钢质储罐牺牲阳极保护方法与设计安装措施【最新版】

合集下载

储罐内壁牺牲阳极阴极保护设计方案及说明书_2019

储罐内壁牺牲阳极阴极保护设计方案及说明书_2019

河南汇龙合金材料有限公司编制刘珍技术部储罐内壁牺牲阳极阴极保护设计目前,防腐涂层与阴极保护系统相结合的防腐方法已在储罐防护中得到了广泛应用。

然而,在一些储罐进行大修时发现,罐内底板虽然采用了牺牲阳极阴极保护,但罐内底板仍然产生了严重的腐蚀,究其原因主要是因为牺牲阳极设计重量不足、罐底周边牺牲阳极安装量不足等。

储罐内壁阴极保护设计过程中,保护电流的需求量取决于储罐内保护面积的大小和内涂层质量的优劣。

为最大程度的降低保护电流的需求,罐内金属表面均应涂有有效的防腐涂层,包括耐蚀合金的内表面。

对于原油储罐内阴极保护系统设计,只有罐内沉积水区域内金属表面(带或不带涂层)接触水相时才应予以考虑。

进行储罐内壁阴极保护设计之前,应收集设计时所需的必要数据,包括:①在正常操作情况下的电解质特性:S、CO),电阻率、pH值、温度(平成分(溶解气体、O、H2均和变化)、压力、水位(最小、最大和平均水位),工作时的最大流速;②阴极保护系统的设计寿命;③罐内涂层类型、涂层厚度等④根据电解质的资料,选择裸钢的保护电流密度。

河南汇龙合金材料有限公司编制刘珍技术部储罐内阴极保护系统设计过程中,牺牲阳极材料的选择至关重要,具体设计中应当考虑以下2个主要方面:①与电解液(成分、温度)的兼容性;②可用的空间和在有限区域内的电流分布。

活化铝铟合金阳极、锌合金阳极、镁阳极应根据不同的条件和设备选用。

根据挪威船级社规范DNVRP IM01-2005,铝的效率将随温度的变化而改变。

当储罐服役温度超过5O℃时,必须选用铝基合金牺牲阳极。

若为饮用水,应使用镁合金牺牲阳极。

如果电解液为污水且S、可适用铝合金。

但硫化氢溶解量每增加20m g/I,含有H2铝合金的工作效率将减少。

对于容积较小的容器,应采用小梯形或扁平截面的镶装式阳极。

对于容积较大的储罐,阳极类型可以是镶装式或底部截面为梯形或半圆柱,或者采用带有梯形或圆柱截面的悬挂型阳极。

当采用镶装式阳极时,其面对罐或容器表面的阳极表面应涂以适当的涂层。

牺牲阳极的设计与安装说明

牺牲阳极的设计与安装说明

牺牲阳极的设计与安装说明
1、一般牺牲阳极工程采用镁合金牺牲阳极,规格通常为22公斤/支,也有采用14公斤、11公斤、8公斤的规格,一般安装时单支焊接或两支阳极并联为一组安装。

2、如果是并联焊接,相邻阳极组最好分布在管道两侧。

阳极组距管道外壁约2.0m左右,距管道外壁最近不小于300mm;最小埋深部不小于1m。

可根据现场实际情况,按照有关标准规范适当调整阳极位置。

3、如果阳极采用4支一组,同侧阳极组间距最低不小于2米。

4、阳极钢芯与电缆连接,采用焊锡灌注,以减少接触电阻,同时应保持连接处的绝缘密封,需包覆环氧树脂玻璃布,然后再采用热收缩套管,加以密封和绝缘,阳极的钢芯一端阳极端面,须涂环氧树脂,确保该端面不起作用,其他五面要清洁干净,放入盛有阳极填充料的棉布口袋中。

5、阳极电缆可用10mm2电缆,可用vv-1kv/1x10mm2。

6、牺牲阳极与钢管可采用铝热焊剂直接将阳极电缆焊接于钢管上,然后应仔细修复焊接处的防腐层,保证该处密封绝缘。

通常采用补伤片补伤。

7、阳极安装在阳极坑后进行回填,在回填土中不应含有砖、石等,若坑内较干燥时,应在阳极外的布袋上盖上一层薄土后,向坑内灌水,使阳极布袋内的填料饱和吸满水,然后再回填并夯实,恢复地坪。

