振动理论课后答案

合集下载

机械振动理论中的一些原理问答

机械振动理论中的一些原理问答

1.请指出弹簧的串、并联组合方式的计算方法。

确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。

答:n 个刚度为i k 的弹簧串联,等效刚度∑==ni ieq k k 111;n 个刚度为i k 的弹簧并联的等效刚度为∑==ni i eq k k 1;并联弹簧的刚度较各组成弹簧“硬”,串联弹簧较其任何一个组成弹“簧软”。

确定弹性元件是串联还是并联的方法:若弹性元件是共位移——端部位移相等,则为并联关系;若弹性元件是共力——受力相等,则为串联关系。

2.非粘性阻尼包括哪几种?它们的计算公式分别是什么? 答:非粘性阻尼包括:(1)库仑阻尼计算公式⎪⎭⎫⎝⎛⋅=.sgn -x mg F e μ,其中,sgn 为符号函数,这里定义为)()()(sgn t x t x x ∙∙∙=,须注意,当0)(x =∙t 时,库仑阻尼力是不定的,它取决于合外力的大小,而方向与之相反;(2)流体阻尼计算公式:是当物体以较大速度在粘性较小的流体(如空气、液体)中运动是,由流体介质所产生的阻尼,计算公式为⎪⎭⎫⎝⎛-=∙∙x x F n sgn 2γ;(3)结构阻尼:由材料内部摩擦所产生的阻尼,计算公式为2X E s α=∆ 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么?答:单自由度无阻尼系统的自由振动的运动微分方程()0=+∙∙t kx x m ; 自然频率:mk f n n ππω212==; 振幅:202⎪⎪⎭⎫ ⎝⎛+=nv x X ω;初相角:0x v arcrann ωϕ=。

4.对于单自由度无阻尼系统自由振动,确定自然频率的方法有哪几种?具体过程是什么?答:单自由度无阻尼系统自由振动,确定自然频率的方法:(1)静变形法:该方法不需要到处系统的运动微分方程,只需根据静变形的关系就可以确定出固有频率具体如下:mg k st =δ,又mkn =ω,将这两个式子联立即可求得stn gδω=;(2)能量法,该方法又可以分为三种思路来求自然频率。

(完整版)机械振动习题答案

(完整版)机械振动习题答案

机械振动测验一、填空题1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大值和③极小值而往复变化。

2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。

3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而系统对外界影响的反应,称为振动系统的⑦响应或输出。

4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、环境预测5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类,振动分为:③简谐振动、④周期振动和⑤瞬态振动。

6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。

7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势能,阻尼元件③耗散振动能量。

8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。

9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。

10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无关。

二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。

1ln nx xn δ=三、 求图示振动系统的固有频率和振型。

已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题自己去查双(二)自由度振动J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。

质量惯性矩o求其固有频率。

五、物块M质量为m1。

滑轮A与滚子B的半径相等,可看作质量均为m2、半径均为r的匀质圆盘。

斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。

又m1 g>m2 g sinβ , 滚子B作纯滚动。

试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

六、在下图所示系统中,已知m和k。

计算系统的基频。

振动理论-第二章-模拟题解答

振动理论-第二章-模拟题解答

第二章习题2—1一重块100W N =,支承在平台上,如题2-1图所示。

重块下联结两个弹簧,其刚度均为20/k N cm =。

在图示位置时,每个弹簧已有初压力010F N =。

设将平台突然撤去,则重块下落多少距离?题2—1图 解答:由题可知:弹簧在初始时的形变00100.520F L cm cm k === 设重块将下落h m ,则:2212.[()]W h k h L L =+- 于是: 4h cm =2-3.求题2-3图所示的轴系扭转振动的固有频率。

轴的直径为d ,剪切弹性摸量为 G ,两端固定。

圆盘的转动惯量为J,固定于轴上,至轴两端的距离分别为12l l 和。

解: 以圆轴的轴线为固定轴,建立系统的振动微分方程 惯性力矩: J θ恢复力矩: 12p p GI GI l l +由动静法得120p p GI GI J l l θθ⎛⎫++= ⎪⎝⎭因此2-4 一均质等直杆AB ,重为W ,用两相同尺寸的铅垂直线悬挂如题2-4图所示。

