linux进程线程管理实验报告
进程管理实验实验报告

一、实验目的1. 理解进程的基本概念,掌握进程的结构和生命周期。
2. 掌握进程的创建、终止、同步和通信的方法。
3. 熟悉进程调度算法和进程同步机制。
4. 通过实验加深对操作系统进程管理的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 实验工具:gcc、make、xterm三、实验内容1. 进程的创建与终止(1)使用fork()系统调用创建进程编写一个C程序,通过fork()系统调用创建一个子进程。
父进程和子进程分别执行不同的任务,并输出各自的信息。
```c#include <stdio.h>#include <sys/types.h>#include <unistd.h>int main() {pid_t pid;pid = fork();if (pid == -1) {printf("Fork failed!\n");return 1;printf("This is child process, PID: %d\n", getpid()); // 子进程执行的任务} else {printf("This is parent process, PID: %d\n", getpid()); // 父进程执行的任务}return 0;}```(2)使用exec()系统调用替换子进程内容在父进程中,使用exec()系统调用替换子进程的内容,执行新的程序。
```c#include <stdio.h>#include <sys/types.h>#include <sys/wait.h>#include <unistd.h>int main() {pid_t pid;pid = fork();if (pid == -1) {printf("Fork failed!\n");return 1;execlp("ls", "ls", "-l", (char )NULL);printf("Exec failed!\n");return 1;} else {wait(NULL);}return 0;}```2. 进程同步与通信(1)使用管道实现进程通信编写一个C程序,使用管道实现父进程和子进程之间的通信。
linux进程与线程通讯实验报告

linux 进程与线程通讯实验报告操作系统实验一进程与线程—Linux 进程与线程通讯实验报告操作系统课程设计任务书篇二: 操作系统实验Linux 进程与线程通讯Linux 进程与线程通讯报告人:设计目的1、深刻理解线程和进程的概念2、掌握线程与进程在组成成分上的差别以及与其相适应的通讯方式和应用目标。
设计的内容1、以Linux 系统进程和线程机制为背景,掌握fork() 和clone() 系统调用的2、形式和功能以及与其相适应的高级通讯方式。
由fork 派生的子进程之间通过pipe 通讯,由clone 创建的线程之间通过共享内存通讯,对于后者需要考虑互斥问题。
3、以生产者-消费者问题为例,通过实验理解fork() 和clone() 两个系统调的区别。
程序要求能够创建4 个进程或线程,其中包括两个生产者和两个消费者,生产者和消费者之间能够传递数据。
4、设计准备1、fork 系统调用、pid=fork()创建一个子进程,子进程是父进程的完整复制,正常返回值为非负整数,对于 父进程来说该数大于 0,是子进程的编号 (pid); 对于子进程来说该数为 0。
正是利用反回值的差别可以决定二者不同的后继动作。
2、 clone 系统调用int clone(int (*fn)(void * arg), void *stack, int flags, void * arg);其中 fn 是轻进程所执行的函数, stack 是轻进程所使用的栈, flag 是CLONE_VM, CLONE_FS, CLONE_FILES,LONE_SIGHAND,CLONE_的组合,arg 是调用过程的对应参数。
Clone()的关键是flag 的设定,CLONE_V S 示子进程共享父进程内存,CLONE_F 表示子进程共3、 pipe 系统调用et_val=pipe(fd);参数定义为 int fd[2] 。
创建一个管道文件,返回两个文件描述符 fd[0] 和fd[1] 分别用于管道文件的读和写操作。
linux进程管理的实验报告

实验报告:Linux进程管理1. 引言本实验报告将详细介绍Linux系统中进程管理的相关知识和操作。
进程管理是操作系统中的一个重要组成部分,它负责控制和调度系统中运行的各个进程,确保系统资源的合理分配和进程的正常运行。
在本实验中,我们将通过一系列步骤来了解Linux系统中进程的创建、监控和控制。
2. 实验环境为了完成本实验,我们需要在一台运行Linux操作系统的计算机上进行操作。
本实验报告基于Ubuntu 20.04 LTS操作系统进行撰写,但是适用于大多数Linux 发行版。
