《工程力学》课后习题解答

合集下载

(完整版)工程力学课后详细答案

(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

大学《工程力学》课后习题解答-精品

大学《工程力学》课后习题解答-精品

大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。

解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。

若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。

构件重量不计,图中的长度单位为cm 。

已知F =200 N ,试求支座A 和E 的约束力。

解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。

试求在与O D平行的力F作用下,各杆所受的力。

已知F=0.6 kN。

解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。

求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。

各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。

《工程力学》课后习题与答案全集

《工程力学》课后习题与答案全集
解:取DC杆上的C为动点,OAB为动系,定系固结在支座上。
由 ,作出速度平行四边形,如图示:
即:
7.图示平行连杆机构中, mm, 。曲柄 以匀角速度 2rad/s绕 轴转动,通过连杆AB上的套筒C带动杆CD沿垂直于 的导轨运动。试示当 时杆CD的速度和加速度。
解:取CD杆上的点C为动点,AB杆为动系。对动点作速度分析和加速度分析,如图(a)、(b)所示。图中:
解:设该力系主矢为 ,其在两坐标轴上的投影分别为 、 。由合力投影定理有:
=-1.5kN
kN
kN

由合力矩定理可求出主矩:
合力大小为: kN,方向
位置: m cm,位于O点的右侧。
2.火箭沿与水平面成 角的方向作匀速直线运动,如图所示。火箭的推力 kN与运动方向成 角。如火箭重 kN,求空气动力 和它与飞行方向的交角 。
(d)由于不计杆重,杆AB在A、C两处受绳索作用的拉力 和 ,在B点受到支座反力 。 和 相交于O点,
根据三力平衡汇交定理,
可以判断 必沿通过
B、O两点的连线。
见图(d).
第二章力系的简化与平衡
思考题:1.√;2.×;3.×;4.×;5.√;6.×;7.×;8.×;9.√.
1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm,求此力系向O点简化的结果,并确定其合力位置。

(mm/s)
故 =100(mm/s)
又有: ,因
故:
即:
第四章刚体的平面运动
思考题
1.×;2.√; 3.√;4.√;5.×.
习题四
1.图示自行车的车速 m/s,此瞬时后轮角速度 rad/s,车轮接触点A打滑,试求点A的速度。

工程力学课后习题答案解析

工程力学课后习题答案解析

《工程力学》复习资料1.画出(各部分)的受力图(1)(2)(3)2.力F作用在边长为L正立方体的对角线上。

设Oxy平面与立方体的底面ABCD 相平行,两者之间的距离为h,试求力F对O点的矩的矢量表达式。

解:依题意可得:ϕθcos cos ⋅⋅=F F xϕθsin cos ⋅⋅=F F y θsin ⋅=F F z 其中33sin =θ 36cos =θ 45=ϕ 点坐标为:()h l l ,, 则()3)()(3333333j i h l F k F j F i F F M +⋅+=-+-= 3.如图所示力系由F 1,F 2,F 3,F 4和F 5组成,其作用线分别沿六面体棱边。

已知:的F 1=F 3=F 4=F 5=5kN, F 2=10 kN ,OA=OC/2=1.2m 。

试求力系的简化结果。

解:各力向O 点简化 0.0.0.523143=-==-==+-=C O F A O F M C B F A O F M C O F C O F M Z Y X 即主矩的三个分量 kN F F Rx 55==kN F F Ry 102==kN F F F F RZ 5431=+-=即主矢量为: k j i 5105++合力的作用线方程 Z y X ==24.多跨梁如图所示。

已知:q=5kN ,L=2m 。

试求A 、B 、D 处的约束力。

取CD 段0=∑ci M 0212=-⋅ql l F D 解得 kN F D 5=取整体来研究,0=∑iy F02=+⋅-+D B Ay F l q F F 0=∑ix F 0=Ax F0=∑iAM 032=⋅+⋅-⋅l F l ql l F D B 联合以上各式,解得 kN F F Ay A 10-== kN F B 25=5.多跨梁如图所示。

已知:q=5kN ,L=2m ,ψ=30°。

试求A 、C 处的约束力。

(5+5=10分)取BC 段0=∑iy F0cos 2=⋅+⋅-ϕC B F l q F 0=∑ix F 0sin =⋅-ϕC Bx F F0=∑icM 022=⋅⋅+⋅-l l q l F By联合以上各式,解得 kN F Bx 77.5= kN F By 10= kN F C 574.11=取整体研究0=∑ix F0sin =⋅-ϕC Ax F F 0=∑iy F 0cos 2=⋅+⋅-ϕC Ay F l q F0=∑iAM 04cos 32=⋅⋅+⋅⋅-l F l l q M C A ϕ 联合以上各式,解得 kN F Ax 774.5= kN F Ay 10= m kN M A ⋅=406.如图无底的圆柱形容器空筒放在光滑的固定地面上,内放两个重球。