牺牲阳极阴极保护设计说明

牺牲阳极阴极保护设计说明

牺牲阳极施工图设计说明(五)阴极保护1.主要设计及施工规范《钢质管道外腐蚀控制规范》GB/T21447-2018《埋地钢质管道阴极保护技术规范》GB/T21448-2017《镁合金牺牲阳极》GB/T17731-2015《埋地钢质管道阴极保护参数测量方法》GB/T21246-20232.设计概况本工程对消耗油库至外场供油干管和同油干管进行牺牲阳极阴极保护。

供油干管与回油干管平行敷设,采用联合阴极保护方式,被保护管道两端设绝缘接头。

被保护管道相关数据见下表:3.设计参数土壤电阻率:30Ω∙m覆盖层电阻率:≥10000Ω∙m2设计使用年限:20年管道最小保护电流密度:0.05mA∕m2管道自然电位:-0.55V(CSE)管道最小保护电位:-0∙85V(CSE)4.设计内容及技术参数4.1本工程设5组镁合金牺牲阳极,每组设3支阳极块,每组间距400米。

4.2设测试桩5组,与牺牲阳极结合设置。

5.材料的选用及技术要求5.1本工程选用镁合金牺牲阳极,牌号:AZ63B,质量符合《镁合金牺牲阳极》GB/T17731-2015中的要求。

阳极形状选用梯形。

牺牲阳极应具有完整的质量证明文件,阳极上应标记材料类型,阳极质量和炉号。

阳极电化学性能、规格尺寸如下表:5.2牺牲阳极填包料由石膏粉、膨润土和工艺硫酸钠组成,它们的质量百分比为75:20:5o填包料预包装,袋子应采用麻袋或棉质布袋,不应采用化纤类包装袋。

填料厚度应均匀密实,各个方向填料厚度不小于200mmO5.3阴极保护电缆采用铜芯电缆,型号为:YJV22-1KV∕1X10mm26.主要施工技术要求6.1阳极使用前应对表面进行处理,清除表面氧化膜和油污,使其呈金属光泽。

6.2阳极采用立式埋地敷设方式,阳极与被保护管道间距3米,成组布置阳极间距3米,阳极覆土厚度不小于15米。

6.3牺牲阳极应埋设在冻土层以下,并尽量敷设在土壤电阻率低的位置。

阳极与管道之间不应存在其他金属构筑物。

储罐内壁牺牲阳极阴极保护方法

储罐内壁牺牲阳极阴极保护方法

储罐内壁牺牲阳极阴极保护方法由于原油储罐、污水罐罐底内壁的腐蚀主要是缘于原油沉积污水引起的电化学腐蚀、细菌腐蚀,且罐底的原油沉积污水有着较高的含盐量(主要是S-2、Cl-、HCO-3、Na+、Ca+2等)和较高的温度,因此其腐蚀性较强。

目前普遍采用牺牲阳极法对储罐底板内壁进行阴极保护,这种方法对储罐安全可靠,无需专人管理,且保护效果好。

通常用作牺牲阳极的材料有镁和镁合金、锌合金、铝合金等。

阳极块在储罐内壁上均匀布置,钢板与阳极块直接焊接连接。

牺牲阳极保护法特点:①施工快速、简便,不会产生腐蚀干扰。

②投入成本较低,经济性强。

③安全可靠,无需专人管理。

④保护效果显著。

根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。

内壁采用牺牲阳极保护时,要注意温度的影响。

对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。

根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。

阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。

牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。

针对储罐内壁牺牲阳极的设计步骤:①计算阴极保护面积(罐内浸水面积)罐底内壁保护面积计算:S=πr2S-保护面积r-储罐半径②选定保护电流密度,计算保护电流保护电流计算:I=SIaS-保护面积Ia-保护电流密度③确定保护年限,计算所需阳极总量阳极使用寿命:T=0.85W/ωIT-阳极工作寿命a W-阳极净质量,kgω-阳极消耗率kg/(A.a)④根据阳极单支数量,计算阳极支数阳极数量:N=f.IA/IaN-阳极数量IA-所需保护电流A Ia-单支阳极输出电流AF-备用系数,取2-3倍牺牲阳极法是储罐内常用的阴极保护方法,它可以任意布置不必担心电源连接,它的电位有限,没有必要担心过保护为先,牺牲阳极可以做成任意形状。

