遥感技术基础课件第三章 遥感成像及影像特
合集下载
遥感概论PPT课件

----天为什么是蓝的?日出日落时天空是橙红色?
☆ 米氏散射:当大气中粒子的直径与波长相当时发生的散射;
主要由大气中的烟尘、小水滴和气溶胶引起。散射强度与波长的
二次方成反比, I ∝ λ-2 。米氏散射在光线前进方向比向后方的
散射更强。
第12页/共88页
☆ 非选择性散射:当大气中粒子的直径比波长大得多时发生 的散射;散射强度与波长无关 。
☆ 物体的发射率等于该物体的吸收率: αλ=ελ 一般情况下,物体的发射率: 0< ελ <1
☆ 物体的发射率是温度和波长的函数。物体的发射率与身 的性质、物理状况(如粗糙度、颜色等)有关;物体的表面温 度受自身的比热、热惯量、热导率、热扩散率等影响较大。
☆ 黑体的ελ = ε=1;灰体的ελ =ε=常数<1;选择性辐射体的
1.5 ~ 1.8 μm 和 2.0 ~ 3.5 μm
3.5 ~ 5.5 μm
8 ~ 14 μm
0.8 ~ 2.5 cm
第14页/共88页
7、地球电磁辐射的基本特征
根据课本34页图2.20。自行总结
第15页/共88页
8、地球表面的热辐射特征 ☆ 温度为300K的黑体,其电磁辐射的波长范围是:2.5~50μm。
洋面及陆表温度
6
1.58 ~ 1.64
作物水分及地表温度
7
0.43 ~ 0.48
海洋水色
8
0.48 ~ 0.53
海洋水色
9
☆ 地球表面的发射辐射能量集中于近红外波段和热红外波段; 在热红外波段,地球的发射辐射能量远远大于太阳的电磁辐射能 量,通常称地球的发射辐射为热辐射。
☆ 地球表面的热辐射(能量)与自身的发射率、波长、温度有 关: M(λ,T)= ε( λ,T)× M0( λ,T)
遥感课件

1978.1.6 1982.2.25 1983.3.31 2001.6.15 Operating*1 1993.10.5 Operating*2
915km 915km 915km 705km 705km 705km
RBV/MSS RBV/MSS RBV/MSS MSS/TM MSS/TM ETM ETM+
气象卫星观测的优势和特点
综合参数观测优势
与其它观测方法相比,气象卫星是从大气层 外这个新视角观测地球—大气系统的,所以有些重要的气 候变量,特别是通过整个垂直方向大气层的积分参数,如 地气系统的反照率、大气顶的地气系统的射出长波辐射, 只能通过气象卫星观测才能获得。 目前已成功地从气象卫星观测资料中导出了全球大气温度 和湿度廓线、辐射平衡、海陆表面温度及云顶温度、风场、 云参数、冰雪覆盖、云中液态水含量和降水量、臭氧总量 和廓线、陆地下垫面状态、植被状况等诸多重要气候和环 境参数,这是任何其他观测手段所不能观测的。
60m
30m 15m
Orbits of Earth Observation Satellites The orbit is the path taken by the artificial satellites including earth observation satellites when they fly around the earth. There are several types of orbits, and the orbit is selected depending on purposes of the satellites. Earth observation satellites have a major mission to observe the entire earth, so they circle the most suitable Sunsynchronous sub-recurrent orbit.Sun-synchronous subrecurrent orbit Sun-synchronous sub-recurrent orbit is a combination of sun-synchronous orbit and sub-recurrent orbit.
遥感技术基础PPT

一、遥感的概念
(4)按成像波段分类
可见光遥感(Visible Spectral RS):是指利用可见光波段的大气 窗口进行探测的遥感技术。(记录和探测地物可见光波段 电磁波信息的遥感)。
紫外遥感(Ultraviolet RS) 红外遥感(Infrared RS) 微波遥感(Microwave RS) 多光谱遥感(Multispectral RS):是指利用多通道遥感器(如多
(3)按平台高度分类 地面遥感(Ground RS):是指平台距地面150米以下的 遥感。 航空遥感(Air RS):又称机载遥感,是指在飞机(飞 艇或热气球)飞行高度上对地球 表面的遥感。 航天遥感(Space RS):又称星载遥感,是指从人造卫 星轨道高度上对地球表面的遥感 (也包括卫星、航天飞机、宇宙 飞船、航天空间站等)。
一、遥感的概念
1、定义
遥感,从字面上理解,其意思为“遥远的感知”,通 常认为是在不接触物体的情况下,对物体进行探测,来感 知它的属性情况,包括它的几何属性和物理属性。也有这 样一种理解,“遥”是空间概念,“感”是信息系统,遥 感技术是指一种非接触的测量和识别技术。所以,人眼看 到远处的物体,就是一种生物遥感,伽利略用自制的望远 镜观测星空,普通照相机照相,都属于遥感的范畴。但自 从1962年密执安大学讨论会后,“遥感”主要就指利用 航空航天技术宏观的研究地球、综合评价地球环境、进行 资源调查与开发及管理的一种特定技术。
一、遥感的概念
2、遥感分类
(1)按遥感对象分类 (2)按应用空间尺度分类 (3)按遥感平台分类 (4)按成像波段分类 (5)按传感器接收信号的来源和方式分类 (6)按应用专业分类
一、遥感的概念
(1)按遥感对象分类 宇宙遥感:遥感的对象是宇宙中的天体和其它物质的遥感。 地球遥感:是对地球和地球上的事物的遥感。
《遥感技术基础》课件