()122124322p p GI l l Jl l d I f ωπωπ+===且由以上各式得线长为l ,两线相距为2a 。

试推导AB 杆绕通过重心的铅垂轴作微摆动的振动微分方程,并求出 其固有频率。

解:AB 杆绕重心摆动,则:()2222c o s 200: 212330=: 2J a Wa F T T l lJ Fa Wa J l m m J b b Wa mlb a b f θθθϕθθθθθωωπ===+=+===+=∴==惯性力矩: 恢复力矩: 2Fa 其中 : 则 : 即 : 又有则 : 固有频率2-5 有一简支梁,抗弯刚度EI=2E10 N ·c ㎡,跨度为L=4m ,用题图(a),(b)的两种方式在梁跨中连接一螺旋弹簧和重块。

弹簧刚度K=5kN/cm ,重块质量W=4kN,求两种弹簧的固有频率。

AB(a)(b)解:根据材料力学理论可知简支梁中点的刚度33()2348l mg mgl EI EI==3148l mgEIk ==(a ) 图可以看作弹簧和杆的并联11348e EI k k k k l=+=+弹簧质量系统的固有频率112f π=已知EI=2E10 N ·c ㎡, K=5kN/cm, W=4kN代入数据得111.14f Hz =(b ) 图可以看作弹簧和杆的串联121*e k k k k k =+所以212f π=代入数据得2 4.82f Hz =2—9一有黏性阻尼的单自由度系统,在振动时,它的振幅在5个周期之后减少了50%。

