中考数学一轮复习 第12课时 二次函数教学案1
二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。
九年级数学中考一轮复习教学案:第12课时 二次函数的图像与性质(一)

第12课时 二次函数的图像与性质(一)【复习目标】1.通过对实际问题的分析,体会二次函数的意义.2.会用描点法画出二次函数的图象,通过图象了解二次函数的性质.3.会用配方法将数字系数的二次函数的解析式化为y =a(x -h)2+k 的形式,并能由此得到二次函数图象的顶点坐标,知道图象的开口方向,会画出图象的对称轴,知道二次函数的增减性,并掌握二次函数图象的平移规律.【知识梳理】1.一般地,形如_______的函数叫做二次函数,当a_______ ,b________时,是一次函数. 2.二次函数y =ax 2+bx +c 的图象是_______,对称轴是_______,顶点坐标是_______. 3.抛物线的开口方向由a 确定,当a>0时,开口_______;当a<0时,开口_______;越大,开口越_______.4.抛物线与y 轴的交点坐标为_______.当c>0时,与y 轴的_______半轴有交点;当c<0时,与y 轴的_______半轴有交点;当c =0时,抛物线过________. 5.若a_______0,当x =2ba -时,y 有最小值,为_______; 若a_______0,当x =2ba-时,y 有最大值,为_______.6.当a>0时,在对称轴的左侧,y 随x 的增大而_______,在对称轴的右侧,y 随x 的增大而_______;当a<0时,在对称轴的左侧,y 随x 的增大而_______,在对称轴的右侧.y 随x 的增大而_______.7.当m>0时,二次函数y =ax 2的图象向_______平移_______个单位得到二次函数y =a (x +m)2的图象;当k>0时,二次函数y =ax 2的图象向_______平移_______个单位得到二次函数y =ax 2+k 的图象.平移的口诀:左“+”右 “-”;上“+”下“-”.【考点例析】考点一 二次函数的有关概念例1已知二次函数y =x 2-4x +5的顶点坐标为 ( ) A .(-2,-1) B .(2,1) C .(2,- 1)D (-2,1)提示由配方可得y=x2-4x+5=(x-2)2+1,从而求得抛物线的顶点坐标.考点二抛物线的平移例2 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为 ( )A.y=3(x+2)2+3 B.y=3(x-2)2+3C.y=3(x+2)2-3 D.y=3(x-2)2-3提示由平移规律“上加下减.左加右减”,根据抛物线y=3x2向上平移3个单位,再向左平移2个单位得到平移后抛物线的解析式.考点三同一坐标系下二次函数与其他函数图象的共存问题例 3 在同一坐标系中°一次函数y=ax+1与二次函数y=x2+a的图象可能是( )提示本题主要考查一次函数和二次函数图象位置的确定,由一次函数y=ax+1可知其图象经过(0,1),与y轴交于正半轴.又二次函数y=x2+a.当a>0时,一次函数经过第一、二、三象限,二次函数图象的开口向上,顶点在y轴正半轴上,没有选项符合;当a<0时,一次函数的图象经过第一、二、四象限.二次函数开口向上,顶点在y轴负半轴上,从而确定正确选项.考点四利用二次函数的增减性比较坐标大小例4设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则y1、y2、y3的大小关系为 ( )A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y3提示本题根据二次函数图象在对称轴两边的增减性解题,要注意所有点必须先放在对称轴同一侧,然后进行比较.【反馈练习】1.抛物线y=-2x2+1的对称轴是 ( )A.直线y=12B.直线x=-12C.y轴D.直线x=22.已知二次函数y=2(x-3)2+1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象的顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.其中说法正确的有 ( )A.1个B.2个C.3个D.4个3.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是 ( ) A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位4.(2012.上海)将抛物线y=x2+x向下平移2个单位.所得新抛物线的解析式是________.5.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1_______y2.6.已知二次函数y=-12x2-x+32.(1)在给定的直角坐标系中,画出这个函数的图象;(2)根据图象,写出当y<0时,x的取值范围;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式.。
九年级《二次函数》全章教案