20世纪60年代
卫星遥感技术的出现,使得遥感技术 从单一的军事用途扩展到民用领域。
21世纪
随着高光谱、超光谱、雷达等新型传 感器的出现和应用,遥感技术进入了 一个新的发展阶段。
遥感技术的应用领域
资源调查
遥感技术用于土地、森林、水域等资源 的调查和监测,为政府决策提供科学依
据。
城市规划
遥感技术用于城市空间布局、交通规 划、城市更新等方面,提高城市规划
信息提取
从处理后的图像中提取有用的信息 ,如目标检测、分类等。
03
02
图像增强
通过对比度拉伸、滤波等手段增强 图像的视觉效果。
可视化表达
将提取的信息以图表、地图等形式 进行可视化表达。
04
遥感数据的解译与信息提取
解译方法
01
遥感图像解译的方法包括监督分类、非监督分类、面向对象分
类等。
信息提取
02
从遥感图像中提取有用的信息,如土地利用类型、植被覆盖度
详细描述
无人机遥感技术在应急救援、土地调查、农 业植保等领域具有广泛的应用前景,能够提
高遥感监测的时效性和精细化程度。
THANKS
THANK YOU FOR YOUR WATCHING
等。
应用领域
03
遥感技术在环境监测、城市规划、资源调查等领域有广泛应用
。
04
遥感技术的应用实例
土地利用变化监测
总结词
通过遥感技术,可以快速、准确地监测土地利用的变化情况,为土地规划和资源管理提供数据支持。
பைடு நூலகம்详细描述
遥感技术能够获取大范围、多时相的土地覆盖信息,通过对比不同时期的遥感影像,可以发现土地利 用的变化趋势和规律。这些数据对于土地规划、城市发展、环境保护等方面具有重要意义。
遥感成像原理.pptx

摄影成像
• 摄影机—多光谱摄影机 可同时直接获取可见光和近红外范围内若干个分波段影像。有三种类型: 多相机组合型、 多镜头组合型和光束分离型。
➢ 多相机组合型:是将几 架相机同时组装在一个 外壳上,每架相机配置 不同的滤光片和胶片, 以获取同一地物不同波 段的影像
第9页/共48页
摄影成像
• 摄影机—多光谱摄影机 ➢ 光束分离型:是用一个
第20页/共48页
摄影像片的几何特征
• 像点位移
r
在中心投影的像片上,地形的
起伏除引起像片比例尺变化外,
还会引起平面上的点位在像片位
置上的移动。其位移量就是中心
投影与垂直投影在同一水平面上
的“投影误差”。
hr
H
r:像点到像主点的距离
第21页/共48页
摄影像片的几何特征
由 hr 可以看出:
摄影成像
• 摄影机 摄影机是成像遥感最常用的传感器,可装载在地面平台、航空平台以及航天平 台上,有分幅式和全景式摄影机之分。
第2页/共48页
摄影成像
• 摄影机—分幅式摄影机
一次曝光得到目标物一幅
像片,镜头分常角(视场
角50o~70o)、宽角(视
场角70o~105o)和特宽
角(视场角105o~135o),
比辐射率:亮度温度与绝对温度之比 第30页/共48页
微波遥感的特点
• 对冰、雪、森林、土壤等具有一定穿透能力 该特性可用来探测隐藏在林下的地形、地质构造、军事目标,以及埋藏于 地下的工程、矿藏、地下水等。
• 对海洋遥感具有特殊意义 微波对海水特别敏感,其波长很适合于海面动态情况(海面风、海浪等) 的观测。
H
• 位移量与地形高差h成正比 • 位移量与像主点的距离r成正比 • 位移量与摄影高度(航高)H成反比
第三章遥感成像原理与遥感图像特征1235节PPT课件