振动理论11(1)-自激振动

振动理论11(1)-自激振动

自激振动●迄今讨论的问题都是自由振动或者受迫振动●存在另一类的扰动,称为自激振动⏹通过例子中二者区别的实质●普通单缸蒸汽发动机⏹活塞完成一个往复运动,可以看成是一个振动⏹维持这一振动的力来自蒸汽,在活塞的两侧交替推动●带失衡圆盘的弹性轴⏹弹性轴承在两个支撑上旋转⏹不平衡质量导致的离心力交替推动圆盘上下运动2●蒸汽发动机是自激振动⏹通过约束飞轮限制活塞运动,阀门将停止,不会有交替的蒸汽力作用在活塞上●盘的运动是普通的受迫振动⏹限制盘的振动,例如轴上靠近盘的两侧装两个球轴承,并把球轴承的外圈附在牢固的基础上,这样就限制了盘的振动,但是转动并未受影响.⏹因为失衡旋转继续,交替力一直保留不会消失3●于是总结出以下区别:⏹在自激振动中,维持运动的交替外力由运动自身产生或者控制;如果运动停止,交替外力将消失⏹在受迫振动中,交替外力与运动相互独立,即使运动停止,交替外力仍然存在4另一种看待此问题的方法是把自激振动定义成带有负阻尼的自由振动5●如下的含负阻尼的单自由度运动微分方程:其解可以写为是一个振幅呈指数增加的振动●普通的正阻尼力正比于振动速度并与其方向相反●负阻尼力也与速度成比例,但是与振动方向相同⏹负阻尼不仅没有减少自由振动的振幅,反而使其增加●不管是正阻尼还是负阻尼,都会随着运动停止而消失6●系统的动态稳定性质⏹具有正阻尼:动态稳定⏹具有负阻尼:动态不稳定●系统的静稳定性质⏹静态稳定:从平衡位置开始的位移所形成的力或力偶倾向于驱动系统回到平衡位置⏹静不稳定:这样形成的力倾向于增加位移⏹静不稳定性意味着负的弹性常数,或者更一般地说,其中一个固有频率的值为负●动态稳定和静态稳定的区别⏹动稳定性总是以静稳定性为前提的⏹反过来是不成立的:静态稳定的系统也可以是动不稳定的7系统的三个不同的稳定性阶段的行为(a) 静不稳定; (b) 静稳定,动不稳定; (c) 静稳定且动稳定8自激振动的频率●在大多数的实际例子中,负阻尼相对于运动的弹性力和惯性力很小⏹如果阻尼力为零,振动频率就是固有频率⏹不管是正的阻尼力还是负的阻尼力, 阻尼力将或多或少降低系统的固有频率⏹在机械工程的实践中,这一频率上的区别可以忽略不计,所以自激振动的频率就是系统的固有频率●只有当负阻尼力大于弹性力或者惯性力的时候,自激振动的频率才会与固有频率显著不同9●从能量角度考虑⏹对于正阻尼情况阻尼力做负功,总是与速度反向机械能转变成热能(通常耗散在阻尼器的油里面)这些能量来源于振动系统接下来每次振动振幅减小,动能减小,损失的动能被阻尼力吸收⏹负阻尼的情况阻尼力作为驱动力做正功,在一个循环里面,该功转化成动能,使振动增加●如果没有外来能源(如蒸汽锅炉), 自激振动就不能存在⏹能源自身是没有运动的交替频率的10●对于一个线性自激振动系统,由于每个循环都有能量进入系统里来,其振幅会随时间发展为无限大⏹实际观测不到无限大振幅●在大多数的系统里面,自激振动机制与阻尼同时、独立存在11●线性系统中阻尼每周的耗散能为,一个抛物线●如果负阻尼力也是线性的,每周输入能量将是另一个抛物线●是自激系统还是阻尼系统,取决于哪个抛物线高一些12●在实际的例子中,输入和阻尼力其中之一或者同时,都是非线性的,输入和耗散曲线是相交的⏹假定振幅为,那么输入的能量就会多于耗散的能量,振幅会增加⏹假如振幅为,阻尼力会大于自激振动,振动会消减⏹这两种情况下,振幅都会倾向于向发展, 此时能量平衡,系统所做的运动为无阻尼的稳态自由振动1311.2稳定的数学判据●对于单自由度系统,采用简单的物理推理即可显示阻尼常数是否为负,因而可以不通过数学方法,而直接以物理方法推导动态稳定准则。

振动习题答案

振动习题答案

振动习题答案振动习题答案振动是物体在固定轴线附近做往复运动的现象。

它在我们的日常生活中随处可见,比如钟摆的摆动、弹簧的振动等等。

振动习题是学习振动理论的重要一环,通过解答习题可以加深对振动原理的理解和应用。

下面是一些常见的振动习题及其答案,希望对大家的学习有所帮助。

1. 一个质点沿直线做简谐振动,振幅为2cm,周期为4s,求该质点的速度和加速度。

解答:简谐振动的速度和加速度与位置的关系可以通过振动的位移方程得到。

位移方程为:x = A * sin(ωt + φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。

根据周期和角频率的关系,可知ω = 2π / T,其中T为周期。

根据题目中的数据,振幅A = 2cm,周期T = 4s。

代入上述公式可得ω = 2π /4 = π / 2。

因此,位移方程可写为:x = 2 * sin(π/2 * t + φ)。

速度v = dx / dt,加速度a = dv / dt。

对位移方程求一次导数得到速度和加速度的表达式:v = d(2 * sin(π/2 * t + φ)) / dt = 2 * (π/2) * cos(π/2 * t + φ) = π * cos(π/2 * t + φ),a = d(π * cos(π/2 * t + φ)) / dt = - (π/2)^2 * sin(π/2 * t + φ) = - (π^2 / 4) *sin(π/2 * t + φ)。