(完整版)工程力学课后详细答案

(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

工程力学课后习题解答

工程力学课后习题解答

1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(a) B(b)(c)(d)A(e)BA(a)(b) A(c)A(d)A(e)B(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)B(a)B(b)(c)F BF(a)W (c)AF (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)AF (b)WA (c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b) CB(c)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

解:(a)(d)F CD(e)WB(f)F ABF BC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e)FCAAC’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

大学《工程力学》课后习题解答

大学《工程力学》课后习题解答

1-1试画出以下各题中圆柱或圆盘的受力图,与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b) CB(c)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

解:(a)(d) FC(e)WB (f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e)CAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4日1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)98 解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

(d) FC(e)WB (f)F F BCF 1F解:(1) 取整体ABCD为研究对象,受力分析如图,画封闭的力三角形:(2)2111.122D A DD AF F FF FBC AB ACF FF F F=====∴===2-4 在简支梁AB的中点C作用一个倾斜45o的力F,力的大小等于20KN,如图所示。

若梁的自重不计,试求两支座的约束力。

解:(1)研究AB,受力分析并画受力图:(2) 画封闭的力三角形:相似关系:B AF FFCDE cdeCD CE ED∆≈∆∴==Q几何尺寸:1122CE BD CD ED=====求出约束反力:FDFF AF DFF BF A dce12010 22010.4 45arctan 18.4B A o oCE F F kNCDED F F kN CDCECD α=⨯=⨯==⨯===-=2-6 如图所示结构由两弯杆ABC 和DE 构成。

构件重量不计,图中的长度单位为cm 。

已知F =200 N ,试求支座A 和E 的约束力。

解:(1) 取DE 为研究对象,DE 为二力杆;F D = F E(2) 取ABC 为研究对象,受力分析并画受力图;画封闭的力三角形:'15166.7 23A D E F F F F N ===⨯=F A F3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。

求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) 受力分析,画受力图;A 、B 处的约束力组成一个力偶;列平衡方程:0 0 B B A B M M F l M F lMF F l=⨯-==∴==∑(b) 受力分析,画受力图;A 、B 处的约束力组成一个力偶;列平衡方程:0 0 BB A B M M Fl M F lM F F l=⨯-==∴==∑(c) 受力分析,画受力图;A 、B 处的约束力组成一个力偶;(a)(b)(c)BBF列平衡方程:0 cos 0 cos cos B B A B M M F l M F l M F F l θθθ=⨯⨯-==∴==∑3-3 齿轮箱的两个轴上作用的力偶如题图所示,它们的力偶矩的大小分别为M 1=500 Nm ,M 2 =125 Nm 。

求两螺栓处的铅垂约束力。

图中长度单位为cm 。

解:(1) 取整体为研究对象,受力分析,A 、B 的约束力组成一个力偶,画受力图;(2) 列平衡方程:12125001250 0 750 50750 B B A B M M M F l M M F Nl F F N--=⨯-+====∴==∑ 3-5 四连杆机构在图示位置平衡。

已知OA=60cm ,BC=40cm ,作用BC 上的力偶的力偶矩大小为M 2=1N.m ,试求作用在OA 上力偶的力偶矩大小M 1和AB 所受的力F AB 。

各杆重量不计。

解:(1) 研究BC 杆,受力分析,画受力图:列平衡方程:BF B220 sin 30015 0.4sin 30sin 30oBB oo M FBC M M F NBC =⨯-====⨯∑ (2) 研究AB (二力杆),受力如图:可知:''5 A B B F F F N ===(3) 研究OA 杆,受力分析,画受力图:列平衡方程:110 050.6 3 AA M FOA M M F OA Nm=-⨯+=∴=⨯=⨯=∑A BAF4-1 试求题4-1图所示各梁支座的约束力。

设力的单位为kN ,力偶矩的单位为kN ⋅m ,长度单位为m ,分布载荷集度为kN/m 。

(提示:计算非均布载荷的投影和与力矩和时需应用积分)。

解:(b):(1) 整体受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy ,列出平衡方程;0: 0.400.4 kNxAx Ax FF F =-+==∑()0: 20.80.5 1.60.40.7200.26 kNAB B MF F F =-⨯+⨯+⨯+⨯==∑0: 20.501.24 kNyAy B Ay FF F F =-++==∑约束力的方向如图所示。