3. 实验步骤步骤一:创建新进程在Linux系统中,可以通过fork()系统调用来创建新的进程。
以下是一个简单的示例代码:#include <stdio.h>#include <unistd.h>int main() {pid_t pid = fork();if (pid == 0) {// 子进程逻辑printf("这是子进程\n");} else if (pid > 0) {// 父进程逻辑printf("这是父进程\n");} else {// 进程创建失败printf("进程创建失败\n");}return0;}步骤二:查看进程信息Linux系统提供了多种命令来查看系统中运行的进程信息。
以下是一些常用的命令:•ps:显示当前终端下的进程列表。
•top:实时显示进程的CPU、内存等资源占用情况。
•pstree:以树状结构显示进程的层次关系。
步骤三:杀死进程有时候我们需要终止一个运行中的进程,可以使用kill命令来发送终止信号给目标进程。
以下是一个示例:kill <PID>请将<PID>替换为目标进程的进程ID。
步骤四:进程优先级调整通过调整进程的优先级,可以影响进程在系统中的调度顺序。
在Linux系统中,可以使用nice命令来调整进程的优先级。
Linux进程管理-实验报告

《Linux 操作系统设计实践》实验一:进程管理实验目的:(1) 加深对进程概念的理解,明确进程和程序的区别。
(2)进一步认识并发执行的实质.(3) 学习通过进程执行新的目标程序的方法。
(4) 了解Linux 系统中进程信号处理的基本原理.实验环境:Red Hat Linux实验内容:(1)进程的创建编写一段程序,使用系统调用fork()创建两个子进程,当此进程运行时,在系统中有一个父进程和两个子进程活动,让每一个进程在屏幕上显示一个字符,父进程显示字符“a";子进程分别显示字符“b”和字符“c”,试观察记录屏幕上的显示结果,并分析原因.程序代码:#include<stdio。
h〉int main(){int p1 ,p2 ;while((p1=fork())==-1);if(p1==0)putchar(’b');else{while((p2=fork())==—1);if(p2==0)putchar(’c');elseputchar(’a');}return 0;}运行结果:bca分析:第一个while里调用fork()函数一次,返回两次。
子进程P1得到的返回值是0,父进程得到的返回值是新子进程的进程ID(正整数);接下来父进程和子进程P1两个分支运行,判断P1==0,子进程P1符合条件,输出“b”;接下来else里面的while里再调用fork()函数一次,子进程P2得到的返回值是0,父进程得到的返回值是新子进程的进程ID(正整数);接下来判断P2==0,子进程P2符合条件,输出“c”,接下来父进程输出“a”,程序结束。
(2)进程的控制①修改已编写的程序,将每个进程输出一个字符改为每个进程输出一句话,在观察程序执行时屏幕上出现的现象,并分析原因。
程序代码:#include〈stdio。
h>int main(){int p1,p2;while((p1=fork())==-1);if(p1==0)printf("Child1 is running!\n”);else{while((p2=fork())==—1);if(p2==0)printf(”Child2 is running!\n”);elseprintf(”Fath er is running!\n”);}return 0;}运行结果:Child1 is running!Child2 is running!Father is running!分析:本实验和上一个实验一样,只是将每个进程输出一个字符改为每个进程输出一句话.第一个while里调用fork()函数一次,返回两次。
进程管理实验报告_共10篇 .doc

★进程管理实验报告_共10篇范文一:_进程管理实验报告进程管理实验报告一、进程与线程1.实验目的:1.通过本实验学习Linux中创建进程的方法。
2.学习系统调用fork的使用方法。
3.学习系统调用exec族调用的使用方法。
2.实验准备1.进程的创建创建一个进程的系统调用很简单,只要调用fork函数就可以了。
#includepid_tfork();当一个进程调用了fork以后,系统会创建一个子进程,这个子进程和父进程是不同的地方只有它的进程ID和父进程ID,其他的都一样,就像父进程克隆(clone)自己一样,当然创建两个一模一样的进程是没有意义的,为了区分父进程和子进程,我们必须跟踪fork调用返回值。
当fork调用失败的时候(内存不足或者是用户的最大进程数已到)fork返回—1,否则fork的返回值有重要的作用。
对于父进程fork返回子进程ID,而对于fork 子进程返回0,我们就是根据这个返回值来区分父子进程的。
2.关于fork的说明使用该函数时,该函数被调用一次,但返回两次,两次返回的区别是子进程的返回值是0,而父进程的返回值则是新子进程的进程ID。