2. 一个弹簧的振动周期为2s,振幅为5cm,求该弹簧的角频率和振动频率。

解答:角频率ω = 2π / T,振动频率f = 1 / T,其中T为周期。

根据题目中的数据,周期T = 2s。

代入上述公式可得角频率ω = 2π / 2 = π,振动频率f = 1 / 2 = 0.5Hz。

3. 一个质点的振动方程为x = 3sin(2πt + π/4),求该质点的振幅、周期、角频率、初相位、速度和加速度。

振动理论及工程应用_天津大学中国大学mooc课后章节答案期末考试题库2023年

振动理论及工程应用_天津大学中国大学mooc课后章节答案期末考试题库2023年

振动理论及工程应用_天津大学中国大学mooc课后章节答案期末考试题库2023年1.振动问题属于动力学问题中的第二类问题,即已知主动力求()。

答案:运动2.振动是指物体在平衡位置附近所做的()。

答案:往复运动3.弹簧串联、等效刚度(),弹簧并联,等效刚度()。

答案:减小增加4.在建立单自由度弹簧—质量系统的运动微分方程时,当选择物块的静平衡位置为坐标原点,假设x轴正方向垂直向下,则物块的位移、速度和加速度的正方向如何确定()。

答案:都垂直向下5.质点或质点系的运动相互影响的现象叫做()。

答案:耦联6.激振力与受迫振动的位移相位差为()时,振动系统达到共振状态。

答案:90°7.小车重P在斜面自高度h处滑下与缓冲器相撞,斜面倾角为α,缓冲弹簧刚度系数为k。

如缓冲质量不计,斜面摩擦不计,小车碰撞后,系统的自由振动周期为()。

答案:8.在图示振动系统中,已知重为P的AB杆对O轴的回转半径为ρ,物块重为Q,两个弹簧的刚度系数均为k,当系统静止时,杆处于水平。

则此系统微振动的圆频率为:()答案:9.关于主振型的正交性,下列说法错误的是()答案:零固有圆频率对应的主振型不与系统的其他主振型关于质量矩阵和刚度矩阵正交10.关于主振型矩阵和正则振型矩阵的关系是()。

答案:将主振型矩阵的各列除以其对应主质量矩阵元素的平方根,得到的振型就是正则振型11.关于主振型矩阵和正则振型矩阵下列说法错误的是()。

答案:将主振型矩阵的各列除以其对应主刚度的平方根,得到的振型就是正则振型12.瑞利第一商用()方程求解,瑞利第二商用()方程求解。

答案:作用力位移13.瑞利法估算基频的结果是精确值的(),邓克莱法估算基频的结果是精确值的()答案:上限下限14.子空间迭代法是将()与()结合起来的计算方法,它对自由度数较大系统的前若干阶固有频率及主振型非常有效。

答案:里兹法矩阵迭代法15.一维单元应变位移关系矩阵B为:()答案:16.在杆的纵向振动中,要考虑的边界条件是()答案:位移和轴向力17.以下不属于梁横向振动的近似解法的是()答案:传递矩阵法18.下列哪些是主动控制的特点()。

振动理论课后答案

振动理论课后答案

解:
模态函数的一般形式为:
题设边界条件为:

边界条件可化作:

导出C2= 0及频率方程:
,其中
解:

不计质量的梁上有三个集中质量,如图所示。用邓克利法计算横向振动的基频。

解:
当系统中三个集中质量分别单独存在时:
, ,
在图所示系统中,已知m和k。用瑞利法计算系统的基频。

解:
近似选取假设模态为:
系统的质量阵和刚度阵分别为:

由瑞利商公式:
在图所示系统中,已知k和J。用传递矩阵法计算系统的固有频率和模态。
解:
设该简谐振动的方程为 ; 二式平方和为
将数据代入上式:

联立求解得
A=10.69cm; 1/s;T= s
当 时, 取最大,即:
得:
答:振动周期为;振幅为10.69cm;最大速度为22.63m/s。
1-3一个机器内某零件的振动规律为 ,x的单位是cm, 1/s。这个振动是否为简谐振动试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。
求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是 及 ,悬臂梁的质量忽略不计。
图T 2-7答案图T 2-7
解:
和 为串联,等效刚度为: 。(因为总变形为求和)
和 为并联(因为 的变形等于 的变形),则:
和 为串联(因为总变形为求和),故:
故:
由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W=N,偏心距e=15.0cm,支承弹簧总刚度系数k=N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。

