初一数学(上)全章小练习题集 人教版

合集下载

【精选】人教版七年级数学上第一章有理数单元练习试题(含答案)

【精选】人教版七年级数学上第一章有理数单元练习试题(含答案)

人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是()A B C D7.图1所示的数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点B表示的数是()A.-4 B.-2 C.0 D.4图18.下列说法中不正确的是()A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba =-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数( )A. 41B. 21C. 20D. 24 二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算:(1)|-2|-(-3)×(-15)÷(-9);(2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的 计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题.(1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图322.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A,B,C,D,E,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P,Q在数轴上表示的数分别是-8,4,点P以每秒2个单位长度的速度向右运动,点Q以每秒1个单位长度的速度向左运动,当运动秒时,P,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.0 13. 3.8×106 14.3或-5 15. 102.4 16. 259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|.(2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002=45×0.002-55×0.002=(45-55)×0.002=(-10)×0.002=-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版初中数学七年级上册第1章 《有理数》单元测试题(一、单选题1.移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为( )A. 0.387×109B. 3.87×108C. 38.7×107D. 387×1062.某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()A. 9.3×105万元B. 9.3×106万元C. 0.93×106万元D. 9.3×104万元3.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是( )A. 25.30千克B. 24.70千克C. 25.51千克D. 24.82千克4.下列结论错误的是( )A. 若a,b 异号,则a b <0,<0B. 若a,b 同号,则a b >0,>0C. D.5.如果x <0,y >0,x +y <0,那么下列关系式中,正确的是( )A. x >y >-y >-xB. -x >y >-y >xC. y >-x >-y >xD. -x >y >x >-y6.28 cm 接近于 ( )A. 珠穆朗玛峰的高度B. 三层楼的高度C. 姚明的身高D. 一张纸的厚度7.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为( )A. 3.5×106B. 3.5×107C. 35×105D. 0.35×1088.下列各式:-(-5)、-|-5|、-52、(-5)2、 ,计算结果为负数的有( )A. 4个B. 3个C. 2个D. 1个9.把(﹣5)﹣(+7)+(﹣3)+(﹣11)写成省略加号的代数和的形式,正确的是( )A. ﹣5+7﹣3﹣11B. (﹣5)(+7)(﹣3)(﹣11)C. ﹣5﹣7﹣3﹣11D. ﹣5﹣7+﹣3+11二、填空题10.一个数的平方与这个数的立方相等,那么这个数是________.11.按要求取近似数:0.02049≈________(精确到0.01).12.绝对值小于的整数有________.13.填空:(1)-40÷(-5)=__________;【答案】8(1)(-36)÷6=________;(2)8÷(-0.125)=________;(3)________÷32=0.14.①若,则a与0的大小关系是a ________0.②若,则a与0的大小关系是a ________0.15.比较大小:- ________- .三、计算题16.计算:.17.18.(1)-17+3;(2)-32+ ÷(-3).四、解答题19.已知有理数a在数轴上的位置如图所示:试比较a,-a,|a|,a2和的大小,并将它们按从小到大的顺序,用“<”或“=”连接起来.20.卫星绕地球表面做圆周运动的速度约为7.9×103米/秒,则卫星运行8×103秒所走的路程约是多少?21.某地一天中午12时的气温是6°C,傍晚5时的气温比中午12时下降了4°C,凌晨4时的温度比傍晚5时还低4°C,问傍晚5时的气温是多少?凌晨4时的气温是多少?答案一、单选题1.【答案】B【解析】【解答】解:将3.87亿用科学记数法表示为:3.87×108故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】将930000用科学记数法表示为9.3×105.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】【解答】25+0.20=25.2;25−0.20=24.8∵25.2<25.3,∴A不符合题意;,24.7<24.8,∴B不符合题意;∵25.2<25.51,∴C不符合题意;∵25.2>24.82>24.8,∴D符合题意。

人教版七年级数学上第一章有理数单元练习试题(含答案)

人教版七年级数学上第一章有理数单元练习试题(含答案)

人教版七年级数学上第一章有理数单元练习试题(含答案)一.选择题(共11小题)1.关于字母a所表示的数,下列说法正确的是()A.a一定是正数B.a的相反数是﹣aC.a的倒数是D.a的绝对值等于a2.下列各组数中,互为倒数的是()A.2和B.3和C.|﹣3|和﹣D.﹣4和43.当|a|=﹣a时,则a是()A.a≤0 B.a<0 C.a≥0 D.a>04.室内温度是15℃,室外温度是﹣3℃,要计算“室外温度比室内温度低多少度?”可以列的计算式为()A.15+(﹣3)B.15﹣(﹣3)C.﹣3+15 D.﹣3﹣155.下列命题中,正确的是()A.若m•n>0,则m>0,n>0 B.若m+n<0,则m<0,n<0C.若m•n=0,则m=0且n=0 D.若m•n=0,则m=0或n=06.(﹣1)2018的相反数是()A.﹣1 B.1 C.﹣2018 D.20187.小亮的体重为47.95kg,用四舍五入法将47.95精确到0.1的近似值为()A.48 B.48.0 C.47 D.47.98.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1069.下列说法正确的有()①一个数不是正数就是负数;②海拔﹣155m表示比海平面低155m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个10.若|a|=3,|b|=2,且a+b>0,那么a﹣b的值是()A.5或1 B.1或﹣1 C.5或﹣5 D.﹣5或﹣1 11.下列语句,正确的个数是()①若a>0,b>0,则ab>0 ②若a<0,b<0,则ab<0③若a是有理数,则a2>0 ④若a>b,则|a|>|b|A.1个B.2个C.3个D.4个二.填空题(共9小题)12.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则.13.禽流感病毒的形状一般为球形,直径大约为0.000000102m,将0.000000102用科学记数法表示为.14.没有最小的负数,但有最小的正数.15.﹣的倒数是.16.如果|a|=7,|b|=4,则a+b=.17.若|a|=3,|b|=5且a>0,则a﹣b=.18.如图,已知纸面上有一数轴,折叠纸面,使表示﹣2的点与表示5的点重合,则表示的点与表示的点重合.19.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数的和是.20.已知|x|=3,|y|=7,x<y,则x+y=.三.解答题(共4小题)21.计算:﹣5+(+2)+(﹣1)﹣(﹣)22.计算:(﹣)×(﹣)÷(﹣2)23.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.24.若“*”是一种新的运算符号,并且规定a*b=.例如:3*5=,求[2*(﹣2)]*(﹣3)的值.参考答案一.选择题(共11小题)1.解:A、a也可能是0或负数,故本选项错误;B、a的相反数是﹣a,故本选项正确;C、a若是0时,没有倒数,故本选项错误;D、a是非负数时,a的绝对值是a,故本选项错误;故选:B.2.解:A、2和不是倒数关系,故此选项错误;B、3和是倒数关系,故此选项正确;C、|﹣3|=3,3和﹣不是倒数关系,故此选项错误;D、﹣4和4不是倒数关系,故此选项错误;故选:B.3.解:当|a|=﹣a时,则a≤0.故选:A.4.解:由题意,可知:15﹣(﹣3),故选:B.5.解:A、若m•n>0,则m、n同号,可以都是正数也可以都是负数,故本选项错误;B、若m+n<0,则m、n中绝对值较大的一个一定是负数,不一定都是负数,故本选项错误;C、若m•n=0,则m=0或n=0,故本选项错误;D、若m•n=0,则m=0,或n=0,故本选项正确.故选:D.6.解:(﹣1)2018的相反数是﹣1,故选:A.7.解:47.95精确到0.1的近似值为48.0.故选:B.8.解:316 000 000用科学记数法可表示为3.16×108,故选:C.9.解:①一个数不是正数就是负数或0,错误;②海拔﹣155m表示比海平面低155m,正确;③负分数是有理数,错误;④零不是最小的数,错误;⑤零是整数,不是正数,错误.故选:A.10.解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵a+b>0,∴a=3,b=±2.当a=3,b=﹣2时,a﹣b=5;当a=3,b=2时,a﹣b=1.故a﹣b的值为5或1.故选:A.11.解:①若a>0,b>0,则ab>0,正确;②若a<0,b<0,则ab>0,不正确;③若a是有理数,则a2≥0,不正确;④若a>b,则|a|不一定大于|b|,不正确,∴正确的只有一个;故选:A.二.填空题(共9小题)12.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,又m的绝对值为2,所以m=±2,m2=4,则原式=0+2×4﹣3×1=5.故答案为5.13.解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.14.解:根据有理数的定义,没有最小的负数,因为正数和负数都有无数个,它们都没有最小的值;所以没有最小的负数,但有最小的正数说法错误,故答案为:×.15.解:﹣的倒数是﹣2.故答案为:﹣2.16.解:∵|a|=7,|b|=4,∴a=±7,b=±4,当a=7,b=4时,∴a+b=11,当a=7,b=﹣4时,∴a+b=3,当a=﹣7,b=4时,∴a+b=﹣3,当a=﹣7,b=﹣4时,∴a+b=﹣11,故答案为:±11或±317.解:∵|a|=3,|b|=5,a>0,∴a=3,b=±5,当a=3,b=5时,a﹣b=3﹣5=﹣2;当a=3,b=﹣5时,a﹣b=3﹣(﹣5)=8;综上,a﹣b的值为﹣2或8,故答案为:﹣2或8.18.解:5﹣(﹣2)=7,7÷2=,5﹣=,﹣=,即点在中点右边个单位,故与的重合点在中点左边个单位,表示数字,,故答案为:.19.解:由图可知,左边盖住的整数数值是﹣2,﹣3,﹣4,﹣5;右边盖住的整数数值是1,2,3,4;所以他们的和是﹣4.故答案为:﹣4.20.解:∵|x|=3,|y|=7,∴x=±3,y=±7,∵x<y,∴x=3,y=7或x=﹣3,y=7,∴x+y=10或4,故答案为10或4.三.解答题(共4小题)21.解:﹣5+(+2)+(﹣1)﹣(﹣)=(﹣5﹣1)+(2+)=﹣7+3=﹣4.22.解:原式=﹣××=﹣.23.解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.24.解:原式=*(﹣3)=0*(﹣3)==﹣.。

