配电变压器的接地分析

合集下载

接地变原理及作用讲解

接地变原理及作用讲解

随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加。

根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。

一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变的设置。

1接地变的原理对于三角形接线的配电系统,要造成系统的中性点,必须接入接地变压器。

接地变压器有二种:Z型接地变压器(ZN、ZN,yn)和星形/三角形接线变压器(YN,d)。

现在,多用Z型接地变压器,其中性点可接入消弧线圈。

Z型接地变压器,在结构上与普通三相芯式电力变压器相同,只是每相铁芯上的绕组分为上、下相等匝数的两部分,接成曲折形连接。

接线方式不同,又分为ZN,yn1和ZN,yn11两种形式。

Z型接地变压器同一柱上两半部分绕组中的零序电流方向是相反的,因此零序电抗很小,对零序电流不产生扼流效应。

当Z型接地变压器中性点接入消弧线圈时,可使消弧线圈补偿电流自由地流过,因此Z型变压器广为采用作接地变压器。

Z型接地变压器,还可装有低压绕组,接成星形中性点接地(yn)等方式,作为所用变压器使用。

Z型接地变压器有油浸式和干式绝缘两种,其中树脂浇注式是干式绝缘的一种。

适用范围:适用于容量为220千伏安及以下,电压为35千伏及以下的油浸式Z型接地变压器。

对于35KV、66KV配电网,变压器绕组通常采用Y接法,有中性点引出,就不需要使用接地变压器。

对于6KV、10KV配电网,变压器绕组通常采用△接法,无中性点引出,这就需要用接地变压器引出中性点。

接地变压器的作用就是在系统为△型接线或Y型接线中性点未引出时,用于引出中性点以连接消弧线圈。

低压施工配电系统三种接地形式:IT、TT、TN解析

低压施工配电系统三种接地形式:IT、TT、TN解析

低压施工配电系统三种接地形式:IT、TT、TN解析根据现行的国家标准《低压配电设计规范》(GB50054),低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。

(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。

I-电源变压器中性点不接地,或通过高阻抗接地。

(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。

N-电气装置的外露可导电部分与电源端接地点有直接电气连接。

下面分别对IT系统、TT系统、TN系统进行全面剖析。

一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。

IT系统可以有中性线,但IEC强烈建议不设置中性线。

因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。

IT系统接线图如图1所示。

低压施工配电系统三种接地形式:IT、TT、TN解析图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。

使用场所:供电连续性要求较高,如应急电源、医院手术室等。

IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。

在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。

电网配电线路单相接地故障分析及处理策略

电网配电线路单相接地故障分析及处理策略

电网配电线路单相接地故障分析及处理策略摘要:10kV配电线路的单相接地故障是电网运行中最为突出的问题,不但对配电设备运行造成影响,甚至还会给人身安全带来一定的威胁。

因此,必须采取有效的措施处理好单相接地故障,确保供电安全。

关键词:配电线路;单相接地;故障;策略引言由于10KV配电线路出现单相接地故障是由多方面因素引起的,因此,在对故障进行查找时,困难程度比较大,所以对单相接地故障相关问题进行详细分析是非常重要的。

同时,还需要采用当前的先进技术和设备,以此来提高故障查找的工作效率,最大程度上降低因故障发生而造成的影响。

1、单相接地故障分析(1)单相不断线接地故障单相不断线接地故障主要表现为,故障相电压完全接地(即金属性接地)或者是不完全接地,其余两相的电压出现升高,等于线电压,或者是大于相电压。

如果电压表的指针变化幅度较小,即为稳定性接地;如果电压表指针变化频繁,即为间歇性接地。

中性点经过消弧线圈接地系统,可以看见消弧线圈动作,从而产生中性点电流。

如果是出现弧光接地故障,还有可能出现弧光过电压,没有出现故障的相电压升高程度较大,甚至是将电压互感器烧坏。

(2)单相断线电源侧接地故障该故障的主要表现与单相不断线接地故障的表现大致上相同。

其对断线一侧配电变压器之后供电的营销较为严重,断线点之后,配电变压器就很可能转入两相运行,并且会持续较长的时间。

要想减少负序电流,降低电流存在的不对称程度,就必须要求变压器的零序阻抗为最小,零序电流可以在变压器的两侧流通。

三相变压器通常情况下,均会为三铁芯柱式的两相运行,配电变压器其绕组接线是Y/Y0,所以,由于出现零序电流而造成的铁芯磁通不能抵消掉,只能选择经由变压器外壳和空气,形成闭合回路,也就造成了变压器外壳上出现不能承受的过热。