卫星轨道倾角很大,绕过极地地区,也称极轨卫星。 在太阳同步轨道上,卫星于同一纬度的地点,每天在同一
地方时同一方向通过。
18
赤道
太阳同步卫星,轨道近似穿越极地, 通过地球上同一点上空的时间一致。
19
二、地球静止卫星轨道
(Geosynchronous satellite orbit ) 卫星运行周期与地球自转周期(23小时56分4秒)相同的 轨道称为地球同步卫星轨道(简称同步轨道)。
升高时由赤道平面反时针旋转到轨道平面的夹角。
当0<i<90时,卫星运动方向与地球自转方向一致,因此叫“正方向 卫星”;
当90<i<180时,叫“反方向卫星”,即卫星运动与地球自转方向相 反;
当i=90时,卫星绕过两极运行,叫“极轨”或“两极”卫星; 当i=0或180时,卫星绕赤道上空运行,叫“赤道卫星”。
16
3.1.3 卫星轨道及特点
• 近圆形轨道 • 近极地轨道 • 太阳同步轨道 • 可重复轨道
人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球 同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕 地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈, 不受领土、领空和地理条件限制,视野广阔。能迅速与地面进行信息交换、包 括地面信息的转发,也可获取地球的大量遥感信息,一张地球资源卫星图片所 遥感的面积可达几万平方千米。
14
(4)椭圆半长轴(A) 近地点和远地点连线的一半,它标志卫星轨道的大小。 它确定了卫星距地面的高度,按照卫星高度的不同又将卫星
分为低轨卫星(150—300公里)、中轨卫星(约1000公里左率(e)
椭圆轨道两个焦点间距离之半与半长轴的比值,用以表示轨 道的形状。 (6)卫星过近地点时刻(T)
地方时同一方向通过。
18
赤道
太阳同步卫星,轨道近似穿越极地, 通过地球上同一点上空的时间一致。
19
二、地球静止卫星轨道
(Geosynchronous satellite orbit ) 卫星运行周期与地球自转周期(23小时56分4秒)相同的 轨道称为地球同步卫星轨道(简称同步轨道)。
升高时由赤道平面反时针旋转到轨道平面的夹角。
当0<i<90时,卫星运动方向与地球自转方向一致,因此叫“正方向 卫星”;
当90<i<180时,叫“反方向卫星”,即卫星运动与地球自转方向相 反;
当i=90时,卫星绕过两极运行,叫“极轨”或“两极”卫星; 当i=0或180时,卫星绕赤道上空运行,叫“赤道卫星”。
16
3.1.3 卫星轨道及特点
• 近圆形轨道 • 近极地轨道 • 太阳同步轨道 • 可重复轨道
人造卫星的运动轨道取决于卫星的任务要求,区分为低轨道、中高轨道、地球 同步轨道、地球静止轨道、太阳同步轨道,大椭圆轨道和极轨道。人造卫星绕 地球飞行的速度快,低轨道和中高轨道卫星一天可绕地球飞行几圈到十几圈, 不受领土、领空和地理条件限制,视野广阔。能迅速与地面进行信息交换、包 括地面信息的转发,也可获取地球的大量遥感信息,一张地球资源卫星图片所 遥感的面积可达几万平方千米。
14
(4)椭圆半长轴(A) 近地点和远地点连线的一半,它标志卫星轨道的大小。 它确定了卫星距地面的高度,按照卫星高度的不同又将卫星
分为低轨卫星(150—300公里)、中轨卫星(约1000公里左率(e)
椭圆轨道两个焦点间距离之半与半长轴的比值,用以表示轨 道的形状。 (6)卫星过近地点时刻(T)
【精品】第三章-遥感成像原理与遥感图像特征..幻灯片