振动理论05(1-2)-瞬态振动

振动理论05(1-2)-瞬态振动

振动理论(5-1)第五章瞬态振动●系统受到突然施加的非周期性激励时,通常不会产生稳态的振动,因而此时所产生的响应,称为瞬态振动●此类振动通常以固有频率发生,其振幅随激励的类型而变化5瞬态振动●冲量是力的时间积分,用表示⏹具有很大的量值但是作用时间很短的力,其时间积分是有限的。

此类的力称为脉冲⏹脉冲力的量值为,为作用时间⏹当, 力将趋于无穷5.1 冲量激励2014/11/143●用时间积分所定义的冲量为,是有限的●当等于一个单位时,在在极限情况条件下的力称为单位冲量,或delta函数●处的delta函数用符号表示,并具有以下性质:比任意假定值大42014/11/14单位脉冲的响应函数●由于, 冲量作用于质量上时会导致一个突然的速度改变,大小为⏹位移没有明显变化,需要时间●初始条件为和的无阻尼自由振动的解为因此,弹簧质量系统在静止状态受到冲量激励的响应为是单位脉冲的响应52014/11/14●对于有阻尼的情形,依据其自由振动的解⏹, ,●单位冲量的响应对于瞬时振动具有很重要的意义●有阻尼或者无阻尼情况,从脉冲发生作为初始时刻,脉冲产生的响应在任意时刻(持续时间为)的冲量响应都可以记为62014/11/14●有了单位冲量响应之后,可以建立受任意外力激励的系统的响应●把任意外力看成是一系列冲量,分析在时刻的冲量,其强度为●其在时刻对响应的贡献取决于从脉冲发生时刻到时刻的响应持续时间5.2 任意激励2014/11/147对于线性系统,叠加原理成立。

把系列冲量的贡献加起来,任意激励的响应可以表示为称为卷积分(convolution integral),或叠加积分(superposition integral)82014/11/14●对于基底激励,在动力系统的支承遭受突然的运动(可以用位移、速度或者加速度来描述)时,其运动方程可以用相对位移来表示:●受迫振动系统的所有结果都可以适用于基底激励情形,只需要把原来的换为或基底的加速度的负值●对于初始静止的无阻尼系统,相对位移的解为92014/11/145.3 拉普拉斯变换表达式对于粘性阻尼的弹簧质量系统,初始条件为和. 其运动方程为对其应用拉普拉斯变换从中解出,得到辅助方程对其进行逆变换即可得响应. 第一项代表了受迫振动,第二项代表初始条件引起的瞬态振动102014/11/14●对于更一般的情况,辅助方程可以写为如下形式:其中,和为多项式,而且比的阶数高●如果只考虑解的受迫振动部分,可以定义如下的阻抗变换(impedance transform)其倒数为导纳变换112014/11/14●采用如下的框图来表示输入和输出●导纳变换可以看成是系统变换函数,定义为初值为零时的辅助平面内的输出和输入的比值122014/11/14●物体在多高的地方落下不受损?手机,包裹●此类的考虑对于诸如飞机着陆或者包裹物品的缓冲垫有尤其重要的意义●可以通过称为跌落实验的方法进行研究,用理想化线性弹簧质量系统讨论几个基本问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制?解:物体与桌面保持相同的运动,知桌面的运动为,x=A sin10πt ;由物体的受力分析,N= 0(极限状态)物体不跳离平台的条件为:;既有,,由题意可知Hz,得到,mm。

1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。

解:设该简谐振动的方程为;二式平方和为将数据代入上式:;联立求解得A=10.69cm;1/s;T=s当时,取最大,即:得:答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。

1-3 一个机器内某零件的振动规律为,x的单位是cm,1/s 。

这个振动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。

解:振幅A=0.583最大速度最大加速度1-4某仪器的振动规律为。

此振动是否为简谐振动?试用x- t坐标画出运动图。

解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ωT2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。