(3)单相断线负荷侧接地故障出现负荷侧接地故障后,在系统变电站的绝缘监视指示其变化就会非常小,绝缘监视出现变化是由于段线后,电容电流发生变化而引起的。

配电变压器及低压开关柜的接地方案探讨

配电变压器及低压开关柜的接地方案探讨

配电变压器及低压开关柜的接地方案探讨作者:付正义来源:《科学导报·科学工程与电力》2019年第16期关于地铁变电所中配电变压器及低压开关柜的接地做法不尽相同,本文主要对现存的几种做法进行分析比较,并给出推荐做法。

地铁的低压系统接地方式采用TN-S ,根据GB14050《系统接地的型式及安全技术要求》,系统的中性导体(N )与保护导体(PE )在电源处是连在一起的,其它部位是完全分开的,N 线和PE 线在在电源处统一接地,其它部分两者是分开的。

TN-S 系统正常运行时,N 线上有三相不平衡电流,PE 线上没有电流,PE 线上也没有电压,外露可导电部分接到PE线上,安全可靠。

在发生故障时,短路电流通过PE线流回电源中性点,由于PE线为铜排,阻抗很小,短路电流足够大,可以使开关的过流保护动作而切断故障,从而保护了设备和人身的安全。

注:GB14050-2008的第5.1.1条轨规定:“凡可被人体同时触及的外漏可导电部分,应连接到同一接地系统”。

地铁的配电系统设两台配电变压器,分列运行,设置母联开关,正常運行时,母联开关分闸。

当一台配电变压器退出运行时,进线开关分闸,母联开关合闸,由另一台配电变压器带一、二级负荷。

系统的理想的接线型式如下图,图中,N线和PE线在配电变压器中性点接地。

用电设备产生的三相不平衡电流要通过N线返回配电变中性点。

发生单相接地短路时,短路电流流过PE线直接返回配电变压器中性点,这时的短路电流是最大的,可启动断路器跳闸。

不宜通过其它导体返回中性点,因为会使回路电阻增大,短路电流减小,断路器可能不会跳闸。

除正常做法外,目前发现另外的三种接法,一种是:这种接法是配电变压器N线通过电缆接到接地母排,低压开关柜内的PE线通过接地支线接至接地干线,接地干线再接至接地母排。

这种情况下,发生单相接地短路,短路电流流过PE线-接地支线-接地干线-接地母排-接地电缆,最后返回配电变压器中性点。

干式变压器铁芯接地故障分析

干式变压器铁芯接地故障分析

干式变压器铁芯接地故障分析摘要:干式变压器铁芯接地故障较为多发,在日常维护和检修过程中需引起高度重视,同时将变压器铁芯绝缘电阻实验列入停机检修计划当中,及时发现铁芯接地故障并采取相应的处理措施,这样才能有效的避免设备故障,提高检修效率。

关键词:干式变压器;铁芯;接地;故障分析引言干式变压器在运行过程中若出现铁芯接地故障,对变压器的危害比较大,应采取有效的措施避免故障的发生。

在对干式变压器进行制造的过程中,需要将内部杂质进行有效的清理,并且在对新变压器进行安装的过程中,首先需要对铁芯夹片进行详细检查。

此外,由于变压器绝缘缺陷的发展是一个动态过程,这就需要相关技术人员应对设备结构与运行状况进行全面的了解,通过对故障问题实施有效的分析,采取有效的措施确保变压器的正常运行。

1干式变压器设备概况干式变压器因其结构特点,在实际使用过程中,变压器铁芯多点接地故障占有一定比例。

但是由于干式变压器容量较小,现场对变压器铁芯多点接地危害的重视程度不足,变压器铁芯多点接地极可能引发低压绕组绝缘性能破坏、铁芯绝缘破坏甚者烧损铁芯绝缘或将变压器烧毁。

内蒙古京泰发电有限责任公司煤泥低压配电系统所使用的两台干式变压器的型号为SCB10-2500/6.3,由中电电气(江苏)股份公司制造。

机组正常运行过程中,点检员在巡检过程中发现1号煤泥变压器声音异常,疑似放电,由于在运行过程中变压器外壳振动和电磁声较大,通过人类听觉无法进行直观判断。

2干式变压器铁芯接地可能引发的危害分析铁芯出现两点或多点接地时,两个或多个接地点就会形成闭合回路产生环流,如果变压器长时间的多点接地不但会增加变压器损耗,而且会引起变压器局部过热,严重时铁芯片、铁芯与夹件之间绝缘老化导致绝缘破坏,最终造成铁芯局部过热而烧毁。

