器常见故障与排除处理方法高压变频器是一种广泛应用于电力系统中的电力变频装置,常用于控制电动机的转速和电流。
由于其工作环境复杂,常常会出现一些常见的故障问题。
本文将介绍32个高压变频器常见故障及排除处理方法,详细解决方案如下:1.故障:变频器开启后无任何反应。
处理方法:检查主电源是否接通,查看断路器是否打开,检查变频器是否受电源保护锁定。
2.故障:变频器启动后报警并停机。
处理方法:查看报警代码,检查是否存在过流、过载等问题,处理故障后重新启动。
3.故障:变频器运行不平稳,产生振动。
处理方法:检查电机的轴是否有偏移,检查电机是否松动,重新调整电机的安装位置。
4.故障:变频器输出电流不稳定。
处理方法:检查电机的供电电压和电流是否稳定,检查变频器的参数设置是否正确,调整参数设置达到稳定目标。
5.故障:变频器输出电流过大,可能导致电机过热。
处理方法:检查负载,减少负载,检查变频器参数设置是否合理,适当调整输出电流。
6.故障:变频器冷却风扇不转。
处理方法:检查风扇是否卡住,清理风扇上的灰尘,更换故障的风扇。
7.故障:变频器显示屏无法显示。
处理方法:检查显示屏是否有松动的连接线,重新连接或更换显示屏。
8.故障:变频器频率设置不正常。
处理方法:检查输入信号是否正确,检查是否存在参数错误,重新设置参数。
9.故障:变频器出现过热报警。
处理方法:检查是否存在过载,检查电机是否正常工作,检查变频器冷却风扇是否正常工作。
10.故障:变频器输出电压不稳定。
处理方法:检查供电电压是否稳定,检查变频器参数设置是否正确,调整参数设置达到稳定目标。
11.故障:变频器输出电压过高或过低。
处理方法:检查断路器是否打开,检查电压是否输入正常,检查变频器参数设置是否正确。
12.故障:变频器启动后有异常噪音。
处理方法:检查电机是否松动,检查电机的轴是否有弯曲,重新调整电机的安装位置。
13.故障:变频器无法启动电机。
处理方法:检查电机是否正常工作,检查变频器的输出电压和电流是否正常,调整参数设置。
单元串联型高压变频器工作原理是什么 故障处理方法有哪些

单元串联型高压变频器工作原理是什么故障处理方法有哪些利用变频技术驱动电动机可以实现节能,符合我国有关节能减排的要求和社会需求。
为了使变频装置应用在高电压等级、大容量的场合,通常会采用高压大容量的开关器件和多电平的拓扑结构;级联型变流器是一种有很好应用前景的多电平变换器,级联型变频器的具体应用如级联型高压变频器拖动风机、水泵等负载,大多工作在比较重要的场合,在生产或生活中的作用和影响较大,对可靠性要求高,一般要求系统能够连续运转,即使在故障后适当降低容量运行,也不能随时停机。
在利用高压变频装置驱动电动机实现节能目标的同时,为了保证系统的可靠性,需要高压变频装置具有一定的容错功能,即在发生器件或者单元故障时,能够自动将其屏蔽,通过调整控制方式,使系统继续运行。
单元串联型高压变频器利用若干低压功率单元串联实现高压输出,这种结构使其具有良好的容错性能;将发生故障的单元屏蔽后,通过一定的故障处理方法,可以使系统继续降低容量运行,保证生产的稳定运行。
传统的故障处理方法是采用屏蔽掉故障单元与另外两相中相应的非故障单元,以保持变频器的平衡运行,这样势必会造成非故障单元的浪费,因此对级联型变频器正常工作及故障时处理方法的研究很有必要。
本文设计的基于PCI-9846的变频器输出性能测试系统主要针对采用三种不同的故障处理方法时,对单元串联型高压变频器输出电能质量的各项指标进行实时监测和分析,尤其是单元发生故障后,系统输出电压的性能指标,应尽量与故障前保持一致,以减小故障对系统工作的影响。
该测试系统利用LabVIEW虚拟仪器软件平台搭建系统主控界面,设计了相应的故障处理方法,可以得到不同故障处理方法时的参考波。
在多单元级联型变频器仿真模型上进行测试,通过凌华PCI-9846数字化仪采集三相电压信号后进行分析处理,获得三相线电压的幅值,频率,总谐波含量,三相电压相位等主要性能指标,从而检查控制算法在系统正常运行及带故障运行时的输出情况。
高压变频器的工作原理和常见故障分析核心探寻

高压变频器的工作原理和常见故障分析核心探寻摘要:本文基于变频器基本内容和应用优势展开论述,结合高压变频器工作原理,通过研究电网波动故障、负载故障、环境温度问题、电气件质量问题、设置错误、通讯故障的原因及处理方法,其目的在于降低高压变频器故障发生几率,提高高压变频器运行稳定性。