将子进程ID返回给父进程的理由是:因为一个进程的子进程可以多于一个,所以没有一个函数可以是一个子进程获得其所有子进程的进程ID。
而fork函数使子进程得到的返回值是0的理由是:一个子进程只会有一个父进程,所以子进程总是可以调用函数getpid获得其父进程的进程ID。
3.系统调用exec族调用的说明父进程创建子进程后,子进程一般要执行不同的程序。
为了调用系统程序,我们可以使用系统调用exec族调用。
Exec族调用有以下五个函数:intexecl(constchar*path,constchar*arg,?);intexeclp(constchar*file,constchar*arg,?);intexecle(constchar*path,constchar*arg,?);intexecv(constchar*path,constchar*argv[]);intexecvp(constchar*file,constchar*argv[]);exec族调用可以执行给定程序。
进程管理实验报告分析(3篇)

第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
Linux系统进程控制操作系统实验报告4

实验课程名称:操作系统
实验项目名称Linux系统进程控制实验成绩
实验者专业班级组别
同组者实验日期年月日第一部分:实验分析与设计(可加页)
实验内容描述(问题域描述)
要求:掌握Linux系统中进程控制原语fork( )、sleep( )、wait( )、exit( )、exec的使用方法。
内容:在Linux系统中编写C程序,创建一个子进程。
父进程和子进程交替运行。
父进程先显示一次“Current time:”, 然后子进程每隔一秒显示一次当前系统日期和时间,共显示三次。
以上过程共循环进行五次。
特点:本实验要求学生综合运用的知识点为
(1)由“计算机组成原理”课程中冯·诺依曼经典结构出发理解“进程”的概念。
(2)用“高级语言程序设计”课程中学到的C语言判断分支算法理解父、子进程的调度。
(3)从“汇编语言”所表示的机器语言的角度理解原语的硬件实现,继而正确使用原语。
(4)用“数据结构”课程中学到的数据结构方法来合理组织变量和实现算法。
(5)用“操作系统”中“管态”“目态”的概念来理解和运用系统调用。
三、主要实验工具、仪器设备及耗材
安装Linux系统的计算机一台。
第二部分:实验结果分析(可加页)
1、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)
2、实验结果描述
3、实验小结、建议及体会
通过这次实验,使我更加的了解了,进程的三个活动状态,即运行状态、就绪状态、等待状态。
linux的进程管理实验总结

linux的进程管理实验总结Linux的进程管理实验总结1. 引言Linux中的进程管理是操作系统的核心功能之一,在实际的系统运行中起着重要的作用。
进程管理能够有效地分配系统资源、管理进程的运行状态和优先级,以及监控进程的行为。
本文将以Linux的进程管理实验为主题,分步骤介绍实验过程及总结。
2. 实验目的本次实验的目的是理解Linux中进程的概念,掌握进程的创建、运行和终止的基本操作,以及进程的状态转换过程。
3. 实验环境本次实验使用的是Linux操作系统,可以选择使用虚拟机安装Linux或者使用Linux主机进行实验。
4. 实验步骤4.1 进程的创建在Linux中,可以使用系统调用fork()来创建一个新的子进程。
在实验中,可以编写一个简单的C程序来调用fork()系统调用,实现进程的创建。
具体步骤如下:(1)创建一个新的C程序文件,例如"process_create.c"。
(2)在C程序文件中,包含必要的头文件,如<stdio.h>和<unistd.h>。
(3)在C程序文件中,编写main()函数,调用fork()函数进行进程的创建。
(4)编译并运行该C程序文件,观察控制台输出结果。
实验中,可以通过观察控制台输出结果,判断新的子进程是否被成功创建。
4.2 进程的运行在Linux中,通过调用系统调用exec()可以用一个新的程序替换当前进程的执行。
可以使用exec()函数来实现进程的运行。
具体步骤如下:(1)创建一个新的C程序文件,例如"process_run.c"。
(2)在C程序文件中,包含必要的头文件和函数声明,如<stdio.h>和<unistd.h>。
(3)在C程序文件中,编写main()函数,调用execl()函数来执行一个可执行程序。
(4)编译并运行该C程序文件,观察控制台输出结果。
实验中,可以通过观察控制台输出结果,判断新的程序是否被成功执行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