变压器铁芯温度变高时,变压器整体温度将上升,变压器温控器系统长时间投入运行,增加了变压器横流冷却风机的的运行时间,造成风机故障率增加,增加设备维护成本,而且变压器铁芯温度异常升高极可能导致变压器绕组绝缘损坏,进而导致变压器整体烧毁。

浅析TN电力系统零线多点重复接地的必要性

浅析TN电力系统零线多点重复接地的必要性

浅析TN电力系统零线多点重复接地的必要性1、低压线路零线多点重复接地的概念在我国0.4kV低压配电系统中,变压器的中性点广泛采用中性点直接接地的运行方式,亦称为TN系统。

TN系统的特点是电气设备的外露可导电部分直接与系统接地点相连,根据IEC标准按N线和保护线(PE线)的不同组合情况将TN系统分为以下三种:如图1所示。

图1 TN系统三种形式(1)TN-C系统:即三相四线制,在系统内中性线(零线N)和保护线(接地线PE)合一的,称为PEN线。

(2)TN-S系统:即三相五线制,在系统内中性线(零线N)和保护线(接地线PE)分开的,互为独立的两根线。

(3)TN-C-S系统:在全系统内中性线(零线N)和保护线(接地线PE)部分是合一的,局部采用专设的保护线。

零线重复接地就是在TN的系统中,除了在变压器处将其中性点直接接地外,还需将零线N的一处或多处用金属导线连接接地装置。

但需注意的是,在TN-S 系统中,即三相五线制中,因N线与PE 线是分开敷设,并且是相互绝缘的,同时与用电设备外壳相连接的是PE线而不是N线。

因此在TN-S 系统中重复接地不是对N线的重复接地,而是对PE线重复接地。

如果将PE线和N线共同接地,由于PE线与N线在重复接地处相接,重复接地点与配电变压器工作接地点之间的接线已无PE线和N线的区别,原由N线承担的中性线电流变为由N线和PE线共同承担,并有部分电流通过重复接地点分流。

这样重复接地点前侧已不存在PE线,只有由原PE线及N线并联共同组成的PEN线,原TN-S系统所具有的优点将丧失,所以不能将PE线和N线共同接地,而是将仅仅PE线重复接地。

2、TN系统零线多点重复接地的必要性TN系统中零线受电网运行中的热效应、机械效应、人为等各种因素影响均有发生断线的可能,其断线情况主要有以下几种:(1)若TN系统零线只有单点接地,一旦发生零线断线事故,系统负载端处于既不接零也不接地的无保护状态。

当电气设备漏电时,将给人身造成触电威胁。

变压器铁芯接地故障的分析及处理

变压器铁芯接地故障的分析及处理

变压器铁芯接地故障的分析及处理铁芯多位置接地是变压器常见的故障之一,文章对故障特征、原因及分析检查方法进行了详细的阐述,并使用常见的几种故障问题分析法对数据进行了比较。

然后对一个在变压器运行过程中发生的铁芯接地故障进行了分析,根据其气相和对故障点的检查和处理,指出了故障产生原因及应作的预防措施。

标签:变压器;铁芯;接地故障;气相分析法前言铁芯在变压器运行阶段是电场能转化为磁场能的核心部件。

铁芯处于不均匀电场的工作环境中,从而造成一种感应电容效应。

当铁芯的对地电位达到绝缘击穿值时就会产生对地放电,而放电过后又重新处于感应电容状态。

这种反复的充放电循环会使变压器固体绝缘损坏,并进一步导致绝缘油分解。

严重时直接导致接地片熔断或铁芯烧坏,从而损坏变压器。

故而及时发现和排除变压器铁芯多点接地故障,对保证变压器的安全稳定运行具有重要意义[1]。

1 故障分析1.1 问题的出现某变电站主变的SFPSZ7-150000/220在安装投运10年后,2010年的12月1日对该变压器进行油色谱分析时,发现油中含有故障特征气体,总烃含量159μL/L,已超过GB/T 7252-2001《变压器油中溶解气体分析和判断导则》中规定的标准值,于是对该台变压器进行追踪检测。

12月4日在对该主变进行有色谱分析时,发现CH4、C2H6、C2H4、C2H2、CO和CO2含量均有明显上升趋势,尤其是CH4、C2H4含量上升幅度较大,C2H2含量达到2.1μL/L。