关键词:高压变频器;节能效果;自动化水平在现代电力电子技术和微电子技术快速发展的背景下,大功率高压变频调速设备也在持续优化和改进,同时也被广泛应用在大型矿业生产厂、石油化工、市政供水、冶金钢铁、电力能源等行业的各种风机、水泵、压缩机、轧钢机等设备中。
为了确保压力设备运行过程的稳定性,对于延长相关设备使用寿命,降低系统运维成本有着积极地意义。
1变频器概述变频器是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。
变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。
变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。
随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。
2变频器的优点2.1节能效果显著变频器在使用过程中可以根据设备运行情况,展开各项参数的动态调整,这样也能够将设备运行功率调整到动态平衡状态。
相较于普通运行设备,变频器设备的应用,能够进一步提升已有资源利用效率,而且也能够起到良好的节能效果。
2.2延长设备使用寿命机械设备在应用中都有固定的生命周期,而导致其生命周期出现变动的因素包括零件磨损情况、外部环境等。
其中零件磨损情况属于影响设备使用寿命的核心因素,在设备传统运行中,各零件在某一功率背景下保持持续运动,机械磨损情况会不断加重。
而变频器的使用可以根据实际运行所需,调整各零件运行状态,减少了资源浪费问题,起到了延长设备使用寿命的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高压变频器原理
19
高压变频器故障判断排除
三、东方日立高压变频器故障分析和排除
20
高压变频器故障判断排除
21
高压变频器故障判断排除
22
高压变频器故障判断排除
23
高压变频器故障判断排除
24
高压变频器故障判断排除
25
高压变频器故障判断排除
26
高压变频器故障判断排除
27
高压变频器故障判断排除
28
高压变频器故障判断排除
29
高压变频器故障判断排除
30
高压变频器故障判断排除
31
高压变频器故障判断排除
32
高压变频器故障判断排除
33
高压变频器故障判断排除
34
高压变频器故障判断排除
35
高压变频器故障判断排除
36
高压变频器故障判断排除
37
高压变频器故障判断排除
38
高压变频器故障判断排除
高压变频器结构原理及故障判断排除
高压变频器结构
我公司高压变频器的控制方式采用多级PWM叠加技术,结构采用多个变频器 单元串联叠加输出的方式。
整套变频装置由旁通柜,变压器柜,功率单元柜和控制柜四部分组成。 在旁通柜内,装有高压断路器和隔离刀闸等,可实现变频和工频的切换, 当变频器在运行中发生重故障时,变频器发出变频切换到工频的指令,也可根 据需要,人为的切换到工频。 在变压器柜内,装有多重移相变压器,原边绕组采用星形接法,副边绕组 采用延边三角形接法和星形接法,可有效的抵消电网中的偶次谐波,并可有效 的滤除某些奇次谐波,尽量减少变频器电源的谐波污染,变压器能承受系统过 电压和变频装置产生的共模电压以及谐波的影响。 在功率单元柜内装有功率单元,变频器的输出电压为每个单元输出的PWM波 形叠加后的输出。 在控制柜内,装有控制各回路启停的开关和控制各个功率单元协调工作的 控制板,以及整套变频装置同外部系统的接口等。 对变频器的启停操作,通过切换开关,既可以通过就地的按钮控制,又可通过 远方的DCS控制来完成。变频装置根据DCS给出的速度调节信号自动的控制电机 的转速,并且在就地和远方都可以监视变频装置的状态。
2
高压变频器结构
3
高压变频器结构
4
高压变频器结构
5
高压变频器结构
6
高压变频器原理
7
高压变频器原理
8
高压变频器原理
9
高压变频器原理
10
高压变频器原理
11
高压变频器原理
12
高压变频器原理
13
高压变频器变频器原理
16
高压变频器原理
17
高压变频器原理
39
高压变频器故障判断排除
40
高压变频器故障判断排除
41
高压变频器故障判断排除
42
高压变频器故障判断排除
43
高压变频器故障判断排除
44
谢谢