教学目标:1.了解二次函数的概念及特点。
2.掌握二次函数的图像、顶点、轴对称、零点等基本性质。
3.学会利用函数图像解决实际问题。
教学重点:1.理解二次函数的相关概念。
2.掌握二次函数图像的绘制方法。
3.能够运用二次函数解决实际问题。
教学难点:1.掌握二次函数的顶点和轴对称的概念及求解方法。
2.学会利用函数图像解决实际问题。
教学准备:1.教材《二次函数》的教学课件及习题。
2.计算器、直尺、笔记本等教学工具。
3.多媒体设备及相关教学资源。
教学过程:一、导入(10分钟)1.通过展示一副二次函数的图像和实际应用问题,引起学生兴趣。
2.复习一次函数的相关内容,引出二次函数的定义及特点。
二、概念讲解与示例演示(25分钟)1.讲解二次函数的定义,即形如f(x)=ax²+bx+c(a≠0)的函数。
2.介绍二次函数图像的最简形式,即顶点形式f(x)=a(x-h)²+k。
3.示例演示:给出一个二次函数式,通过变换得到最简形式,并通过求顶点等方式解决具体问题。
三、绘制二次函数图像(40分钟)1.讲解如何绘制二次函数图像的步骤,包括求顶点、确定轴对称、绘制图像等。
2.分组活动:将学生分成小组,每组选择一道习题,并利用求顶点和绘图方法解答。
3.展示小组成果,让每个小组派学生来展示解题过程和图像结果。
四、实际应用问题(30分钟)1.引导学生思考如何利用二次函数图像解决实际问题。
2.提供一些实际应用问题,如物体抛射问题、面积最大问题等,让学生结合所学知识进行求解。
3.组织学生进行小组合作讨论,并将解题思路和结果展示给全班。
五、拓展与总结(15分钟)1.通过讨论、展示和总结,让学生理解二次函数的基本性质和应用方法。
2.布置课后作业,要求学生进一步巩固所学知识,并解决一些拓展问题,如不等式问题、复合函数问题等。
3.回顾本节课的主要内容和思路,澄清学生对二次函数的理解和掌握程度。
教学反思:通过本节课的教学,学生对二次函数的定义和特点有了更深入的了解。
中考数学一轮复习 第12课时 二次函数(1)教案

二次函数最值和单调性,二次函数的最值和增减性的应用
教学方法:
自主探究合作交流讲练结合
教学媒体:
电子白板
【教学过程】:
一、知识梳理
1.二次函数:一般地,自变量x和因变量y之间存在如下关系:一般式:__________(a≠0,a、b、c为常数),则称y为x的二次函数。
2.二次函数的解析式三种形式。
3.二次函数的平移
问题3(1)已知抛物线 ,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是( )
A.将c沿x轴向右平移 个单位得到c′B.将c沿x轴向右平移4个单位得到c′
C .将c沿x轴向右平移 个单位得到c′D.将c沿x轴向右平移6个单位得到c′
(2)将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值 是 .
C.对称轴是直线x=﹣1,最小值是2 D.对称轴是直线x=﹣1,最大值2
2.(20 17•台湾)已知坐标平面上有两个二次函数y=a(x+1)(x﹣7),y=b (x+1)(x﹣15)的图形,其中a、b为整数.判断将二次函数y=b(x+1)(x﹣15)的图形依下列哪一种方式平移后, 会使得此两图形的对称轴重叠( )
(1)一般式:已知抛物线上的三点,通常设解析式为________________
(2)顶点式:已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________求出表达式后化为一般形式.
(3)交点式:已知抛物线 与x轴的两个交点(x1,0)、 (x2,0),通常设解析式为_____________求出表达式后化为一般形式.
③图象不经过第一象限;④当x>2时,y随x的增大而减小.
初中数学二次函数教案(5篇)_1

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
九年级数学二次函数的优秀教案范本

九年级数学二次函数的优秀教案范本教案一:二次函数的定义和性质I. 导入部分2-3分钟针对学生对于二次函数的先前知识进行复习,引入二次函数的概念,并提问学生对于二次函数的定义是否了解。
II. 概念讲解10-12分钟1. 定义二次函数:y = ax² + bx + c2. 二次函数的图像特点:开口方向、顶点、对称轴、零点等3. 二次函数图像与系数a的关系:a的正负与开口方向的关系4. 二次函数图像与常数项c的关系:c的正负与图像位置的关系III. 性质探究15-20分钟1. 让学生观察a和c对于二次函数图像的影响,并总结规律。
2. 引导学生思考二次函数图像的最高点(最低点)是如何确定的。
IV. 习题练习10-12分钟1. 随堂练习一:给出不同的二次函数图像,让学生通过观察图像,确定函数的表达式。
2. 随堂练习二:给出一些二次函数方程,让学生画出对应的图像。
V. 拓展应用10-15分钟给出一个实际问题,让学生通过构建二次函数,解决问题。
例如:“小明投篮得分和投篮距离的关系是二次函数,请根据图像判断小明在哪个距离处得分最高。
”VI. 归纳总结5分钟让学生自主总结二次函数的定义和性质,并复习本节课所学的内容。
教案二:二次函数的图像与变化I. 导入部分2-3分钟回顾上节课所学的内容,提问学生二次函数的定义和性质。
II. 图像变换10-12分钟1. 沿x轴平移2. 沿y轴平移3. 关于x轴翻转4. 关于y轴翻转5. 压缩与伸缩III. 变换示例15-20分钟给出几个具体的例子,让学生通过变换求出对应二次函数的表达式。
IV. 变换规律总结5-10分钟引导学生总结二次函数图像变换的规律,并让他们解释为何一些变换不改变图像的顶点位置。
V. 习题练习10-12分钟1. 随堂练习一:给出变换前的图像,让学生画出对应的变换后的图像。
2. 随堂练习二:给出函数的表达式,让学生描述对应二次函数图像的变换。
VI. 拓展应用10-15分钟提出一个关于图像变换的实际问题,让学生应用所学知识进行分析和解决。
《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。
2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。
教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。
教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。
问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。
师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。
3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。
数学《二次函数》优秀教案