部编RJ人教版 初一七年级数学 上册第一学期秋季(同步检测卷测试题)8分钟课时小练习

部编RJ人教版 初一七年级数学 上册第一学期秋季(同步检测卷测试题)8分钟课时小练习

第一章 有理数1.1 正数和负数1.下列各数是负数的是( ) A.23 B.-4 C.0 D.10%2.放风筝是民间传统游戏之一.在放风筝的过程中,如果风筝上升10米记作+10米,那么风筝下降6米应记作( )A.-4米B.+16米C.-6米D.+6米 3.下列说法正确的是( ) A.气温为0℃就是没有温度B.收入+300元表示收入增加了300元C.向东骑行-500米表示向北骑行500米D.增长率为-20%等同于增长率为20%4.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中中国队胜3场记为+3场,那么-1场表示 .5.课间休息时,李明和小伙伴们做游戏,部分场景如下:刘阳提问:“从F 出发前进3下.”李强回答:“F 遇到+3就变成了L.”余英提问:“从L 出发前进2下.”……依此规律,当李明回答“Q 遇到-4就变成了M ”时,赵燕刚刚提出的问题应该是 .6.把下列各数按要求分类:-18,227,2.7183,0,2020,-0.333…,-259,480.正数有 ; 负数有 ; 既不是正数,也不是负数的有 .1.2.1 有理数1.在0,14,-3,+10.2,15中,整数的个数是( )A.1B.2C.3D.42.下列各数中是负分数的是( ) A.-12 B.17C.-0.444…D.1.53.对于-0.125的说法正确的是( ) A.是负数,但不是分数 B.不是分数,是有理数 C.是分数,不是有理数 D.是分数,也是负数4.在1,-0.3,+13,0,-3.3这五个数中,整数有 ,正分数有 ,非正有理数有 .5.把下列有理数填入它属于的集合的大括号内:+4,-7,-54,0,3.85,-49%,-80,+3.1415…,13,-4.95.正整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …};非负有理数集合:{ …}; 非正有理数集合:{ …}.1.下列所画数轴中正确的是()2.如图,点M 表示的数可能是()A.1.5B.-1.5C.2.5D.-2.53.如图,点A 表示的有理数是3,将点A 向左移动2个单位长度,这时A 点表示的有理数是()A.-3B.1C.-1D.54.在数轴上,与表示数-1的点的距离为1的点表示的数是 .5.如图,数轴的一部分被墨水污染,被污染的部分内含有的整数是.6.在数轴上表示下列各数:1.8,-1,52,3.1,-2.6,0,1.1.-3的相反数是( ) A.-3 B.3 C.-13 D.132.下列各组数中互为相反数的是( ) A.4和-(-4) B.-3和13C.-2和-12D.0和03.若一个数的相反数是1,则这个数是 .4.化简:(1)+(-1)= ; (2)-(-3)= ; (3)+(+2)= .5.求出下列各数的相反数:(1)-3.5; (2)35; (3)0;(4)28; (5)-2018.6.画出数轴表示出下列各数和它们的相反数:1,-5,-3.5.1.2.4 绝对值 第1课时 绝对值1.-14的绝对值是( )A.4B.-4C.14D.-142.化简-|-5|的结果是( ) A.5 B.-5 C.0 D.不确定3.某生产厂家检测4个篮球的质量,结果如图所示.超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是()4.若一个负有理数的绝对值是310,则这个数是 .5.写出下列各数的绝对值:7,-58,5.4,-3.5,0.6.已知|x +1|+|y -2|=0,求x ,y 的值.第2课时 有理数大小的比较1.在3,-9,412,-2四个有理数中,最大的是( )A.3B.-9C.412D.-2 2.有理数a 在数轴上的位置如图所示,则()A.a >2B.a >-2C.a <0D.-1>a 3.比较大小: (1)0 -0.5; (2)-5 -2; (3)-12 -23.4.小明通过科普读物了解到:在同一天世界各地的气温差别很大,若某时刻海南的气温是15℃,北京的气温为0℃,哈尔滨的气温为-5℃,莫斯科的气温是-17℃,则这四个气温中最低的是 ℃.5.在数轴上表示下列各数,并比较它们的大小:-35,0,1.5,-6,2,-514.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.计算(-5)+3的结果是( ) A.-8 B.-2 C.2 D.82.计算(-2)+(-3)的结果是( ) A.-1 B.-5 C.-6 D.53.静静家冰箱冷冻室的温度为-4℃,调高5℃后的温度为( ) A.-1℃ B.1℃ C.-9℃ D.9℃4.下列计算正确的是( )A.⎝ ⎛⎭⎪⎫-112+0.5=-1 B.(-2)+(-2)=4 C.(-1.5)+⎝ ⎛⎭⎪⎫-212=-3 D.(-71)+0=71 5.如图,每袋大米以50kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际质量是kg.6.计算:(1)(-5)+(-21); (2)17+(-23);(3)(-2019)+0; (4)(-3.2)+315;(5)(-1.25)+5.25; (6)⎝ ⎛⎭⎪⎫-718+⎝ ⎛⎭⎪⎫-16.第2课时 有理数加法的运算律及运用1.计算7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]是应用了( )A.加法交换律B.加法结合律C.分配律D.加法交换律与加法结合律 2.填空:(-12)+(+2)+(-5)+(+13)+(+4)=(-12)+(-5)+(+2)+(+13)+(+4)(加法 律) =[(-12)+(-5)]+[(+2)+(+13)+(+4)](加法 律) =( )+( )= . 3.简便计算:(1)(—6)+8+(—4)+12; (2)147+⎝ ⎛⎭⎪⎫-213+37+13;(3)0.36+(-7.4)+0.3+(-0.6)+0.64.4.某村有10块小麦田,今年收成与去年相比(增产为正,减产为负)的情况如下:55kg ,77kg ,-40kg ,-25kg ,10kg ,-16kg ,27kg ,-5kg ,25kg ,10kg.今年小麦的总产量与去年相比是增产还是减产?增(减)产多少?1.3.2 有理数的减法 第1课时 有理数的减法法则1.计算4-(-5)的结果是( ) A.9 B.1 C.-1 D.-92.计算(-9)-(-3)的结果是( ) A.-12 B.-6 C.+6 D.123.下列计算中,错误的是( ) A.-7-(-2)=-5 B.+5-(-4)=1 C.-3-(-3)=0 D.+3-(-2)=54.计算:(1)9-(-6); (2)-5-2;(3)0-9; (4)⎝ ⎛⎭⎪⎫-23-112-⎝ ⎛⎭⎪⎫-14.5.某地连续五天内每天的最高气温与最低气温记录如下表所示,哪一天的温差(最高气温与最低气温的差)最大?哪一天的温差最小?第2课时 有理数的加减混合运算1.把7-(-3)+(-5)-(+2)写成省略加号和的形式为( ) A.7+3-5-2 B.7-3-5-2 C.7+3+5-2 D.7+3-5+22.算式“-3+5-7+2-9”的读法正确的是( ) A.3、5、7、2、9的和 B.减3正5负7加2减9C.负3,正5,减7,正2,减9的和D.负3,正5,负7,正2,负9的和 3.计算8+(-3)-1所得的结果是( ) A.4 B.-4 C.2 D.-2 4.计算:(1)-3.5-(-1.7)+2.8-5.3; (2)⎝ ⎛⎭⎪⎫-312-⎝ ⎛⎭⎪⎫-523+713;(3)-0.5+⎝ ⎛⎭⎪⎫-14-(-2.75)-12; (4)314+⎝ ⎛⎭⎪⎫-718+534+718.5.某地的温度从清晨到中午时上升了8℃,到傍晚时温度又下降了5℃.若傍晚温度为-2℃,求该地清晨的温度.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.计算-3×2的结果为( ) A.-1 B.-5 C.-6 D.12.下列运算中错误的是( )A.(+3)×(+4)=12B.-13×(-6)=-2C.(-5)×0=0D.(-2)×(-4)=83.(1)6的倒数是 ;(2)-12的倒数是 .4.填表(想法则,写结果):5.计算:(1)(-15)×13; (2)-218×0;(3)334×⎝ ⎛⎭⎪⎫-1625; (4)(-2.5)×⎝ ⎛⎭⎪⎫-213.第2课时 多个有理数相乘1.下列计算结果是负数的是( ) A.(-3)×4×(-5) B.(-3)×4×0C.(-3)×4×(-5)×(-1)D.3×(-4)×(-5) 2.计算-3×2×27的结果是( )A.127 B.-127C.27D.-273.某件商品原价100元,先涨价20%,然后降价20%出售,则现在的价格是 元.4.计算:(1)(-2)×7×(-4)×(-2.5); (2)23×⎝ ⎛⎭⎪⎫-97×(-24)×⎝ ⎛⎭⎪⎫+134;(3)(-4)×499.7×57×0×(-1); (4)(-3)×⎝ ⎛⎭⎪⎫-79×(-0.8).第3课时 有理数乘法的运算律1.简便计算2.25×(-7)×4×⎝ ⎛⎭⎪⎫-37时,应运用的运算律是( ) A.加法交换律 B.加法结合律 C.乘法交换律和结合律 D.乘法分配律 2.计算(-4)×37×0.25的结果是( )A.-37B.37C.73D.-733.下列计算正确的是( ) A.-5×(-4)×(-2)×(-2)=80 B.-9×(-5)×(-4)×0=-180C.(-12)×⎝ ⎛⎭⎪⎫13-14-1=(-4)+3+1=0D.-2×(-5)+2×(-1)=(-2)×(-5-1)=124.计算(-2)×⎝ ⎛⎭⎪⎫3-12,用分配律计算正确的是( ) A.(-2)×3+(-2)×⎝ ⎛⎭⎪⎫-12 B.(-2)×3-(-2)×⎝ ⎛⎭⎪⎫-12 C.2×3-(-2)×⎝ ⎛⎭⎪⎫-12 D.(-2)×3+2×⎝ ⎛⎭⎪⎫-12 5.填空:(1)21×⎝ ⎛⎭⎪⎫-45×⎝ ⎛⎭⎪⎫-621×(-10)=21×( )×( )×(-10)(利用乘法交换律)=[21×( )]×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-45×( )(利用乘法结合律) =( )×( )= ;(2)⎝ ⎛⎭⎪⎫14+18+12×(-16)=14× +18× +12× (分配律) = = .1.4.2 有理数的除法 第1课时 有理数的除法法则1计算(-18)÷6的结果是( ) A.-3 B.3 C.-13 D.132.计算(-8)÷⎝ ⎛⎭⎪⎫-18的结果是( ) A.-64 B.64 C.1 D.-1 3.下列运算错误的是( )A.13÷(-3)=3×(-3)B.-5÷⎝ ⎛⎭⎪⎫-12=-5×(-2)C.8÷(-2)=-8×12 D.0÷3=04.下列说法不正确的是( ) A.0可以作被除数 B.0可以作除数C.0的相反数是它本身D.两数的商为1,则这两数相等5.若▽×⎝ ⎛⎭⎪⎫-45=2,则“▽”表示的有理数应是( ) A.-52 B.-58 C.52 D.586.计算:(1)(-6)÷14; (2)0÷(-3.14);(3)⎝ ⎛⎭⎪⎫-123÷⎝ ⎛⎭⎪⎫-212; (4)⎝ ⎛⎭⎪⎫-34÷⎝ ⎛⎭⎪⎫-37÷⎝ ⎛⎭⎪⎫-116.第2课时 分数的化简及有理数的乘除混合运算1.化简:(1)-162= ; (2)12-48= ;(3)-56-6= .2.计算(-2)×3÷(-2)的结果是( ) A.12 B.3 C.-3 D.-123.计算43÷⎝ ⎛⎭⎪⎫-13×(-3)的结果是( )A.12B.43C.-43 D.-124.计算:(1)36÷(-3)×⎝ ⎛⎭⎪⎫-16;(2)27÷(-9)×527;(3)30÷334×38÷(-12).第3课时 有理数的加、减、乘、除混合运算1.计算12×(-3)+3的结果是( ) A.0 B.12 C.-33 D.392.计算3×⎝ ⎛⎭⎪⎫13-12的结果是 . 3.计算:(1)2-7×(-3)+10÷(-2); (2)916÷⎝ ⎛⎭⎪⎫12-2×524;(3)5÷⎝ ⎛⎭⎪⎫-87-5×98; (4)1011×1213×1112-1÷⎝ ⎛⎭⎪⎫-132.4.已知室温是32℃,小明开空调后,温度下降了6℃,关掉空调1小时后,室温回升了2℃,求关掉空调2小时后的室温.1.5 有理数的乘方1.5.1 乘 方 第1课时 乘 方1.