1.2 分析与论证三比值法来源于检测充油电气设备,内油、绝缘在故障下,裂解产生气体组分含量。

根据浓度与温度,对比其相对关系,筛选出五种特征气体,选取两种溶解度和扩散系数相近的气体,然后形成三个比值,编以不同的代码,这被称为三比值法。

来判断变压器故障性质的方法[2]。

根据12月1日、3日与5日,总共3次变压器油气相色谱分析,气相色谱检测值及三比值如表1所示。

在GB/T 7252-2001《变压器油中溶解气体分析和判断导则》中第十条第2点中,对故障主要方法为三比值法。

主变压器35kV中性点接地方式分析

主变压器35kV中性点接地方式分析

主变压器35kV中性点接地⽅式分析三相交流电⼒系统中中性点与⼤地之间的电⽓连接⽅式,称为电⽹中性点接地⽅式。

中性点接地⽅式对电⽹的安全可靠性、经济性有很⼤影响;同时直接影响系统设备绝缘⽔平的选择、过电压⽔平及继电保护⽅式、通讯⼲扰等。

⼀般来说,电⽹中性点接地⽅式也就是变电站中变压器的各级电压中性点接地⽅式。

以电缆为主的配电⽹,当发⽣单相接地故障时,其接地残流较⼤,运⾏于过补偿的条件也经常不能满⾜。

我国ll0kV及以上电⽹⼀般采⽤⼤电流接地⽅式,即中性点有效接地⽅式 (在实际运⾏中,为降低单相接地电流,可使部分变压器采⽤不接地⽅式),包括中性点直接接地和中性点经低阻接地。

这样中性点电位固定为地电位,发⽣单相接地故障时,⾮故障相电压升⾼不会超过1.4倍运⾏相电压;暂态过电压⽔平也较低;故障电流很⼤,继电保护能迅速动作于跳闸,切除故障,系统设备承受过电压时间较短。

因此,⼤电流接地系统可使整个系统设备绝缘⽔平降低,从⽽⼤幅降低造价。

6~35kV配电⽹⼀般采⽤⼩电流接地⽅式,即中性点⾮有效接地⽅式。

包括中性点不接地、⾼阻接地、经消弧线圈接地⽅式等。

在⼩电流接地系统中发⽣单相接地故障时,由于中性点⾮有效接地,故障点不会产⽣⼤的短路电流,因此允许系统短时间带故障运⾏。

这对于减少⽤户停电时间,提⾼供电可靠性是⾮常有意义的。

⼀、分析35kV侧中性点接地⽅式。

根据DL/T620—1997 交流电⽓装置的过电压保护和绝缘配合》规程中3.1.2条规定:⾦属杆塔的架空线路构成的系统和所35kV、66kV系统当单相接地故障电容电流超过10A⼜需在接地故障条件下运⾏时,应采⽤消弧线圈接地⽅式。

建设容量49.5MW,35kV侧单相接地电容电流约为24A,且风电场35kV集电线路采⽤架空线为主电缆为辅的混合输电⽅案,因此5kV侧中性点采⽤经消弧线圈接地⽅式。

当35kV侧中性点通过消弧线圈接地,线路发⽣单相接地故障时,不会瞬时跳闸,⼀般允许2h持续运⾏,以便寻找和处理事故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配电变压器及断路器得接地分析
1 配电变压器防雷接线
配电变压器防雷接线见图1。

图1配电变压器防雷、工作、保护共同接地
1、1 关于接地电阻得规定
三点共同接地就意味着防雷接地(高压避雷器)、保护接地(外壳)与工作接地(低压中性点)共用一个接地装置,其接地电阻应满足三者之中得最小值,其中防雷接地一般规定小于10Ω,但要有垂直接地极,以利散流。

低压工作接地一般应小于4Ω。

因而接地电阻主要取决于高压侧对地击穿时得保护接地,一般情况下配电变压器都就是向B类建筑物供电得,标准上有规定,只有当保护接地得接地电阻R≤50/I时,高压侧防雷及保护接地才能与低压侧工作接地共用一个接地装置。

反过来说,如果采取三点共同接地,则R≤50/I时,其中I为高压系统得单相接地电流。

对不接地系统,I为系统得电容电流,对消弧线圈接地系统,I为故障点得残流。

如果按上述计算结果大于4Ω,则由低压工作接地要求,不得大于4Ω。

公式R≤50/I中,50为低系统得安全电压,即高压侧对外壳单相接地时,接地电流流过接地装置得压降不得超过50 V。

而10kV系统中得电容电流差别很大,有得不足10 A,有得高达上百安或数百安,所以配电变压器三点共同接地时,要根据所在高压系统得情况来确定接地装置得接地电阻,不能笼统地规定4Ω或10Ω。