数学《二次函数》优秀教案教案:二次函数教学目标:1. 了解二次函数的定义和特征。
2. 掌握二次函数的图像特点、形状和性质。
3. 学会求解二次函数的零点、顶点和最值。
4. 能够应用二次函数解决实际问题。
教学重点:1. 二次函数的图像特点和性质。
2. 二次函数的零点、顶点和最值的求解方法。
教学难点:1. 如何确定二次函数的图像的形状和性质。
2. 如何求解二次函数的零点、顶点和最值。
教学准备:1. 教师准备PPT、教科书、黑板、彩色粉笔等教学工具。
2. 学生准备笔记本、铅笔、直尺等学习用具。
教学过程:一、导入新知识(5分钟)1. 展示一张二次函数的图像。
2. 引导学生观察图像特征,让学生猜测图像所表示的函数类型。
二、引入新知识(10分钟)1. 教师介绍二次函数的定义和特征,并解释二次函数与线性函数的区别。
2. 教师讲解二次函数的一般形式f(x) = ax^2 + bx + c,并解释每个参数的含义。
三、学习新知识(30分钟)1. 教师讲解二次函数的图像特点和性质,如开口方向、开口位置、对称轴、顶点等。
2. 教师通过实例演示,解释如何通过参数a、b和c来确定二次函数的图像形状和性质。
四、巩固练习(15分钟)1. 让学生自主完成一组题目,求解二次函数的零点、顶点和最值。
2. 教师抽查学生的答案,进行讲解和纠正。
五、运用知识(10分钟)1. 教师提供一些实际问题,要求学生运用二次函数解决问题。
2. 学生分组讨论并呈现解决过程和结果。
六、归纳总结(5分钟)1. 教师总结本节课的重点和难点,并与学生共同归纳要点。
2. 学生自主完成本节课的学习笔记,做好知识回顾和巩固。
七、作业布置(5分钟)1. 布置完成一定数量的二次函数求解题目。
2. 要求学生总结本节课所学的图像特点和性质。
教学反思:本节课主要通过讲解和实例演示,让学生了解二次函数的图像特点和性质,并掌握求解二次函数的零点、顶点和最值的方法。
通过实际问题的应用,培养学生运用二次函数解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数
课题:第12课时二次函数(1)教学时间:
教学目标:
1.了解二次函数的解析式及其基本性质;
2.会用待定系数法求二次函数的解析式;
3.能从某些实际问题中抽象出二次函数的解析式。
教学重难点:从实际问题中抽象出二次函数的解析式,及会求二次函数的解析式。
教学方法:
教学过程:
【复习指导】
1.二次函数的图象:在画二次函数y=ax2+bx+c(a≠0)的图象时通常先通过配方配成y=a(x+ )2+ 的形式,先确定顶点( , ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.
2.理解二次函数的性质:抛物线的开口方向由a的符号来确定,当a>0时,在对称轴左侧y随x的增大而;在对称轴的右侧,y随x的增大而;简记左减右增,这时当x= 时,y最小值= ;反之当a<•0时,简记左增右减,当x= 时y最大值= .
3.待定系数法是确定二次函数解析式的常用方法
(1)一般地,在所给的三个条件是任意三点(或任意三对x,y•的值)•可设解析式为y=ax2+bx+c,然后组成三元一次方程组来求解;
(2)在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k,顶点是(h,k);
(3)在所给条件中已知抛物线与x•轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴,则可设解析
式为y=a(x-x1)(x-x2)来求解.
4.二次函数的平移问题
平移的口诀:左“+”右“—”;上“+”下“—”。
【预习练习】
中考指要的基础演练。
预习检查中对错的较多的问题进行讲解
【新知探究】
例1:
例2:
例3:
【变式拓展】
见中考指要例4
【总结提升】
(1)二次函数的图象是抛物线,是轴对称图形,充分利用抛物线的轴对称性,是研究利用二次函数的性质解决问题的关键.
(2)已知二次函数图象上几个点的坐标,一般用待定系数法直接列方程(组)求二次函数的解析式.
(3)已知二次函数图象上的点(除顶点外)和对称轴,便能确定与此点关于对称轴对称的另一点的坐标.
【当堂反馈】
见中考指要的自我评估
【课后作业】
见中考直通车。