-24表示( )A.4个-2相乘B.4个2相乘的相反数C.2个-4相乘D.2个4相乘的相反数 2.计算(-3)2的结果是( ) A.-6 B.6 C.-9 D.93.下列运算正确的是( ) A.-(-2)2=4 B.-⎝ ⎛⎭⎪⎫-232=49C.(-3)4=34D.(-0.1)2=0.14.下列各组中两个式子的值相等的是( ) A.32与-32B.(-2)2与-22C.|-2|与-|+2|D.(-2)3与-235.把34×34×34×34写成乘方的形式为 ,读作 .6.计算:(1)(-1)5= ; (2)-34= ;(3)07= ; (4)⎝ ⎛⎭⎪⎫523= .7.计算:(1)(-2)3; (2)-452;(3)-⎝ ⎛⎭⎪⎫-372; (4)⎝ ⎛⎭⎪⎫-233.第2课时 有理数的混合运算1.计算2÷3×(5-32)时,下列步骤最开始出现错误的是( ) 解:原式=2÷3×(5-9)…① =2÷3×(-4)…② =2÷(-12)…③ =-6.…④ A.① B.② C.③ D.④2.计算(-8)×3÷(-2)2的结果是( ) A.-6 B.6 C.-12 D.123.按照下图所示的操作步骤,若输入x 的值为-3,则输出的值为 . 输入x →平方→乘以2→减去5→输出4.计算:(1)9×(-1)12+(-8); (2)-9÷3+⎝ ⎛⎭⎪⎫12-23×12+32;(3)8-2×32-(-2×3)2; (4)-14÷⎝ ⎛⎭⎪⎫-122+2×3-0÷2243.1.5.2 科学记数法1.下列各数是用科学记数法表示的是( )A.65×106B.0.05×104C.-1.560×107D.a×10n2.据报道,2018年某市有关部门将在市区完成130万平方米老住宅小区综合整治工作,130万(即1300000)用科学记数法可表示为( )A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦4.(1)南京青奥会期间,约有1020000人次参加了青奥文化教育运动,将1020000用科学记数法表示为;(2)若12300000=1.23×10n,则n的值为;(3)若一个数用科学记数法表示为2.99×108,则这个数是.5.用科学记数法表示下列各数:(1)地球的半径约为6400000m;(2)赤道的总长度约为40000000m.1.5.3 近似数1.下列四个数据中,是精确数的是( )A.小明的身高1.55mB.小明的体重38kgC.小明家离校1.5kmD.小明班里有23名女生2.用四舍五入法对0.7982取近似值,精确到百分位,正确的是( )A.0.8B.0.79C.0.80D.0.7903.近似数5.0精确到( )A.个位B.十分位C.百分位D.以上都不对4.数据2.7×103万精确到了位,它的大小是.5.求下列各数的近似数:(1)23.45(精确到十分位); (2)0.2579(精确到百分位);(3)0.50505(精确到十分位); (4)5.36×105(精确到万位).第二章 整式的加减2.1 整 式第1课时 用字母表示数1.下列代数式书写格式正确的是( ) A.x5 B.4m ÷n C.x(x +1)34 D.-12ab2.某种品牌的计算机,进价为m 元,加价n 元作为定价出售.如果“五一”期间按定价的八折销售,那么售价为( )A.(m +0.8n)元B.0.8n 元C.(m +n +0.8)元D.0.8(m +n)元3.若买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( ) A.(4m +7n)元 B.28mn 元 C.(7m +4n)元 D.11mn 元4.某超市的苹果价格如图所示,则代数式100-9.8x 可表示的实际意义是.5.每台电脑售价x 元,降价10%后每台售价为 元.6.用字母表示图中阴影部分的面积.1.下列各式中不是单项式的是( ) A.a 3 B.-15 C.0 D.3a2.单项式-2x 2y3的系数和次数分别是( )A.-2,3B.-2,2C.-23,3D.-23,23.在代数式a +b ,37x 2,5a ,-m,0,a +b 3a -b ,3x -y 2中,单项式的个数是 个.4.小亮家有一箱矿泉水,若每一瓶装0.5升矿泉水,则x 瓶装 升矿泉水.5.在某次篮球赛上,李刚平均每分钟投篮n 次,则他10分钟投篮的次数是 次.6.填表:7.如果关于x ,y 的单项式(m +1)x 3y n的系数是3,次数是6,求m ,n 的值.1.在下列代数式中,整式的个数是()A.5个B.4个C.3个D.2个2.多项式3x 2-2x -1的各项分别是( ) A.3x 2,2x,1 B.3x 2,-2x,1 C.-3x 2,2x ,-1 D.3x 2,-2x ,-1 3.多项式1+2xy -3xy 2的次数是( ) A.1 B.2 C.3 D.44.多项式3x 3y +2x 2y -4xy 2+2y -1是 次 项式,它的最高次项的系数是 .5.写出一个关于x ,y 的三次二项式,你写的是 (写出一个即可).6.下列代数式中哪些是单项式?哪些是多项式?7.小明的体重是a 千克,爸爸的体重比他的3倍少10千克,爸爸的体重是多少千克(用含a 的整式表示)?这个整式是多项式还是单项式?指出其次数.2.2 整式的加减第1课时合并同类项1.在下列单项式中与2xy是同类项的是( )A.2x2y2B.3yC.xyD.4x2.下列选项中的两个单项式能合并的是( )A.4和4xB.3x2y3和-y2x3C.2ab2和100ab2cD.m和3.整式4-m+3m2n3-5m3是( )A.按m的升幂排列B.按n的升幂排列C.按m的降幂排列D.按n的降幂排列4.计算2m2n-3nm2的结果为( )A.-1B.-5m2nC.-m2nD.2m2n-3nm25.合并同类项:(1)3a-5a+6a; (2)2x2-7-x-3x-4x2;(3)-3mn2+8m2n-7mn2+m2n.6.当x=-2,y=3时,求代数式4x2+3xy-x2-2xy-9的值.第2课时去括号1.化简-2(m-n)的结果为( )A.-2m-nB.-2m+nC.2m-2nD.-2m+2n2.下列去括号错误的是( )A.a-(b+c)=a-b-cB.a+(b-c)=a+b-cC.2(a-b)=2a-bD.-(a-2b)=-a+2b3.-(2x-y)+(-y+3)化简后的结果为( )A.-2x-y-y+3B.-2x+3C.2x+3D.-2x-2y+34.数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】,其中空格的地方被钢笔水弄污了,那么空格中的项是( )A.-7xyB.7xyC.-xyD.xy5.去掉下列各式中的括号:(1)(a+b)-(c+d)=; (2)(a-b)-(c-d)=;(3)(a+b)-(-c+d)=; (4)-[a-(b-c)]=.6.化简下列各式:(1)3a-(5a-6); (2)(3x4+2x-3)+(-5x4+7x+2);(3)(2x-7y)-3(3x-10y);第3课时 整式的加减1.化简x +y -(x -y)的结果是( ) A.2x +2y B.2y C.2x D.02.已知A =5a -3b ,B =-6a +4b ,则A -B 为( ) A.-a +b B.11a +b C.11a -7b D.-a -7b3.已知多项式x 3-4x 2+1与关于x 的多项式2x 3+mx 2+2相加后不含x 的二次项,则m 的值是()4.若某个长方形的周长为4a ,一边长为(a -b),则另一边长为( ) A.(3a +b) B.(2a +2b) C.(a +b) D.(a +3b)5.化简:(1)(-x 2+5x +4)+(5x -4+2x 2);(2)-2(3y 2-5x 2)+(-4y 2+7xy).第三章 一元一次方程3.1 从算式到方程3.1.1 一元一次方程1.下列各方程是一元一次方程的是()2.方程x +3=-1的解是( ) A.x =2 B.x =-4 C.x =4 D.x =-23.若关于x 的方程2x +a -4=0的解是x =-2,则a 的值是( ) A.-8 B.0 C.8 D.44.把一些图书分给某班学生阅读,若每人分3本,则剩余20本;若每人分4本,则还缺25本.设这个班有x 名学生,则由题意可列方程为 .5.商店出售一种文具,单价3.5元,若用100元买了x 件,找零30元,则依题意可列方程为 .6.七(2)班有50名学生,男生人数是女生人数的 倍.若设女生人数为x 名,请写出等量关系,并列出方程.3.1.2 等式的性质1.若a =b ,则下列变形一定正确的是()2.下列变形符合等式的基本性质的是( ) A.若2x -3=7,则2x =7-3 B.若3x -2=x +1,则3x -x =1-2 C.若-2x =5,则x =5+2 D.3.解方程- x =12时,应在方程两边( ) A.同时乘- B.同时乘4 C.同时除以 D.同时除以-4.由2x -16=5得2x =5+16,此变形是根据等式的性质在原方程的两边同时加上了 .5.利用等式的性质解下列方程: (1)x +1=6; (2)3-x =7;(3)-3x =21;3.2 解一元一次方程(一)——合并同类项与移项第1课时利用合并同类项解一元一次方程1.方程-x=3-2的解是( )A.x=1B.x=-1C.x=-5D.x=52.方程4x-3x=6的解是( )A.x=6B.x=3C.x=2D.x=13.方程5x-2x=-9的解是.4.若两个数的比为2∶3,和为100,则这两个数分别是.5.解下列方程:第2课时利用移项解一元一次方程1.下列变形属于移项且正确的是( )A.由3x=5+2得到3x+2=5B.由-x=2x-1得到-1=2x+xC.由5x=15得到x=D.由1-7x=-6x得到1=7x-6x2.解方程-3x+4=x-8时,移项正确的是( )A.-3x-x=-8-4B.-3x-x=-8+4C.-3x+x=-8-4D.-3x+x=-8+43.一元一次方程3x-1=5的解为( )A.x=1B.x=2C.x=3D.x=44.解下列方程:5.小英买了一本《唐诗宋词选读》,她发现唐诗的数目比宋词的数目多24首,并且唐诗的数目是宋词的数目的3倍,求这本《唐诗宋词选读》中唐诗的数目?3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程1.方程3-(x+2)=1去括号正确的是( )A.3-x+2=1B.3+x+2=1C.3+x-2=1D.3-x-2=12.方程1-(2x-3)=6的解是( )A.x=-1B.x=1C.x=2D.x=03.当x=时,代数式-2(x+3)-5的值等于-9.4.解下列方程:(1)5(x-8)=-10; (2)8y-6(y-2)=0;(3)4x-3(20-x)=-4; (4)-6-3(8-x)=-2(15-2x).5.李强是学校的篮球明星,在一场比赛中,他一人得了23分.如果他投进的2分球比3分球多4个(规定只有2分球与3分球),那么他一共投进了多少个2分球,多少个3分球?第2课时利用去分母解一元一次方程3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题1.挖一条1210m的水渠,由甲、乙两队从两头同时施工,甲队每天挖130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则下列方程正确的是( )A.130x+90x=1210B.130+90x=1210C.130x+90=1210D.(130-90)x=12102.甲、乙两个工程队合作完成一项工程,甲队一个月可以完成总工程的,乙队的工效是甲队的2倍.两队合作多长时间后,可以完成总工程的?3.有33名学生参加社会实践劳动,做一种配套儿童玩具.已知每个学生平均每小时可以做甲元件8个或乙元件3个或丙元件3个,而2个甲元件,1个乙元件和1个丙元件正好配成一套.问应该安排做甲、乙、丙三种元件的学生各多少名,才能使生产的三种元件正好配套?第2课时销售中的盈亏1.如图所示是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚.请你帮忙算一算,该洗发水的原价为()A.22元B.23元C.24元D.26元2.某商品的售价比原售价降低了15%,如果现在的售价是51元,那么原来的售价是( )A.28元B.62元C.36元D.60元3.某商品进价是200元,标价是300元,要使该商品的利润率为20%,则该商品销售时应打( )A.7折B.8折C.9折D.6折4.一件商品在进价基础上提价20%后,又以9折销售,获利20元,则进价是多少元?5.一件商品的标价为1100元,进价为600元,为了保证利润率不低于10%,最多可打几折销售?