根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。

内壁采用牺牲阳极保护时,要注意温度的影响。

储罐内壁牺牲阳极阴极保护

储罐内壁牺牲阳极阴极保护

储罐内壁牺牲阳极阴极保护1、原油罐金属底板的腐蚀与防护地上钢质储油罐使用过程中经常遭受内外环境介质的腐蚀,其中罐底板腐蚀穿孔事故占储罐腐蚀事故比率最高,因此应对储油罐罐底板实施有效的防腐措施,减少泄漏事故的发生,以延长储油罐大修周期。

涂料防腐是用覆盖层将金属与介质隔开,从而对金属起到保护作用。

但由于覆盖层有微孔,老化后易出现龟裂.剥离等现象。

若因施工质量差而产生针孔,使裸露的金属形成小阳极,覆盖层部分成为大阴极而产生局部腐蚀电池,则会更快地破坏漆膜。

因此,采用单独的涂料保护效果不佳。

若采用涂料与阴极保护联合的保护方法,使裸露的金属获得集中的电流保护,弥补了覆盖层缺陷,是现阶段储罐罐底板防腐最为经济有效的方法。

储罐边缘板在罐结构中的作用十分重要,但却容易渗进水而遭受腐蚀。

目前在役的储罐均未采取有效的防腐措施,要全面控制罐底板的腐蚀,除了对罐底板主体进行防护外,还要对边缘板外露部分(以下边缘板均特指边缘板外露部分)采取有效的防腐措施。

2、腐蚀机理水是原油罐底板的腐蚀根源,原油和水中的硫化物与罐底板金属反应机理为:在碳钢表面的硫化物氧化皮或锈层有孔隙的情况下,原油罐底水中Cl-离子能穿过硫化物氧化皮或锈层到达金属表面,在金属表面的局部地点形成小蚀坑。

生成的H+离子对金属产生活化作用,使小蚀坑继续溶解,成为孔蚀源。

孔蚀源成长的最初阶段,溶解下来的金属离子发生水解,生成氢离子。

这样会使小蚀坑接触的溶液层的PH值下降,形成一个强酸性的溶液区,这反而加速了金属的溶解,使蚀坑继续扩大、加深。

腐蚀从开始到暴露经历一个诱导期,但长短不一,有些需几个月,有些则需一年至几年。

坑蚀的形成,使原油罐金属底板受到很大的侵蚀。

由于坑蚀的面积很小,加之随机性和高度局部化的特征以及诱导期很长,因此很难用物理方法检测出坑蚀的深度。

即使泄露发生后,再用测厚仪测厚,仍不会发现罐金属底板有明显的减薄倾向。

3、防止罐底板腐蚀的几点措施(1)在油罐金属底板的结构设计中,尽可能将罐底板铺平,并略向脱水口倾斜,以利原油罐底的水脱除干净。

储罐内壁牺牲阳极阴极保护

储罐内壁牺牲阳极阴极保护

储罐内壁牺牲阳极阴极保护由于原油储罐、污水罐罐底内壁的腐蚀主要是缘于原油沉积污水引起的电化学腐蚀、细菌腐蚀,且罐底的原油沉积污水有着较高的含盐量(主要是S2-、Cl-、HCO3-、Na+、Ca2+等)和较高的温度,因此其腐蚀性较强。