两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。

1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。

解:两简谐振动分别为,,则:=3cos5t+3isin5t=5cos(5t+)+3isin(5t+)或;其合成振幅为:=其合成振动频率为5t,初相位为:=arctan则他们的合成振动为:实部:cos(5t+ arctan)虚部:sin(5t+ arctan)1-6将题1-6图的三角波展为傅里叶级数。

解∶三角波一个周期内函数x (t)可表示为,由式得n=1,2,3……于是,得x(t)的傅氏级数1-7将题1-7图的锯齿波展为傅氏级数,并画出频谱图。

解∶锯齿波一个周期内函数P (t)可表示为,由式得n=1,2,3……于是,得x(t)的傅氏级数,1-8将题1-8图的三角波展为复数傅氏级数,并画出频谱图。

;P(t)平均值为0++将代入整理得1-9求题1-9图的矩形脉冲的频谱函数及画频谱图形。

解:可表示为由于得:即:1-10 求题1-10图的半正弦波的频谱函数并画频谱图形。

解:频谱函数:2.1 一弹簧质量系统沿光滑斜面作自由振动,如图T 2-1所示。

已知,︒=30α,m = 1 kg ,k = 49 N/cm ,开始运动时弹簧无伸长,速度为零,求系统的运动规律。

图 T 2-1答案图 T 2-1解:0sin kx mg =α,1.049218.91sin 0=⨯⨯==kmg x αcm70110492=⨯==-m k n ωrad/st t x x n 70cos 1.0cos 0-==ωcm2.1 图E2.2所示系统中,已知m ,c ,1k ,2k ,0F 和ω。

求系统动力学方程和稳态响应。

图E2.1答案图E2.1(a) 答案图E2.1(b)解:等价于分别为1x 和2x 的响应之和。

先考虑1x ,此时右端固结,系统等价为图(a ),受力为图(b ),故:()()x c x k x c c x k k xm 112121+=++++ t A c A k kx x c xm 1111111cos sin ωωω+=++(1)21c c c +=,21k k k +=,mk k n 21+=ω (1)的解可参照释义(2.56),为:()()()()()()()22211111222111121cos 21sin s s t kA c s s t kA k t Y ξθωωξθω+--++--=(2)其中:n s ωω1=,21112s s tg -=-ξθ ()()()212122122122112121k k c c k k k k c s ++++=⎪⎪⎭⎫⎝⎛++=+ωωξk 2x2 (11x k - )11x xc -1()()()()()21212212212122112122121222 121k k c c m k kk k c c k k m s s +++-+=⎥⎦⎤⎢⎣⎡+++⎪⎪⎭⎫ ⎝⎛+-=+-ωωωωξ故(2)为:()()()()()()()()211212212212121212112122122121111111111sin cos sin θθωωωωωωθωωθω+-++-++=++-+-+-=t c c m k kc k A c c m k k t A c t A k t x()()m k k c c tg k k m k k c tg s s tg 2121121121212111211112ωωωωξθ-++=+-+=-=---11112k c tg ωθ-=考虑到()t x 2的影响,则叠加后的()t x 为:()()()()⎪⎪⎭⎫ ⎝⎛+-++-++-++=--=∑i i i i i i i i i i i i i k c tg m k k c c tg t c c m k k c k A t x ωωωωωωω12212112122212221222sin2.2 如图T 2-2所示,重物1W 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2W 从高度为h 处自由下落到1W 上而无弹跳。

求2W 下降的最大距离和两物体碰撞后的运动规律。

图 T 2-2答案图 T 2-2解:222221v gW h W =,gh v 22=动量守恒:122122v gW W v g W +=,gh W W W v 221212+=平衡位置:11kx W =,kW x 11=1221kx W W =+,kW W x 2112+=故:kW x x x 21120=-= ()2121W W kgg W W k n +=+=ω故:tv t x txt x x n nn n nn ωωωωωωsin cos sin cos 12000+-=+-=2.4 在图E2.4所示系统中,已知m ,1k ,2k ,0F 和ω,初始时物块静止且两弹簧均为原长。