第3课时球赛积分问题与单位对比问题1.某次足球联赛的积分规则:胜一场得3分,平一场得1分,负一场得0分.一个队进行了14场比赛,其中负5场,共得19分,则这个队共胜了( )A.3场B.4场C.5场D.6场2.某班级乒乓球比赛的积分规则:胜一场得2分,负一场得-1分.一个选手进行了20场比赛,共得28分,则这名选手胜了多少场(说明:比赛均要分出胜负)?3.某校进行环保知识竞赛,试卷共有20道选择题,满分100分,答对1题得5分,答错或不答倒扣2分.如答对12道,最后得分为44分.小茗准备参加比赛.(1)如果他答对15道题,那么他的成绩为多少?(2)他的分数有可能是90分吗?为什么?第4课时电话分段计费问题1.某市出租车收费标准为3公里内起步价10元,每超过1公里加收2元,那么乘车多远恰好付车费16元?2.某超市推出如下优惠方案:①一次性购物不超过100元不享受优惠;②一次性购物超过100元但不超过300元一律九折;③一次性购物超过300元一律八折.王林两次购物分别付款80元,252元,如果王林一次性购买与上两次相同的商品,那么应付款多少元?3.请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由(必须在同一家购买).4.根据下表的两种移动电话计费方式,回答下列问题:(1)一个月内本地通话多少时长时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话花费90元,则应该选择哪种通讯方式较合算?第四章 几何图形初步4.1 几何图形4.1.1 立体图形与平面图形 第1课时 立体图形与平面图形1.从下列物体抽象出来的几何图形可以看成圆柱的是()2.下列图形不是立体图形的是( ) A.球 B.圆柱 C.圆锥 D.圆3.下列图形属于棱柱的有()A.2个B.3个C.4个D.5个 4.将下列几何体分类:其中柱体有 ,锥体有 ,球体有 (填序号).5.如图所示是用简单的平面图形画出三位携手同行的好朋友,请你仔细观察,图中共有三角形 个,圆 个.6.把下列图形与对应的名称用线连起来:圆柱 四棱锥 正方体 三角形 圆第2课时 从不同的方向看立体图形和立体图形的展开图1.如图所示是由5个相同的小正方体搭成的几何体,从正面看得到的图形是()2.下列常见的几何图形中,从侧面看得到的图形是一个三角形的是()3.如图所示是由三个相同的小正方体组成的几何体从上面看得到的图形,则这个几何体可以是()4.下面图形中是正方体的展开图的是()5.如图所示是正方体的一种展开图,其中每个面上都有一个数字,则在原正方体中,与数字6相对的数字是()A.1B.4C.5D.26.指出下列图形分别是什么几何体的展开图(将对应的几何体名称写在下方的横线上).4.1.2 点、线、面、体1.围成圆柱的面有( ) A.1个 B.2个 C.3个 D.4个2.汽车的雨刷把玻璃上的雨水刷干净所属的实际应用是( ) A.点动成线 B.线动成面 C.面动成体 D.以上答案都不对3.结合生活实际,可以帮我们更快地掌握新知识. (1)飞机穿过云朵后留下痕迹表明 ; (2)用棉线“切”豆腐表明 ;(3)旋转壹元硬币时看到“小球”表明 . 4.图中的立体图形是由哪个平面图形旋转后得到的?请用线连起来.5.如图所示的立体图形是由几个面围成的?它们是平面还是曲面?4.2 直线、射线、线段第1课时直线、射线、线段1.向两边延伸的笔直铁轨给我们的形象似( )A.直线B.射线C.线段D.以上都不对2.如图,下列说法错误的是()A.直线MN过点OB.线段MN过点OC.线段MN是直线MN的一部分D.射线MN过点O3.当需要画一条5厘米的线段时,我们常常在纸上正对零刻度线和“5厘米”刻度线处打上两点,再连接即可,这样做的道理是.4.如图,平面内有四点,画出通过其中任意两点的直线,并直接写出直线条数.5.如图,按要求完成下列小题:(1)作直线BC与直线l交于点D;(2)作射线CA;(3)作线段AB.第2课时 线段的长短比较与运算1.如图所示的两条线段的关系是( ) A.a =b B.a <b C.a >b D.无法确定第1题图 第2题图2.如图,已知点B 在线段AC 上,则下列等式一定成立的是( ) A.AB +BC >AC B.AB +BC =AC C.AB +BC <AC D.AB -BC =BC3.如图,已知D 是线段AB 的延长线上一点,C 为线段BD 的中点,则下列等式一定成立的是()A.AB +2BC =ADB.AB +BC =ADC.AD -AC =BDD.AD -BD =CD4.有些日常现象可用几何知识解释,如在足球场上玩耍的两位同学,需要到一处会合时,常常沿着正对彼此的方向行进,其中的道理是 .5.如图,已知线段AB =20,C 是线段AB 上一点,D 为线段AC 的中点.若BC =AD +8,求AD 的长.4.3 角4.3.1 角1.图中∠AOC 的表示正确的还有( ) A.∠O B.∠1 C.∠AOB D.∠BOC第1题图 第2题图2.如图,直线AB ,CD 交于点O ,则以O 为顶点的角(只计算180°以内的)的个数是( ) A.1个 B.2个 C.3个 D.4个3.小茗早上6:30起床,这时候挂钟的时针和分针的夹角是 °.4.把下列角度大小用度分秒表示: (1)50.7°; (2)15.37°.5.把下列角度大小用度表示: (1)70°15′; (2)30°30′36″.4.3.2 角的比较与运算1.如图,其中最大的角是( ) A.∠AOC B.∠BOD C.∠AOD D.∠COB第1题图 第2题图2.如图,OC 为∠AOB 内的一条射线,且∠AOB =70°,∠BOC =30°,则∠AOC 的度数为 °.3.计算:(1)23°34′+50°17′; (2)85°26′-32°42′.4.如图,已知OC 为∠AOB 内的一条射线,OM ,ON 分别平分∠AOC ,∠COB.若∠AOM =30°,∠NOB =35°,求∠AOB 的度数.4.3.3 余角和补角1.如图,点O在直线AB上,∠BOC为直角,则∠AOD的余角是( )A.∠BODB.∠CODC.∠BOCD.不能确定第1题图第4题图2.若∠A=50°,则∠A的余角的度数为( )A.50°B.100°C.40°D.80°3.若∠MON的补角为80°,则∠MON的度数为( )A.100°B.10°C.20°D.90°4.如图,已知射线OA表示北偏西25°方向,写出下列方位角的度数:(1)射线OB表示北偏西方向;(2)射线OC表示北偏东方向.5.如图,直线AB上有一点O,射线OC,OD在其同侧.若∠AOC∶∠COD∶∠DOB=2∶5∶3.(1)求出∠AOC的度数;(2)计算说明∠AOC与∠DOB互余.4.4 课题学习——设计制作长方体形状的包装纸盒1.现需要制作一个无盖的长方体纸盒,下列图形不符合要求的是()2.如图,现设计用一个大长方形制作一个长方体纸盒,要求纸盒的长、宽、高分别为4,3,1,则这个大长方形的长为()A.14B.10C.8D.73.如图,该几何体的展开图可能是()4.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).第一章 有理数 1.1 正数和负数1.B2.C3.B4.输1场5.从Q 出发后退4下6.227,2.7183,2020,480 -18,-0.333…,-2590 1.2 有理数1.2.1 有理数1.C2.C3.D4.0,1 +13-0.3,0,-3.35.正整数集合:{+4,13,…};负整数集合:{-7,-80,…}; 正分数集合:{3.85,…};负分数集合:{-54,-49%,-4.95,…};非负有理数集合:{+4,0,3.85,13,…};非正有理数集合:{-7,0,-80,-54,-49%,-4.95,…}.1.2.2 数 轴1.C2.D3.B4.-2或05.-1,0,1,26.解:在数轴上表示如下.1.2.3 相反数1.B2.D3.-14.(1)-1 (2)3 (3)25.解:(1)-3.5的相反数是3.5.(2)35的相反数是-35.(3)0的相反数是0.(4)28的相反数是-28. (5)-2018的相反数是2018. 6.解:如图所示.1.2.4 绝对值 第1课时 绝对值1.C2.B3.B4.-3105.解:|7|=7,⎪⎪⎪⎪-58=58,|5.4|=5.4,|-3.5|=3.5,|0|=0. 6.解:因为|x +1|+|y -2|=0,且|x +1|≥0,|y -2|≥0,所以x +1=0,y -2=0,所以x =-1,y =2.第2课时 有理数的大小比较1.C2.B3.(1)> (2)< (3)>4.-175.解:如图所示:由数轴可知,它们从小到大排列如下: -6<-514<-35<0<1.5<2.1.3 有理数的加减法1.3.1 有理数的加法 第1课时 有理数的加法法则1.B2.B3.B4.A5.49.36.解:(1)原式=-26.(2)原式=-6.(3)原式=-2019. (4)原式=0.(5)原式=4.(6)原式=-59.第2课时 有理数加法的运算律及运用1.D2.交换 结合 -17 +19 23.解:(1)原式=[(-6)+(-4)]+(8+12)=-10+20=10. (2)原式=⎝⎛⎭⎫147+37+⎣⎡⎦⎤⎝⎛⎭⎫-213+13=2+(-2)=0. (3)原式=(0.36+0.64)+[(-7.4)+(-0.6)]+0.3=1+(-8)+0.3=-6.7.4.解:根据题意得55+77+(-40)+(-25)+10+(-16)+27+(-5)+25+10=(55+77+10+27+10)+[(-25)+25]+[(-40)+(-16)+(-5)]=179+(-61)=118(kg).所以今年小麦的总产量与去年相比是增产的,增产118kg.1.3.2 有理数的减法 第1课时 有理数的减法法则1.A2.B3.B4.解:(1)原式=9+(+6)=9+6=15. (2)原式=-5+(-2)=-7. (3)原式=0+(-9)=-9. (4)原式=-812-112+312=-12.5.解:五天的温差分别如下:第一天:(-1)-(-7)=(-1)+7=6(℃);第二天:5-(-3)=5+3=8(℃);第三天:6-(-4)=6+4=10(℃);第四天:8-(-4)=8+4=12(℃);第五天:11-2=9(℃).由此看出,第四天的温差最大,第一天的温差最小.第2课时 有理数的加减混合运算1.A2.D3.A4.解:(1)原式=-3.5+1.7+2.8-5.3=-4.3. (2)原式=-312+523+713=912.(3)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-14+234=112. (4)原式=314+534+⎝⎛⎭⎫-718+718=9. 5.解:-2+5-8=-5(℃). 答:该地清晨的温度为-5℃.1.4 有理数的乘除法1.4.1 有理数的乘法 第1课时 有理数的乘法法则1.C2.B3.(1)16(2)-24.- 48 -48 - 80 -80 + 36 36 + 160 1605.解:(1)原式=-5.(2)原式=0. (3)原式=-125.(4)原式=356.第2课时 多个有理数相乘1.C2.B3.964.解:(1)原式=-(2×7×4×2.5)=-140.(2)原式=23×97×24×74=36.(3)原式=0.(4)原式=73×⎝⎛⎭⎫-45=-2815. 第3课时 有理数乘法的运算律1.C2.A3.A4.A5.(1)-621 -45 -621 -10 -6 8 -48(2)(-16) (-16) (-16) -4-2-8 -141.4.2 有理数的除法 第1课时 有理数的除法法则1.A2.B3.A4.B5.A6.解:(1)原式=(-6)×4=-24.(2)原式=0. (3)原式=⎝⎛⎭⎫-53÷⎝⎛⎭⎫-52=53×25=23. (4)原式=-34×73×67=-32.第2课时 分数的化简及有理数的乘除混合运算1.(1)-8 (2)-14 (3)2832.B3.A4.解:(1)原式=-12×⎝⎛⎭⎫-16=2. (2)原式=-27×19×527=-59.(3)原式=-30×415×38×112=-14.第3课时 有理数的加、减、乘、除混合运算1.C2.-123.解:(1)原式=2+21-5=18.(2)原式=916÷⎝⎛⎭⎫-32×524=-916×23×524=-38×524=-564. (3)原式=5×⎝⎛⎭⎫-78-5×98=5×⎝⎛⎭⎫-78-98=5×(-2)=-10. (4)原式=⎝⎛⎭⎫1011×1112×1213-1×⎝⎛⎭⎫-213=1012×1213+213=1013+213=1213.。