目前普遍采用牺牲阳极法对储罐底板内壁进行阴极保护,这种方法对储罐安全可靠,无需专人管理,且保护效果好。

通常用作牺牲阳极的材料有镁和镁合金、锌合金、铝合金等。

阳极块在储罐内壁上均匀布置,钢板与阳极块直接焊接连接。

牺牲阳极保护法特点:a)施工快速、简便,不会产生腐蚀干扰。

b)投入成本较低,经济性强。

c)安全可靠,无需专人管理。

d)保护效果显著。

根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。

内壁采用牺牲阳极保护时,要注意温度的影响。

对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。

根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。

阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。

牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。

针对储罐内壁牺牲阳极的设计步骤:①计算阴极保护面积(罐内浸水面积)罐底内壁保护面积计算:S=πr2S ——保护面积 r——储罐半径②选定保护电流密度,计算保护电流保护电流计算:I= SIaS ——保护面积 Ia ——保护电流密度③确定保护年限,计算所需阳极总量阳极使用寿命:T=0.85 W/ωIT ——阳极工作寿命a W——阳极净质量,kg ω——阳极消耗率kg/(A.a) ④根据阳极单支数量,计算阳极支数阳极数量:N=f.IA/IaN——阳极数量 IA——所需保护电流A Ia——单支阳极输出电流AF——备用系数,取2-3倍牺牲阳极法是储罐内常用的阴极保护方法,它可以任意布置不必担心电源连接,它的电位有限,没有必要担心过保护为先,牺牲阳极可以做成任意形状。

根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。

牺牲阳极安装实施方案

牺牲阳极安装实施方案

牺牲阳极安装实施方案一、引言。

牺牲阳极是一种重要的防腐蚀材料,广泛应用于船舶、海洋平台、海洋工程等领域。

其安装实施方案的设计和执行对于保障设备和结构的安全运行具有重要意义。

本文将针对牺牲阳极的安装实施方案进行详细介绍,确保安装工作的顺利进行。

二、前期准备。

1. 设计方案确认,在进行牺牲阳极安装前,需要确认设计方案,包括阳极的型号、数量、安装位置等。

设计方案的确认需要经过专业人员的评审和批准。

2. 材料准备,根据设计方案确定所需的牺牲阳极材料,并进行采购。

同时需要准备好安装所需的工具和设备。

3. 安装人员培训,安装人员需要接受相关的培训,了解牺牲阳极的安装方法和注意事项,确保安装工作的质量和安全。

三、安装实施。

1. 清洁表面,在安装牺牲阳极之前,需要对安装位置的表面进行清洁处理,确保阳极能够与设备表面充分接触,提高防腐蚀效果。

2. 定位安装点,根据设计方案确定牺牲阳极的安装位置,并进行标记,确保安装位置的准确性和一致性。

3. 固定安装,将牺牲阳极按照设计要求进行固定安装,采用合适的固定方式,确保阳极的稳固性和牢固性。

4. 连接导线,将阳极与设备的金属结构通过导线连接,建立良好的电气接触,确保阳极的正常工作。

5. 检查验收,在完成安装后,对牺牲阳极的安装质量进行检查验收,确保安装工作的合格性。

四、安装后处理。

1. 记录资料,对牺牲阳极的安装过程进行详细记录,包括安装位置、固定方式、连接导线等信息,形成完整的安装档案。

2. 安全防护,在安装完成后,对安装位置周围进行安全防护,防止外部因素对阳极的损坏和影响。

3. 定期检测,对安装完成的牺牲阳极进行定期检测和维护,确保其正常工作,并及时更换损坏的阳极,延长设备和结构的使用寿命。

五、总结。

牺牲阳极的安装实施方案是一项重要的工作,需要严格按照设计要求和操作规程进行执行,确保安装工作的质量和安全。

通过本文的介绍,相信对于牺牲阳极的安装实施方案有了更加清晰的认识,希望能够对相关工作提供帮助和指导。

储罐罐底板牺牲阳极法阴极保护

储罐罐底板牺牲阳极法阴极保护

储罐罐底板牺牲阳极法阴极保护河南汇龙合金材料有限公司1. 工程概况大庆石化分公司炼油厂有各类储油罐、储水罐近400座,由于储罐常年运行,使罐的基础边缘高于罐底板,雨水直接顺着罐壁进入罐底板内,造成罐底脚腐蚀破坏,影响生产。

2. 牺牲阳极法阴极保护设计被保护的设备原料水罐V402、V403容积均为5000m3,规格为:Φ20m*15m,底板厚9mm。

最小保护电位:-0.85V(CSE);当土壤中含有硫酸盐还原菌,且硫酸根含量大于0.5%时,保护电位应达到-0.95V(CSE)或更负;最大保护电位:-1.5V(CSE),保护电流密度:7mA/m2;牺牲阳极使用寿命:大于20a;土壤电阻率:20Ω·m。