要求探测元件的响应时间至少要<0.2μs的1/3。
• 固体自扫描中: 用一竖列的10个探测元件同时扫,每个元件只扫51条线,则 在瞬时视场的停留时间为2μs。 若用一竖列的512个探测元件同时扫,只要一次自扫描即可, 像刷子刷过一样。此时,CCD探测元件与地面上的像元(瞬时 视场)相对应,靠遥感平台前进运动就可直接以刷式扫描成像。
(2)线对数(line pairs)
对于摄影系统而言,影像最小单元常通过1mm间隔内包 含的线对数确定,单位为线对/mm。所谓线对指一对同等大 小的明暗条纹或规则间隔的明暗条对。
一、遥感图像特征
(3)瞬时视场(IFOV)
指遥感器内单个探测元件的受光角度或观测视野。单位为
毫弧度(mrad)。
S
S ➢IFOV越小,最小可分辨单元越小,空间分辨率越高。 f f ➢IFOV取决于遥感器光学系统和探测器的大小。
4 5
0.7~0.8μm
0.8~1.1μm
卫
星
10.4~12.6μm 前 进
方
向
6
成像板
一、遥感图像特征
一般来说:遥感系统的空间分辨率越高,其识别 物体的能力越强。但实际上每一目标在图像上的可 分辨程度,不完全决定于空间分辨率的具体值,而 是和它的形状、大小,以及它与周围物体亮度、结 构的相对差有关(反差)。例如MSS的空间分辨率 为79m,但是宽仅10-20m的铁路,公路,当它们通 过沙漠、水域、草原等背景光谱较单调或与道路光 谱差异大的地区,往往清晰可辨。
成像方式遥感器 扫描成像类型(光电成像类型) 微波成像类型(雷达成像类型)
二、 遥感传感器
⑴ 摄影成像类型
① 摄影成像原理:通过成像设备获取物体影像的技术。 ② 分类
• 固体自扫描中: 用一竖列的10个探测元件同时扫,每个元件只扫51条线,则 在瞬时视场的停留时间为2μs。 若用一竖列的512个探测元件同时扫,只要一次自扫描即可, 像刷子刷过一样。此时,CCD探测元件与地面上的像元(瞬时 视场)相对应,靠遥感平台前进运动就可直接以刷式扫描成像。
(2)线对数(line pairs)
对于摄影系统而言,影像最小单元常通过1mm间隔内包 含的线对数确定,单位为线对/mm。所谓线对指一对同等大 小的明暗条纹或规则间隔的明暗条对。
一、遥感图像特征
(3)瞬时视场(IFOV)
指遥感器内单个探测元件的受光角度或观测视野。单位为
毫弧度(mrad)。
S
S ➢IFOV越小,最小可分辨单元越小,空间分辨率越高。 f f ➢IFOV取决于遥感器光学系统和探测器的大小。
4 5
0.7~0.8μm
0.8~1.1μm
卫
星
10.4~12.6μm 前 进
方
向
6
成像板
一、遥感图像特征
一般来说:遥感系统的空间分辨率越高,其识别 物体的能力越强。但实际上每一目标在图像上的可 分辨程度,不完全决定于空间分辨率的具体值,而 是和它的形状、大小,以及它与周围物体亮度、结 构的相对差有关(反差)。例如MSS的空间分辨率 为79m,但是宽仅10-20m的铁路,公路,当它们通 过沙漠、水域、草原等背景光谱较单调或与道路光 谱差异大的地区,往往清晰可辨。
成像方式遥感器 扫描成像类型(光电成像类型) 微波成像类型(雷达成像类型)
二、 遥感传感器
⑴ 摄影成像类型
① 摄影成像原理:通过成像设备获取物体影像的技术。 ② 分类
第三章 遥感成像和影像特性

影响植被波谱特征的主要因素
植物类型 植被生长季节 植被生长状态(病虫害影响)
不同植被类型的光谱反射率 病虫害对于植物光谱反射率的影响
土壤的波谱特征
自然状态下土壤表面反射曲线呈比较平滑的特 征,没有明显的反射峰和吸收谷
在干燥条件下,土壤的波谱特征主要与成土矿 物(原生矿物和次生矿物)和土壤有机质有关
地物波谱
地物的电磁波响应特性随电磁波长改变而变化 的规律 不同类型的地物,其电磁波响应特性不同,因 此地物波谱特征是遥感识别地物的基础
不同地物的波谱特性
不同电磁波段中地物波谱特性
可见光和近红外波段
–表现为反射与吸收
远红外波段
–表现为地物热辐射
微波波段
–主动遥感:表现为地物后向散射 –被动遥感:表现为地物微波辐射
-3-3
可见光 紫外线 X射线 γ射线
10-3.8×10μm
-6-3
10-10μm
-6
电磁波的度量
遥感信息是从遥感器定量记录的地表物 体电磁辐射数据中提取的
–辐射测量(radiometry) –光度测量(photometry) –比辐射率 –亮温
太阳辐射
太阳发出的电磁波辐射 太阳辐射在从近紫外到中红外这一波段内能量最 集中而且相对来说最稳定,太阳强度变化最小
m Irradiance (W m-2 µ -1)
200 0 150 0 100 0
Exoatmospheric solar irradiance F0() Solar irradiance reaching the surface F()
500
0 0
Wavelength (µ m)
1
2
3
太阳辐照度分布曲线