人教版初一数学上册全册同步习题精编

人教版初一数学上册全册同步习题精编

第一章/有理数的分类与相反数绝对值………………………………1 第二章/有理数的加减…………………………………………………6 第三章/有理数的混合运算……………………………………………9 第四章/整式的加减……………………………………………………14 第五章/整式的综合……………………………………………………18 第六章/一元一次方程的解法…………………………………………23 第七章/含参数的一元一次方程………………………………………28 第八章/一元一次方程的应用…………………………………………31 第九章/直线线段射线…………………………………………………43 第十章/角度的计算……………………………………………………50 第十一章/线段与角动态问题…………………………………………58 第十二章/相交线………………………………………………………63 第十三章/平行线………………………………………………………68第一章有理数的分类与相反数绝对值第一部分:补救练习第一关:有理数的分类关卡1-1认识负数1.如果60m表示“向北走60m”,那么“向南走20m”可以表示为()A.-20m B.-40m C.20m D.40m2.在-(-2),-|-7|,(-3)2,-(+),-1中负数有()A.2个B.3个C.4个D.5个3.某检修小组乘一辆汽车沿公路检修线路,约定向东为正,某天从A地出发到收工时行走记录(单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3.则收工时,检修小组在A 边千米处.4.风筝上升16米记作+16米,则风筝下降9米应该记作.5.如果向西走6米记作﹣6米,那么向东走10米记作;如果产量减少5%记作﹣5%,那么20%表示.关卡1-2有理数的分类1.在﹣(﹣8),(﹣1)2007,﹣32,﹣|﹣1|,﹣|0|,225,,﹣2.131131113…中,负有理数共有()A.4个B.3个C.2个D.1个2. 零是()A.正数 B.负数C.整数D.分数3.下列说法正确的有()①0是最小的正数;②任意一个正数,前面加上一个“﹣”号,就是一个负数;③大于0的数是正数;④字母a既是正数,又是负数.A.0个B.1个C.2个D.3个4.在数43,-1,0,π,142-,-0.02中,①正数;②负数;③整数;④分数.5.和统称有理数;,和统称为有理数.6.将下列各数填入它所在数集的大括号里:-19,2.5,12,2,0,-0.4,整数集合:;非负数集合:;正分数集合:.第二关:数轴关卡2-1在数轴上表示数1.如图,数轴上A表示的数可能是()A. 1.5B. -1.5C. 2.4D. -2.42.下面画的数轴正确的是()A.B.C.D.3. 数轴上的点A到原点的距离是5,则点A表示的数为()A.﹣5 B.5 C.5或﹣5 D.2.5或﹣2.54. 画出数轴,并在数轴上表示下列各数:+5,-3.5,12,-112,-4,0,2.5.关卡2-2在数轴上两点间的距离1.如图,数轴上每相邻两点相距一个单位长度,点A、B、C、D对应的位置如图所示,它们对应的数分别是a、b、c、d,且d﹣b+c=10,那么点A对应的数是()A.﹣6 B.﹣3 C.0 D.正数2. 如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点3.数轴上与表示2的点距离等于3个单位长度的点表示的数是()A.0或5 B.﹣1或5 C.﹣1或﹣5 D.﹣2或54.在数轴上,若A点表示数x,点B表示数﹣5,A、B两点之间的距离为7,则x=.5.点A在数轴上对应的点表示的数为﹣3,B点在数轴上距离A点6个单位长度,C点位于A与B两点间的中点处,则C点对应的数是.第三关:相反数与绝对值关卡3-1相反数1. 若|x﹣2|与(y+3)2互为相反数,则x+y= .与互为相反数.2. -3.2的相反数是,323. 已知M是6的相反数,N比M的相反数小2,则M-N= .4. 下列各对数中,哪对是相等的数?哪对互为相反数?(1)﹣(﹣3)和+(﹣3);(2)﹣(+5.5)和+(﹣5.5);(3)﹣[+(﹣9)]和﹣[﹣(+9)]; (4)﹣(﹣)和﹣[+(﹣)]. 5. 化简下列各式的符号,并回答问题:(1)2--() (2)+(-15) (3)-(-b ) (4)(){}+c ---⎡⎤⎣⎦(5)(){}5-----⎡⎤⎣⎦() (6)(){}+5---⎡⎤⎣⎦ (7)()+3.5--⎡⎤⎣⎦问:①当+5前面有2012个负号,化简后结果是多少?②当﹣5前面有2013个负号,化简后结果是多少?你能总结出什么规律?关卡3-2绝对值1. 当有理数a <0时,则﹣a ﹣|a|的值为 .2. a=3,|b|=10,且|b ﹣a|=﹣(b ﹣a ),则a ﹣b= .3. 下列说法错误的是( )A .绝对值最小的数是0B .最小的自然数是1C .最大的负整数是﹣1D .绝对值小于2的整数是:1,0,﹣1 4.若|m|=﹣m ,则|m ﹣1|﹣|m ﹣2|= .5.写出一个x 值,使|x ﹣2|=x ﹣2,你写出的x 值为 . 6. 根据右图,化简:(1)+b a -- (2)()+b b a a --第二部分超级挑战1.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣832.如图,A,B两点在数轴上表示的数分别是a,b,下列式子成立的是()A.ab>0 B.a+b>0 C.(a﹣1)(b﹣1)>0 D.(a+1)(b﹣1)>03.在数轴上有一点A,它对应的是﹣4,点B在点A的右边,且点B到点A的距离为1.5,则点B对应的数是.4. a,b是有理数,若已知|a+b|=﹣(a+b),|a﹣b|=a﹣b,那么下图中正确的是()A.B.C.D.第二章有理数的加减第一部分:补救练习第1关:有理数加法关卡1-1有理数加法1. 定义新运算:对任意有理数a、b,都有,例如,,那么3⊕(﹣4)的值是()A.B.C.D.2. 计算:671-+++-+-+-=()(12)()(8)()()5102A.﹣19 B.﹣18 C.﹣20 D.﹣17-++-++-=.3. (2)4(6)8+(98)+100-+++++-4. 计算:31+(102)(39)(102)(31)5. 计算题-(1)5.6+4.4+(8.1)-(2)(-7)+(-4)+(+9)+(5)(3)+(﹣)+(4)5(5)(﹣9)+156. 若使用竖式做有理数加法运算的过程如图所示,则m﹣n的值为.第二关:计算有理数的减法关卡2-1计算有理数的减法1. 计算:(﹣5)﹣(+3)+(﹣9)﹣(﹣7)+所得结果正确的是()A.B.C.D.2. 化简符号:﹣|﹣|﹣(﹣68)= .3. (1)-1-1= ;(2)-|-2|-(-1)= .4. 计算:|-|﹣|﹣|﹣|﹣|= .5. 计算|-2|﹣(-2.5)+1﹣|1-2|= .6. 按要求完成下列各题.(1)计算:(- 8)-(- )+- 10(2)比较下列两个数的大小:- 和- .7. 计算:(1)7.8﹣9.5+(﹣8)﹣(﹣3.2);(2)+[﹣﹣(﹣)].第二部分:超级挑战1.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④2. 下面这道有趣的式子,按照一般的计算方法,需要通分,才能算出结果;但这样做,公分母很大,计算很麻烦.只要你仔细分析一下,每个分数的分子与分母的特点,就可以找到一条不通分而巧妙求得结果的捷径.请你试一试:1+= .3. 下表为国外几个城市与北京的时差(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):(1)北京6月11日23时是巴黎的什么时间?(2)北京6月11日23时是悉尼的什么时间?(3)小莹的爸爸于6月11日23时从北京乘飞机,经过16小时的航行到达纽约,到达纽约时北京时间是多少?纽约时间是多少?第三章有理数的混合运算第一部分:补救练习第一关有理数的乘除关卡1-1计算有理数乘法1.计算:(1) 11125+252502105⨯⨯-⨯⨯(2) .(3) ﹣45×(+1﹣0.4)(4) .(5)11118+924+0 2345⨯⨯-⨯⨯2.计算:(﹣5)×6×(﹣10)×(﹣8)3. 下列算式中,积为正数的是()A.﹣2×5 B.﹣6×(﹣2)C.0×(﹣1)D.5×(﹣3)4. 如果a+b>0,ab<0,则()A.a、b异号B.a、b同号C.a、b异号,正数的绝对值较大D.a、b异号,负数的绝对值较大5. 如果定义a*b为(﹣ab)与(﹣a+b)中较大的一个,那么(﹣3)*2= .关卡1-2有理数的除法1. 计算(-1)÷(-5)×的结果是()A.-1 B.1 C.D.-252. 填空:(1)×(-)=-1;(2)3×=-1;(3)(-8)÷=2.3. 下列运算中没有意义的是()A.﹣2006÷[(-)×3+7] B.[(-)×3+7]÷(-2006)C.(-)÷[0-(-4)]×(-2)D.2÷(3×6-18)4. 计算:(1)(+48)÷(-6);(2)﹣2÷(-58)×(114-)(3)(-34-59+712)÷(-136)(4)(-1)÷(-5)÷(-15).5.bc 的倒数是;1=m+na÷.