3. 牺牲阳极阴极保护系统的竣工牺牲阳极距罐壁2.5m,且在罐周均布垂直埋设。

每台原料水罐58支镁阳极(单重14.5kg),平均分成6组(9只/组)与罐体相连接,阳极平均间距为1.5m。

在原料水罐进出管道两侧的阳极组为11只。

按此原则将阳极埋设点测量定位。

4. 牺牲阳极保护效果2005年5月至2008年5月V402、V403储罐下面外壁阴极保护罐周保护电位测量结果表明,V402储罐底板最小保护电位为-0.973V (CSE),最大保护电位为-1. 85V(CSE)。

V403储罐底板最小保护电位为-1.14V(CSE),最大保护电位为-1.23V(CSE),符合SY/T 0088-2006给出的规定。

实践证明,牺牲阳极法阴极保护可以避免罐底板下面的金属腐蚀,特别是对焊缝腐蚀的保护更加有效。

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢质储罐牺牲阳极保护方法与设计安装措施
钢质储罐根据用途不同分为:原油罐,污水罐,消防水罐等,需要注意的是在原油罐内壁中禁止使用镁阳极,在原油储罐内壁通常使用铝阳极。

由于原油罐内壁的底部有一层积水层,采用阴极保护在技术上是可行的,但如果进行设计,要确定积水层的厚度。

从安全的角度考虑,以采用牺牲阳极保护为佳,保护的范围是罐壁下部1米,罐底板全部。

因为含油污水的腐蚀性较强,所以对于原油储罐内壁阴极保护的电流密度需要取120mA/m2。

对于罐底板外壁阴极保护来说,重要的参数是保护电流密度,大量的资料证明保护电流密度为10mA/m2 是可取的,对于新罐,这一指标可能偏高,不过到后期就适中了。

在有些条件下,5mA/m2是个合适的指标。

通常保护电流密度的选取应通过馈电实验来确定,这里给出几条特殊的准则:
在透气性差的粘土中,阴极保护电位应取-950mv。

温度在60℃以上时,阴极保护电位应为-950mv。

当电阻率大于500Ω.m的砂质环境中,阴极保护准则可取-750mv
当罐中心电位无法测量时,如直径40m的罐,应在确保电流密度的前提下,罐周电位应不小于-1.2v。

1、钢质储罐内壁牺牲阳极阴极保护:
①参数计算:
罐底内壁保护面积计算:S=πr2
S —保护面积r—储罐半径
保护电流计算:I= SIa
S —保护面积Ia —保护电流密度
阳极输出电流:Ia=△E/R
Ia—阳极输出电流A △E—阳极有效电位差V
R—回路总电阻R
阳极数量:N=f.IA/Ia
N—阳极数量IA—所需保护电流A Ia—单支阳极输出电流A F—备用系数,取2-3倍
阳极使用寿命:T=0.85 W/ωI
T —阳极工作寿命a W—阳极净质量,kg
ω—阳极消耗率kg/(A.a) I—阳极平均输出电流,A
②牺牲阳极内壁设计、施工说明:
1、阳极进入施工现场后,首先对阳极体进行入场检查,观察阳极体的外形及工艺,保证阳极体外形不翘曲,表面无毛刺、飞边、裂纹,无氧化渣和加杂物。

2、阳极施工前,首先对罐底进行喷砂除锈,保证施工作业面的清洁,以保证阳极焊接的质量。

并对阳极支架进行预加工,以便于阳极实际安装时的操作。

3、在除锈完毕后,首先将预加工好的阳极支架按照设计图纸要
求,均匀的焊接在罐底板上,并根据实际现场施工情况,如阳极位置与罐内构件或焊缝发生冲突,可对阳极位置进行适当调整.阳极支撑之间的距离可由施工单位按照阳极钢芯两端螺孔距离而定。

4、阳极支架安装完毕后,进行阳极体的安装。

安装时用螺栓将阳极体与支架固定。

阳极螺栓固定时需要在螺栓中加入垫片,以保证阳极安装的牢固。

5、阳极安装完毕后,对阳极两端面,底面以及裸露的钢芯,支撑架等全部采用与罐底涂层结构相同的涂层防腐绝缘。

应注意阳极的其他表面严禁刷漆。

相关文档
最新文档