(b)(e)F(c):(1) 研究AB 杆,受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy ,列出平衡方程;2()0: 33200.33 kNBAy Ay MF F dx x F =-⨯-+⨯⨯==∑⎰20: 2cos3004.24 kNo yAy B B FF dx F F =-⨯+==∑⎰0: sin 3002.12 kNo xAx B Ax FF F F =-==∑约束力的方向如图所示。

(e):(1) 研究C ABD 杆,受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy ,列出平衡方程;0: 0xAx FF ==∑0.8()0: 208 1.620 2.4021 kNAB B MF dx x F F =⨯⨯++⨯-⨯==∑⎰0.80: 2020015 kNy Ay B Ay F dx F F F =-⨯++-==∑⎰约束力的方向如图所示。

4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC 和A B 各重为Q ,重心在A 点,彼此用铰链A 和绳子DE 连接。

一人重为P 立于F 处,试求绳子DE 的拉力和B 、C 两点的约束力。

Fxq x解:(1):研究整体,受力分析,画出受力图(平面平行力系);(2) 选坐标系Bxy ,列出平衡方程;()3()0: -cos cos 2cos 2cos 02212BC C l lM F Q Q P l a F l a F Q Pl αααα=⨯-⨯-⨯-+⨯=⎛⎫=+- ⎪⎝⎭∑0: 202yB C B FF F Q P aF Q Pl=+--==+∑(3) 研究AB ,受力分析,画出受力图(平面任意力系);(4) 选A 点为矩心,列出平衡方程;()0: -cos cos 02cos 2A BD D lM F F l Q F h a l F Q P l h ααα=⨯+⨯+⨯=⎛⎫=+ ⎪⎝⎭∑4-16 由AC 和CD 构成的复合梁通过铰链C 连接,它的支承和受力如题4-16图所示。

已知均布载荷集度q =10 kN/m ,力偶M =40 kN ⋅m ,a =2 m ,不计梁重,试求支座A 、B 、D 的约束力和铰链C 所受的力。

x解:(1) 研究CD 杆,受力分析,画出受力图(平面平行力系);(2) 选坐标系Cxy ,列出平衡方程;()0: -205 kNaC D D M F q dx x M F a F =⨯⨯+-⨯==∑⎰0: 025 kNayC D C FF q dx F F =-⨯-==∑⎰(3) 研究ABC 杆,受力分析,画出受力图(平面平行力系);(4) 选坐标系Bxy ,列出平衡方程;'0()0: 035 kNaB AC A M F F a q dx x F a F =⨯-⨯⨯-⨯==∑⎰'00: 080 kNayA B C B FF q dx F F F =--⨯+-==∑⎰约束力的方向如图所示。

4-17 刚架ABC 和刚架CD 通过铰链C 连接,并与地面通过铰链A 、B 、D 连接,如题4-17图所示,载荷如图,试求刚架的支座约束力(尺寸单位为m ,力的单位为 kN ,载荷集度单位为 kN/m)。

=50q Fx解:(a):(1) 研究CD 杆,它是二力杆,又根据D 点的约束性质,可知:F C =F D =0;(2) 研究整体,受力分析,画出受力图(平面任意力系);(3) 选坐标系Axy ,列出平衡方程;0: 1000100 kNxAx Ax FF F =-+==∑51()0: 100660120 kNAB B MF q dx x F F =-⨯-⨯⨯+⨯==∑⎰510: 080 kNy Ay B Ay F F q dx F F =--⨯+==∑⎰约束力的方向如图所示。

(b):(1) 研究CD 杆,受力分析,画出受力图(平面任意力系);(2) 选C 点为矩心,列出平衡方程;3()0: 3015 kNC D D M F q dx x F F =-⨯⨯+⨯==∑⎰(3) 研究整体,受力分析,画出受力图(平面任意力系);=50(4) 选坐标系Bxy ,列出平衡方程;0: 50050 kNxAx Ax FF F =-==∑3()0: 63503025 kNB Ay D Ay M F F q dx x F F =-⨯-⨯⨯+⨯+⨯==∑⎰30: 010 kNyAy B D B FF q dx F F F =-⨯-+==∑⎰约束力的方向如图所示。

x5-5 作用于半径为120 mm 的齿轮上的啮合力F 推动皮带绕水平轴AB 作匀速转动。

已知皮带紧边拉力为200 N ,松边拉力为100 N ,尺寸如题5-5图所示。

试求力F 的大小以及轴承A 、B解: (1) 研究整体,受力分析,画出受力图(空间任意力系);8-2 试画出8-1所示各杆的轴力图。

解:(a)(b)(c) (d)8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d 1=30 mm 与d 2=20 mm ,两杆材料相同,许用应力[σ]=160 MPa 。

该桁架在节点A 处承受铅直方向的载荷F =80 kN 作用,试校核桁架的强度。

相关文档
最新文档