linux进程线程管理实验报告————————————————————————————————作者:————————————————————————————————日期:西安郵電學院操作系统LINUX实验报告题目1:进程______题目2:线程管理__题目3:互斥_____系部名称:计算机学院专业名称:软件工程班级:0802学号:04085048学生姓名:郭爽乐时间:2010-10-31实验一: 进程管理一.实验目的通过观察、分析实验现象,深入理解进程及进程在调度执行和内存空间等方面的特点,掌握在POSIX 规范中fork和kill系统调用的功能和使用。
二.实验要求2.1 实验环境要求1. 硬件(1) 主机:Pentium III 以上;(2) 内存:128MB 以上;(3) 显示器:VGA 或更高;(4) 硬盘空间:至少100MB 以上剩余空间。
2. 软件Linux 操作系统,内核2.4.26 以上,预装有X-Window 、vi、gcc、gdb 和任意web 浏览器。
2.2 实验前的准备工作学习man 命令的用法,通过它查看fork 和kill 系统调用的在线帮助,并阅读参考资料,学会fork 与kill 的用法。
复习C 语言的相关内容。
三、实验内容3.1 补充POSIX 下进程控制的残缺版实验程序3.2回答下列问题:1. 你最初认为运行结果会怎么样?2. 实际的结果什么样?有什么特点?试对产生该现象的原因进行分析。
3. proc_number 这个全局变量在各个子进程里的值相同吗?为什么?4. kill 命令在程序中使用了几次?每次的作用是什么?执行后的现象是什么?5. 使用kill 命令可以在进程的外部杀死进程。
进程怎样能主动退出?这两种退出方式哪种更好一些?四、实验结果4.1 补充完全的源程序#include<stdio.h>#include<sys/types.h>#include<unistd.h>#include<signal.h>#include<ctype.h>#define MAX_CHILD_NUMBER 10/* 允许建立的子进程个数最大值 */ #define SLEEP_INTERV AL 1/* 子进程睡眠时间 */int proc_number=0; /* 子进程的编号,从0开始 */void do_something();main(int argc,char *argv[]){int child_proc_number=MAX_CHILD_NUMBER; /* 子进程个数 */ int i,ch;pid_t child_pid;pid_t pid[10]={0};/* 存放每个子进程的id */if(argc>1){child_proc_number=atoi(argv[1]);child_proc_number=(child_proc_number>10)?10:child_proc_number; /* 命令行参数中的第一个参数表示建立几个子进程,最多10个 */ }/*建立child_proc_number个子进程* 子进程要执行* proc_number = i;* do_something();* 父进程把子进程的id保存到pid[i] */for(i=0;i<child_proc_number;i++){child_pid=fork();if(child_pid== -1){perror("creat error!\n");return 1;}else if(child_pid>0)pid[i]=child_pid;else{proc_number=i;do_something();}}/* 让用户选择杀死哪个进程。
输入数字(自编号)表示杀死该进程* 输入q退出 */while((ch=getchar())!='q'){if(isdigit(ch)){kill(pid[ch-'0'],SIGTERM);wait(&pid[ch-'0']);}}kill(0,SIGTERM); /*杀死本组的所有进程 */return 0;}void do_something(){for(;;){printf("This is process NO.%*d\n",proc_number+3,proc_number);sleep(SLEEP_INTERV AL);}}4.2回答上述实验内容中的问题1.预期结果:会持续输出0-9号进程,直到输入数字键+回车,则会杀死该进程,接下来的输出将不会有该进程号,当输入q+回车,则退出程序。
2.实际结果:与预期差不多,因输入进程总数20大于设定的最大进程数,因此按进程数10来处理。
随机输出0-9号进程,sleep(SLEEP_INTERV AL),循环输出,直到输入数字键,则会杀死该数字对应的进程,直到输入q退出循环,然后杀死本组所有进程。
分析:每创建一个子进程时,将其pid存储在pid[i]中,i存储在proc_number,然后调用死循环函数do_something(),输出该进程的代号proc_number;当输入数字键时,主进程会执行kill(pid[ch-'0'],SIGTERM),从而杀死(ch-‘0’)号进程。