关卡1-3计算有理数的乘方1. |﹣32|的值是, (﹣2)3的值为2. 计算(﹣18)+(﹣1)9的值是()A.0 B.2 C.﹣2 D.不能确定3. 计算(﹣2)2007+(﹣2)2008=()A.(﹣2)4015B.22007C.﹣22007D.220084. 填空:()2=16,(﹣)3= .5. 填空:×= .6. 定义一种新的运算a※b=b a,如2※3=32=9,那么请试求(3※2)※(﹣1)= .7. 计算:(1)(﹣1)4;(2)25;(3)(﹣3)2;(4)﹣32;(5)(﹣2)3;(6)﹣23.第二关 有理数的混合运算关卡2-1计算有理数的混合运算1. 某地区的消费品零售总额持续增长,10月份为1.2亿元,11月份达到2.8亿元,如果从9月份到11月份每月增长的百分率相同,则9月份的消费品零售总额为( ) A .亿元 B .亿元 C .亿元D .亿元2. 规定b=5+2b-1a a ⋅,则(4)6-⋅的值为 .3. 如果a,b 互为倒数,c,d 互为相反数,且m= - 1,则代数式()22-++=ab c d m .4. 计算:(1) 1.5 1.4( 3.6) 1.4+( 5.2)-+---- (2)2127(3)65()5-⨯--⨯-÷-(3)22114321133⎛⎫⎛⎫--⨯⨯-÷- ⎪ ⎪⎝⎭⎝⎭(4)43114(2)3⎡⎤--⨯--⎣⎦5. 计算: (1)211()(0.75)383---+-; (2)512.5()84-÷⨯-; (3)2126(2)953--÷-⨯--+第三关 科学计数法关卡3-1用科学计数法计数1. 新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为( ) A .0.109×105 B .1.09×104 C .1.09×103 D .109×1022. 用科学计数法表示0.000031,结果是( )A.43.110-⨯B. 53.110-⨯C. 40.3110-⨯D. 63110-⨯3. 2014年3月14日,“玉兔号”月球车成功在距离地球约384400公里远的月球上自主唤醒,将384400这个数用科学计数法表示为 .4.已知空气的单位体积质量为0.00124g/3cm.cm,将它用科学计数法表示为g/3 5. 天文学常用“光年”作为距离单位,规定“1光年”为光在1年内走过的距离,大约等于94600亿千米,那么94600亿千米用科学计数法可表示为多少千米?6. 将下列各数精确到十分位:(1)0.000328 (2)56000000 (3)-0.0000052第二部分:超级挑战1 国家统计局发布的2009年一季度国民经济运行情况显示:一季度国内生产总值(GDP)65745亿元,同比增长6.1%,增速比上年同期回落4.5个百分点,根据以上信息,得出如下结论:①2008年第一季度国内生产总值(GDP)为:65745×(1+6.1%)亿元;②2008年第一季度国内生产总值(GDP)亿元;③2008年第一季度比2007年同期国内生产总值增长10.6%;④2007年第一季度的国内生产总值为65745÷(1+6.1%)÷(1+6.1%+4.5%)亿元.其中正确的结论是()A.①②③B.①③④C.②③④D.②③2. 太阳是巨大的炽热气体星球,正以每秒一万吨的速度失去重量,太阳的直径约为140万千米,而地球的半径约为6378千米.(1)将400万,140万,6378分别用科学记数法表示出来(结果保留到0.01); (2)在一年内太阳要失去多少万吨重量?(一年按365天算,用科学记数法表示,并保留到0.001)第四章 整式的加减第一部分:补救练习第一关:整式的相关概念关卡1-1明白代数式的意义 1. 下列各式是代数式的是( )A. S r π=B.5>3C.3x-2D. a <+b c2. x 的14与y 的7倍的差表示为 . 3. ,,a b c 是三个有理数,用,,a b c 表示加法结合律为 . 4. 甲比乙的17大2,若乙为y ,则甲为 5. 用代数式表示与2a +1的和是11的数是 .关卡1-2理解单项式的相关概念1.代数式的系数是.2. 单项式222b3aπ⋅-的次数是;系数是.3. 下列代数式中,次数为4的单项式是()A.x4+y4B.xy2C.4xy D.x3y4.下列代数式2x,﹣ab2c,,πr2,,a2+2a,0,中,单项式有()A.4个B.5个C.6个D.7个关卡1-3理解多项式的相关概念1.下列判断:(1)不是单项式;(2)是多项式;(3)0不是单项式;(4)是整式,其中正确的有()A.1个B.2个C.3个D.4个2. 如果一个多项式是五次多项式,那么()A.这个多项式最多有6项B.这个多项式只能有一项的次数是5C.这个多项式一定是五次六项式D.这个多项式最少有两项,并且有一项的次数是53. 是次三项式,各项的系数分别是,,.4. 若x p+4x3﹣(q+2)x2﹣2x+5是关于x的五次四项式,则q﹣p= .5. 写一个关于y的三次三项式,使得它的三次项系数是﹣1,则这个多项式为.第二关:合并同类项关卡2-1明白同类项概念1. 当m=1,n=2时,下面式子与3x2y2能够合并的是()A.﹣x m+1y2n﹣1B.3x2y n C.﹣x2m+1y2n﹣1D.6x2m﹣2y2n+12. 下列代数式中,互为同类项的是()A.﹣2a2b与3ab2B.18x2y2与9x2+2y2C.a+b与a﹣b D.﹣xy2与y2x3. 当k= 时,3x k y与﹣x2y是同类项.4. 若2x m y3与﹣3x2y n是同类项,则m= ,n= .5. 已知3a x﹣3b y+2与﹣2ab2是同类项,求x、y的值.关卡2-2合并同类项1.下面的式子,正确的是()A.3a2+5a2=8a4B.5a2b﹣6ab2=﹣ab2C.2x+3y=5xy D.9xy﹣6xy=3xy2.多项式5x3y2+3x2y+2xy与-5y(x3y+1)-xy2相加,结果为()次多项式A. 5B. 4C. 3D. 23. 下列合并同类项:①3x﹣2y=1;②x2+x2=x4;③3mn﹣3mn=0;④4ab2﹣5ab2=﹣ab2;⑤3m2+4m3=7m5.其中错误的有()A.4个B.3个C.2个D.1个4.如果2x n y4与﹣3x3y m的和是单项式,则m﹣n= .5. 下列各题合并同类项的结果对不对?若不对,请改正.(1)2x2+3x2=5x4;(2)3x+2y=5xy;(3)7x2﹣4x2=3;(4)9a2b﹣9ba2=0..6. 合并同类项:(1)3a2﹣2a+4a2﹣7a;(2)﹣3a+[4b﹣(a﹣3b)].第二部分超级挑战1. (1)把下列各整式填入相应的圈里:ab+c,2m,ax2+c,﹣ab2c,a,0,﹣,y+2.(2)把能用一副三角尺直接画出(或利用其角的加减可画出)的角的度数从左边框内挑出写入右边框内.2. 把下列代数式分别填在相应的括号内2﹣ab ,﹣3a 2+,﹣,﹣4,﹣a ,,﹣2a 2+3a+1,,πa+1,.①单项式:{ }. ②多项式:{ }. ③二次二项式:{ }. ④整式:{ }.第五章 整式的综合第一部分:补救练习第一关:整式相关的高级运算关卡1-1含参整式的相关运算1. 若关于x 的多项式322x 2mx 7x 6x 3+--+不含二次项,则m 等于( ) A. 2 B. -2 C. 3 D. -32. 若多项式22x 2(k 1)xy y k --+-不含xy 项,求k 的值为( ) A. 2 B. 0 C. -1 D. 13. 要使多项式6x 6y 32ky --+中不含y 的项,则k 的值是_________.4. 多项式m2x (m 3)x 83----是关于x 的三次三项式,则m 的值是_________. 5. 多项式2(2)m (2b 1)mn m n 7a -++-+-是关于m 、n 的多项式,若该多项式不含二次项,求b a 23+.6. 若多项式23(2)(3)321baa x y ab x y xy x -+-+++-是六次四项式,求b a 、的值.关卡1-2整式的求值1. 已知4,2-==y x 时,代数式16821=++by ax ,求当21,4-=-=y x 时,代数式52432+-by ax 的值.2. 已知123-++=cx bx ax y ,当3-=x 时,7=y ,求当3=x 时,y 的值.3. 已知单项式1232--m xy 与222y x -的次数相同. (1)求m 的值;(2)求当9-=x ,2-=y 时单项式1232--m xy 的值.4. 先化简再求值:)254(4)3(582n m m n m m m --++--,其中1,2-==n m .5. 如果y y 32+的值是2,那么多项式4932-+y y 的值是多少?6. 已知b a c x c b ax x 34)()2(22-++++=+,求c b a ++的值.第二关:整式常见规律探究关卡2-1数列规律探究 1. 观察下列等式:猜想并写出第n 个算式:___________;2. 给定一列按规律排列的数:,,,,, 1741035221则这列数的第8个数是_______.3.仔细观察下面4个数字所表示的图形,则数字10所代表的图形中方格的个数是______.4. 如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况,那么照这样垒下去①填出下表中未填的两空,观察规律。