求物块运动规律。

W 2W 1图E2.4答案图E2.4解:取坐标轴1x 和2x ,对连接点A 列平衡方程:()0sin 012211=+-+-t F x x k x k ω即:()t F x k x k k ωsin 022121+=+(1)对m 列运动微分方程:()1222x x k xm --=即:12222x k x k xm =+ (2)由(1),(2)消去1x 得:t k k kF x k k k k xm ωsin 2120221212+=++(3)故:()21212k k m k k n +=ω由(3)得:()()()⎪⎪⎭⎫ ⎝⎛--+=t t k k m k F t x n n n ωωωωωωsin sin 22212022.5在图E2.3所示系统中,已知m ,c ,k ,0F 和ω,且t =0时,0x x =,0v x= ,求系统响应。

验证系统响应为对初值的响应和零初值下对激励力响应的叠加。

t ωx k)1x x k - 2xm (2k2图E2.3解:()()()θωωωξω-++=-t A t D t C e t x d d t cos sin cos 0()()2220211s s kF A ξ+-⋅=,2112sstg-=-ξθ ()θθcos cos 000A x C A C x x -=⇒+==()()()()θωωωωωωωωξωξωξω--+-++-=--t A t D t C et D t C e t x d d d d td d t sin cos sin sin cos 000()ddd A Cv D A D C v xωθωωξωθωωξωsin sin 00000-+=⇒++-==求出C ,D 后,代入上面第一个方程即可得。

2.7 求图T 2-7中系统的固有频率,悬臂梁端点的刚度分别是1k 及3k ,悬臂梁的质量忽略不计。

图 T 2-7答案图 T 2-7解:1k 和2k 为串联,等效刚度为:212112k k k k k +=。

(因为总变形为求和)12k 和3k 为并联(因为12k 的变形等于3k 的变形),则:2132312132121312123k k k k k k k k k k k k k k k k +++=++=+=123k 和4k 为串联(因为总变形为求和),故:424132312143243142141234123k k k k k k k k k k k k k k k k k k k k k k k k e ++++++=+=故:mk en =ω2.7 由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。

当齿轮转动角速度为ω时,偏心质量惯性力在垂直方向大小为t me ωωsin 2。

已知偏心重W = 125.5 N ,偏心距e = 15.0 cm ,支承弹簧总刚度系数k = 967.7N /cm ,测得垂直方向共振振幅cm X m 07.1=,远离共振时垂直振幅趋近常值cm X 32.00=。

求支承阻尼器的阻尼比及在m in 300r =ω运行时机器的垂直振幅。

图E2.7解:()()()()θωξ-+-⋅=t s s s Mme t x sin 212222,2112sstg -=-ξθs =1时共振,振幅为:cm M me X 07.1211=⋅=ξ(1)远离共振点时,振幅为:cm MmeX 32.02==(2)由(2)2X me M =⇒由(1)15.02212112121==⋅=⋅=⇒X X X X me me X M me ξ m in 300r =ω,Mk=0ω,10ωω=s故:()()m s s s MmeX 32222108.321-⨯=+-⋅=ξ2.9 如图T 2-9所示,一质量m 连接在一刚性杆上,杆的质量忽略不计,求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置; (2)杆可以在铅锤平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。

图 T 2-9答案图 T 2-9解:(1)保持水平位置:mk k n 21+=ω mg l lF 2112+=x 1x 2(2)微幅转动:()()()()()()()()()mg k k l l k l k l mgk k l l k l l k l l l k l mg k k l l k l k l l l l k l l mg l mg k l l l k l l l l l l k l l mg l l l l x x k F x x x 2122122212121221221121212221212211211121212122211211121221112111 ++=+-++=+-⋅+++=⎥⎦⎤⎢⎣⎡+-++++=+-+='+=故:()22212121221k l k l k k l l k e++=mk en =ω2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。

相关文档
最新文档