当输入q时循环退出,kill(0,SIGTERM),杀死本组所有进程。
程序退出。
3. proc_number这个全局变量在各个子进程里的值相同,因为子进程相互独立,资源互不影响。
4.kill命令在程序中使用了2次:kill(pid[ch-'0'],SIGTERM); kill(0,SIGTERM);第一次是杀死该进程号pid[ch-‘0’],执行后接下来的结果中不会有该进程号,用另一个终端打开,使用命令ps aux | grep process,因为子进程先于父进程退出,则被杀死的进程为僵死状态,但我加了行代码wait(&pid[ch-'0']),就会使该子进程真正结束。
第二次是杀死本组所有进程。
即主进程以及它创建的所有子进程。
执行后程序退出,进程结束。
5.进程在main函数中return,或调用exit()函数都可以正常退出。
而使用kill命令则是异常退出。
当然是正常退出比较好,若在子进程退出前使用kill命令杀死其父进程,则系统会让init进程接管子进程。
当用kill命令使得子进程先于父进程退出时,而父进程又没有调用wait函数等待子进程结束,子进程处于僵死状态,并且会一直保持下去,直到系统重启。
子进程处于僵死状态时,内核只保存该进程的必要信息以被父进程所需,此时子进程始终占着资源,同时减少了系统可以创建的最大进程数。
实验二: 线程管理一.实验目的通过观察、分析实验现象,深入理解线程及线程在调度执行和内存空间等方面的特点,并掌握线程与进程的区别。
掌握在POSIX 规范中pthread_create() 函数的功能和使用方法。
二.实验要求2.1 实验环境要求1. 硬件(1) 主机:Pentium III 以上;(2) 内存:128MB 以上;(3) 显示器:VGA 或更高;(4) 硬盘空间:至少100MB 以上剩余空间。
2. 软件Linux 操作系统,内核2.4.26 以上,预装有X-Window 、vi、gcc、gdb 和任意web 浏览器。
2.2 实验前的准备工作阅读参考资料,了解线程的创建等相关系统调用。
三、实验内容3.1 补充POSIX 下进程控制的残缺版实验程序3.2回答下列问题:1. 你最初认为前三列数会相等吗?最后一列斜杠两边的数字是相等,还是大于或者小于关系?2. 最后的结果如你所料吗?有什么特点?试对原因进行分析。
3. thread 的CPU 占用率是多少?为什么会这样?4. thread_worker()内是死循环,它是怎么退出的?你认为这样退出好吗?四、实验结果4.1 补充完全的源程序#include<stdio.h>#include<sys/types.h>#include<unistd.h>#include<ctype.h>#include<pthread.h>#define MAX_THREAD 3/* 线程的个数 */unsigned long long main_counter,counter[MAX_THREAD];/* unsigned long long是比long还长的整数 */void* thread_worker(void*);int main(int argc,char argv[]){int i,rtn;char ch;pthread_t pthread_id[MAX_THREAD]={0};/* 存放每个线程的id */for(i=0;i<MAX_THREAD;i++){pthread_create(&pthread_id[i],NULL,thread_worker,(void*)i);/*用pthread_create建一个普通的线程,线程id存入pthread_id[i],线程执行的函数是thread_worker,并i作为参数传递给线程 */}/* 用户按一次回车执行下面的循环体一次。
按q退出 */do{unsigned long long sum=0;for(i=0;i<MAX_THREAD;i++){sum+=counter[i]; /* 求所有线程的counter的和 */printf("counter[%d]=%llu\n",i,counter[i]);}printf("main_counter=%llu/sum=%llu\n",main_counter,sum);}while((ch=getchar())!='q');return 0;}void* thread_worker(void* p){int thread_num;thread_num=(int)p; /*把main中的i的值传递给thread_num */for(;;){main_counter++;counter[thread_num]++;}}4.3回答上述实验内容中的问题1.试验运行前我认为前三列数不会相等,因为三个线程运行次数是随机的,结果不可预料,当然counter[i]值不会一定相等。