最新人教版七年级数学上册全套同步练习题(课课练)及答案

最新人教版七年级数学上册全套同步练习题(课课练)及答案

第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。

2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。

3.在同一个问题中,分别用正数与负数表示的量具有 的意义。

4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。

用正数和负数表示这三年我国全年平均降水量比上年的增长量。

拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。

9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。

人教版数学七年级上册 第3章 3.1 --3.3基础练习题含答案

人教版数学七年级上册 第3章 3.1 --3.3基础练习题含答案

人教版数学七年级上册第3章 3.1 --3.3基础练习题含答案3.1从算式到方程一.选择题1.若关于x的方程(k﹣2020)x﹣2019=7﹣2020(x+1)的解是整数,则整数k的取值个数是()A.6B.8C.9D.102.已知k位非负整数,且关于x的方程3(x﹣3)=kx的解为正整数,则k的所有可能取值为()A.4,6,12B.4,6C.2,0D.2,0,﹣6 3.下列四组变形中,变形正确的是()A.由x=2,得x=B.由2x﹣3=0得2x﹣3+3=0C.由5x=7得x=35D.由5x+7=0得5x=﹣74.关于x的一元一次方程2x a﹣1+m=2的解为x=1,则a﹣m的值为()A.5B.4C.3D.25.下列等式变形正确的是()A.若4x=2,则x=2B.若4x﹣2=2﹣3x,则4x+3x=2﹣2C.若4(x+1)﹣3=2(x+1),则4(x+1)+2(x+1)=3D.若=1,则3(3x+1)﹣2(1﹣2x)=66.下列等式变形不正确的是()A.由x+2=y﹣2,可得x﹣y=4B.由2x=y,可得x=yC.由﹣x=y,可得x=﹣5y D.由y﹣x=﹣2,可得x=y+27.如图,两个天平都平衡,则六个球体的重量等于()个正方体的重量.A.7B.8C.9D.108.已知(a≠0,b≠0),下列变形错误的是()A.B.3a=4b C.D.4a=3b9.运用等式性质进行的变形,正确的是()A.若x=y,则=B.若=,则x=yC.由4x﹣5=3x+2,得到4x﹣3x=﹣5+2D.若a2=3a,则a=310.下面是一个被墨水污染过的方程:3x﹣2=x﹣,答案显示此方程的解是x=2,被墨水遮盖的是一个常数,则这个常数是()A.2B.﹣2C.D.二.填空题11.已知关于x的方程2﹣(a﹣1)x|a|=0是一元一次方程,则a=.12.已知方程(m﹣1)x|m|﹣5=0是关于x的一元一次方程,则m的值为.13.已知关于x的一元一次方程+3=2020x+m的解为x=2,那么关于y的一元一次方程+3=2020(1﹣y)+m的解y=.14.设“●■▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应该放“■”的个数为.15.如果(a+3)x|a|﹣2=3是一元一次方程,那么a=.三.解答题16.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.17.已知x=﹣2是关于x的方程a(x+3)=a+x的解,求代数式a2﹣2a+1的值.18.【定义】若关于x的一元一次方程ax=b的解满足x=b+a,则称该方程为“友好方程”,例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.【运用】(1)①﹣2x =,②x =﹣1两个方程中为“友好方程”的是 (填写序号); (2)若关于x 的一元一次方程3x =b 是“友好方程”,求b 的值;(3)若关于x 的一元一次方程﹣2x =mn +n (n ≠0)是“友好方程”,且它的解为x =n ,则m = ,n = .19.我们规定,若关于x 的一元一次方程ax =b 的解为a +b ,则称该方程为“合并式方程”,例如:3x =﹣的解为﹣,且﹣,则该方程3x =﹣是合并式方程.(1)判断x =1是否是合并式方程并说明理由;(2)若关于x 的一元一次方程5x =m +1是合并式方程,求m 的值.3.2解一元一次方程(一)—合并同类项与移项一、选择题1.下列各方程中,合并同类项正确的是( )A .由3x -x =-1+3,得2x =4B .由23x +x =-7-4,得53x =-3 C .由52-13=-x +23x ,得136=13x D .由6x -4x =-1+1,得2x =0 2.下列变形一定正确的是( )。