由于接地电阻大小与系统单相接地电流有关,与配变容量并无关,所以现场规程得说法没有道理。

有得资料认为,当低压工作接地单独另设时,100 kVA以下得配电变压器得低压侧工作接地电阻,可放宽到10Ω,原因就是变压器小,内阻抗大,限制了接地电流,也就限制了地电位得升高。

(这解释了为什么夏天测三相不平衡电流零序电流为什么这么大。

原因:在于我们选错了测量点,测量得就是接地扁铁,其中含有电容电流。

正确得测量
点在变压器低压零序桩头与变压器外壳接地(保护接地)连接点之间)
1、2关于共同接地得接地方式
除图1得方式外,施工中还会出现其它接地方式,见图2、3。

图2施工中常用得接地方式
图3 施工中常用接地方式
三种方式中都就是共同接地得,采用哪种方式为好,现分析如下。

高压侧避雷器得作用就是用来保护变压器高压线圈与外壳之间得绝缘,按图2得接法,高压线圈与外壳之间承受得电压除避雷器残压外,还增加了接地引下线得电感、电阻上得压降,这个压降在雷电流冲击下就是不可忽视得,使其保护效果大为降低。

而图3得接法也会产生一个问题,就就是低压线圈及中性线全部承受接地装置上得压降,特别就是当中性点存在重复接地,接地电阻小于配电变压器接地电阻,且离配电变压器较近时,高压侧避雷器得放电冲击电流将较多流向重复接地,有时会将重复接地得引下线烧断(重
复接地线一般较细)。

所以图1得接法较为合理,对高压线圈得防雷保护合理,对低压中性线得冲击也较小,因为部分雷电流已通过接地装置流入地中。

1、3关于接地装置得设计
按标准规定,配电变压器台区得接地装置应敷设为闭合环形,并加垂直接地极,这就是因为环形内得接触电压比较低,而沿环形接地体走路得行人,其跨步电压也较小,城区得配电变压器大多安装在路边,因常有人走动,为行人安全着想,必须敷设为环形。

环形得大小,一般以5m为直径,这就是因为要发挥水平接地极与垂直接地极得散流效果,减少相互屏蔽,降低接地电阻而必需得。

但有些安装地点过于狭窄时,则可为椭圆形,短轴距不得低于3 m,见图4,两个垂直接地极宜打在短轴两端点附近,高压避雷器及外壳接地与中性点得接地分别引至垂直接地极附近,以利于散流。

如土壤电阻率较高,做一个环后,测试接地电阻不合要求,则应在环外再做一个大环,两环相距4~5 m,埋深比第一环深,至少两处相连接,直至满足要求为止。

(实际施工过程中应地形优先,地网整体呈圆状即可)
图4接地装置敷设为椭圆形
1、4 关于接地引下线得连接方式
按部颁标准,除设备得接线端子可用螺栓连接外,引下线及接地装置都应使用焊接,但为安装方便,通常在电杆下得1、8~2、0 m处有一个断接卡,也用螺栓连接。

引下线一般用扁钢,但也有采用钢绞线。

钢绞线与扁钢得连接应制作接线板,最好采用双螺栓相连,以利于接触良好。

目前得实际情况就是,高压避雷器接地端分别用钢绞线接线,三根钢绞线再连在一起,且都就是绞合连接,配电变压器外壳得接地线也用钢绞线与避雷器接地线绞合,然后再与接地装置得引上线用螺栓连接,有得也未压制接线鼻,这些连接都不符合标准得要求,接头过多,接触不良。

建议三个高压避雷器得接地端用30×4得扁钢连成一体,从中间引下与外壳得接地扁钢相连,均采用焊接,也不宜在中间设断连卡,而直接入地与接地装置进行焊接,低压中性点直接用扁钢引至接地装置与之焊接,扁钢宜采用30×40 mm2。

1、5 关于接地装置得施工
接地装置得地下水平接地极应采用40×4得扁钢,垂直接地极用L40×4,埋深大于60cm,填土时用干净得原土并夯实。

有条件时,应将环形水平接地极得面积适当增大些,或往环外再做一个环,两处相连,以降低接地电阻,尽可能达到1Ω。

地下连接处应采用焊接,并符合要求。

扁钢得搭接长度应为扁钢宽度得2倍,且应三面或四面焊接,三面焊接时尽量二短边一长边,利于电流通过,圆钢得焊接长度为圆钢直径得6倍,应两面焊接,且不得有虚焊。

焊接处应采取防腐措施。

1、6关于低压侧装避雷器
由于采用三点共地后,高压侧避雷器得放电电流(特别当三相同时放电时)很大,在接地电阻上得压降也很高。

该压降加在低压线圈上,通过低压线路电容接地,在低压线圈中就有一冲击电流使线圈励磁,通过电磁感应使高压线圈感应出很高得电压。

高压侧电压受高压侧避雷器残压所限制,高压线圈中性点电位就很高,容易在中性点附近,导致对地击穿或匝间短路而损坏变压器,因而必须采取措施,限制低压线圈承受得电压,即一般采取低压侧也加一组避雷器。

当地电位升高时,通过避雷器放电,使低压线圈只承受低压避雷器得残压(1300 V左右),这样高压中性点附近得过电压就被限制在可承受范围之内,这就就是防止逆变换损坏变压器,见图5。

同样当低压线路感应雷传到配电变压器时,低压侧避雷器也会动作,使雷电流入地,低压线圈得电压被限制在低压避雷器残压之内,防止配电变压器高压侧被按变比感应得电压所损坏。

这属于正变换过电压,由于配电变压器得低压侧绝缘裕度高于高压侧,所以配电变压器雷击事故常发生在高压侧,尤其就是中性点附近,见图6。

图5配电变压器逆变换情况
图6配电变压器正变换情况
低压侧加装避雷器,因其往往采用高、低压架空线,容易受雷击,35/0、4 kV直配变压器因其变比大,更应在低压侧加装一组避雷器,尤其就是当35kV线路开路运行,高压侧无避雷器保护时。

加装低压避雷器后,原来得三点共同接地就成了四点共同接地,见图1。

1、7关于中性线及连接
中性线在三相负荷不平衡时流过电流,按有关规定该电流不得大于相线电流得25%。

另外,中性线、中性点接地线与配电变压器低压中性线端头得连接应可靠,应制作接线鼻(板),螺栓应压紧,防止接触不良流过电流时发热烧断。

中性线断线意味着低压系统失去接地,成为不接地系统。

三相负荷不平衡时,导致三相电压相差很大,烧毁用电设备。

2关于柱上开关得防雷接地
高压柱上开关及隔离开关一般作为联络开关用,标准规定应在一侧或两侧装设避雷器(开关经常断开),且避雷器引下接地线应与开关外壳(包括隔离开关底座)连接,这就是为了保证开关对地绝缘只承受避雷器残压,而得到有效得保护。

但观察中发现,不少柱上开关两侧得高压避雷器接地线都就是直接引入地下,未与开关外壳相连。

此时开关对地绝缘所承受得除避雷器残压外,还包括引线与接地装置电阻上得压降。

如接地引线电感为1、67μH/m,引线长10 m,雷电波波头2、5μs,幅值5 kA,加上接地电阻上得压降,避雷器得残压取50 kV,则开关承受得电压为133、4 kV,已超过了开关得冲击绝缘水平75 kV,避雷器就起不到保护作用。

有些开关外壳虽有引下接地线,也就是单独入地,即使共用一个接地装置,开关绝缘所承受得电压也高于残压。

单独柱上开关得接地装置,其接地电阻不应大于10Ω,这也就是标准得规定,柱上开关得外壳,隔离开关闸刀得底座,以及旁边得绝缘子横担(金属),应连在一起与避雷器得接地引下线相连,这样就使隔离开关支持绝缘子都能得到保护,防止雷击闪络,充分发挥避雷器得作用。

其连接线可采用Φ8 mm得圆钢或20 mm×3 mm得扁钢。

线路中所装设得高压无功补偿电容器也应加金属装氧化物避雷器,其接地引下线也应与
电容器得外壳相连。

3现行规定
在《安规补充规定》中规定避雷器接地、变压器外壳工作接地、低压零线桩头接地三位一体。

配电设备接地得整体思路:
1、在设备受到过电压冲击时,电气设备得绝缘只受到避雷器残压得冲击,而不承担因接地装置得阻抗带来得电压冲击。

2、因为电容电流取决于设备情况,三相不平衡电流取决于负荷情况,且都不可预知。

且都经过接地通道流入大地,因此接地通道电阻越小越安全。

相关文档
最新文档