人教版初一数学上册《有理数》全章复习与巩固(提高)巩固练习

人教版初一数学上册《有理数》全章复习与巩固(提高)巩固练习

【巩固练习】 一、选择题1.计算106×(102)3÷104之值为( ).A .108B .109C .1010D .10122.(2015•永州)在数轴上表示数﹣1和2014的两点分别为A 和B ,则A 和B 两点间的距离为( ) A .2013 B . 2014 C . 2015 D . 2016 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =|,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±35.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”、“15cm ”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ). A .A 点 B .B 点 C .C 点 D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题 9.(2015•烟台)如图,数轴上点A 、B 所表示的两个数的和的绝对值是 .10.2011年成市承接产业转移示范区建设成效明显,第一季度完成固定资产投资238亿元,用科学记数法可记作________元.11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________. 12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 .15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2016春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.(2015•顺义区一模)居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议? 【答案与解析】 一、选择题 1.【答案】 A【解析】126234664124841010(10)1010101010101010⨯÷=⨯÷=÷==. 2.【答案】C.【解析】|﹣1﹣2014|=2015,故A ,B 两点间的距离为2015,故选:C . 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C 【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3-. 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =-. 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确. 8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1. 【解析】从数轴上可知:表示点A 的数为﹣3,表示点B 的数是2,则﹣3+2=﹣1,|﹣1|=1. 10.【答案】102.3810⨯11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3.13.【答案】>, >, >, <【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13)=24﹣22﹣10﹣13 =2﹣23 =﹣21; (2)(﹣1.5)+4+2.75+(﹣5)=﹣1.5﹣5.5+4.25+2.75=﹣7+7 =0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)=﹣8﹣21﹣7.5+3.5 =﹣30﹣4=﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2=﹣4. 18.【解析】解:根据题意得:2880×0.48+(3000﹣2880)×0.53=1446(元), 则2014年小敏家电费为1446元. 19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b +=, 又由三数互不相等,所以1b =,ba a=,化简得:1a =-,1b =,0a b +=,1ab =-,∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】 解:(1)10÷500≈0.02(克) 答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.附录资料:【巩固练习】一、选择题1.从左边看图1中的物体,得到的是图2中的( ).2.如图所示是正方体的一种平面展开图,各面都标有数,则标有数“-4”的面与其对面上的数之积是( ).A.4 B.12 C.-4 D.03.(2016•宜昌)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短4.如图所示,点O在直线AB上,∠COB=∠DOE=90°,那么图中相等的角的对数是( ).A.3 B.4 C.5 D.75.如图所示的图中有射线( ).A.3条 B.4条 C.2条 D.8条6.(2015•宝应县校级模拟)在地理课堂上,老师组织学生进行寻找北极星的探究活动时,李佳同学使用了如图所示的半圆仪,则下列四个角中,最可能和∠AOB互补的角为()A .B .C .D .7.十点一刻时,时针与分针所成的角是( ).A .112°30′B .127°30′C .127°50′D .142°30′ 8.在海面上有A 和B 两个小岛,若从A 岛看B 岛是北偏西42°,则从B 岛看A 岛应是( ). A .南偏东42° B .南偏东48° C .北偏西48° D .北偏西42°二、填空题9.把一条弯曲的公路改为直道,可以缩短路程,其理由是________.10.已知∠α=30°18′,∠β=30.18°,∠γ=30.3°,则相等的两角是________. 11.用平面去截一个几何体,如果得出的横截面是圆形,那么被截的几何体是________(填一个答案即可). 12.(2015秋•泾阳县期中)如图是一个正方体的展开图,和C 面的对面是 面.13.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3,其根据是________.14.若∠α是它的余角的2倍,∠β是∠α的2倍,那么把∠α和∠β拼在一起(有一条边重合)组成的角是________度.15.一副三角板如图摆放,若∠BAE=135 °17′,则∠CAD 的度数是 .16.如下图,点A 、B 、C 、D 代表四所村庄,要在AC 与BD 的交点M 处建一所“希望小学”,请你说明选择校址依据的数学道理 .三、解答题17.(2015春•淄博校级期中)如图,已知点C 为AB 上一点,AC=12cm ,CB=AC ,D 、E 分别为AC 、AB 的中点,求DE 的长.MB CDA18.(2016春•启东市月考)如图,∠AOB=90°,∠AOC是锐角,OD平分∠BOC,OE平分∠AOC.求∠DOE的度数.19.在一张城市地图上,如图所示,有学校、医院、图书馆三地,图书馆被墨水染黑,具体位置看不清,但知道图书馆在学校的北偏东45°方向,在医院的南偏东60°方向,你能确定图书馆的位置吗?20.如图所示,线段AB=4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2.在反思过程中突发奇想:若点O运动到AB的延长线上,原来的结论“CD=2”是否仍然成立?请帮小明画出图形并说明理由.【答案与解析】一、选择题1.【答案】B【解析】从左边看,圆台被遮住一部分,故选B.2.【答案】B【解析】由正方体的平面展开图可知,标有数-4的面的对面是标有数-3的面,故两个数之积为12.3.【答案】D;【解析】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选D .4.【答案】C 【解析】因为∠COB =90°,所以∠BOD+∠COD =90°,即∠BOD =90°-∠COD .因为∠DOE=90°,所以∠EOC+∠COD =90°,即∠EOC =90°-∠COD ,所以∠BOD =∠EOC .同理∠AOE =∠COD .又因为∠AOC =∠COB =∠DOE =90°(∠AOC =∠COB ,∠AOC =∠DOE ,∠COB =∠DOE),所以图中相等的角有5对,故选C .5.【答案】D 6.【答案】D .【解析】根据图形可得∠AOB 大约为135°,∴与∠AOB 互补的角大约为45°, 综合各选项D 符合. 7.【答案】D【解析】一刻是15分钟,十点一刻,即10点15分时,时针与分针所成的角为:34304⎛⎫+⨯ ⎪⎝⎭°=142.5°=142°30′,故选D .8.【答案】A【解析】方位角存在这样的规律:甲、乙两地之间的方位角,方向相反,角度相等.由此可知从B 岛看A 岛的方向为南偏东42°,故选A .二、填空题9. 【答案】两点之间,线段最短【解析】本题是应用线段的性质解释生活中的现象,由于这是两点之间连线长度的比较,符合“两点之间,线段最短”. 10.【答案】∠α和∠γ 【解析】30.3601810︒''=⨯=,于是∠α=∠γ. 11.【答案】圆柱(圆锥、圆台、球体等)【解析】答案不唯一,例如用平面横截圆锥即可得到圆形. 12.【答案】F .【解析】这是一个正方体的平面展开图,共有六个面,其中面“B”与面“D”相对,面“A”与面“E”相对,“C”与面“F”相对. 13.【答案】同角的余角相等【解析】根据余角的性质解答问题. 14.【答案】60度或180【解析】先求出∠α=60°,∠β=120°;再分∠α在∠β内部和外部两种情况来讨论. 15.【答案】44°43′;【解析】∠BAD +∠CAE =180°,即∠BAE +∠CAD =180°,所以 ∠CAD =180°-135°17′=44°43′. 16.【答案】两点之间,线段最短. 三、解答题 17.【解析】解:∵AC=12cm,CB=AC , ∴CB=6cm,∴AB=AC+BC=12+6=18cm,∵E为AB的中点,∴AE=BE=9cm,∵D为AC的中点,∴DC=AD=6cm,所以DE=AE﹣AD=3cm.18.【解析】解:如图,∵OD平分∠BOC,OE平分∠AOC,∠AOB=90°,∴∠COD=∠BOC=(∠AOB+∠AOC)=45°+∠AOC,∠COE=∠AOE=∠AOC,∴∠DOE=∠COD﹣∠AOE=45°+∠AOC﹣∠AOC=45°即:∠DOE=45°.19.【解析】解:如图所示.在医院A处,以正南方向为始边,逆时针转60°角,得角的终边射线AC.在学校B处,以正北方向为始边,顺时针旋转45°角,得角的终边射线BD.AC与BD的交点为点O,则点O就是图书馆的位置.20.【解析】解:原有的结论仍然成立,理由如下:当点O在AB的延长线上时,如图所示,CD=OC-OD=12(OA-OB)=12AB=1422⨯=.。

人教版七年级上册数学1-4章分章节练习题及答案

人教版七年级上册数学1-4章分章节练习题及答案

第一章小结与复习一、选择题1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣ B.0 C. D.﹣12.-2的相反数是()A.2 B.-2 C.12D.123.(4分)2015的相反数是()A.12015B.12015- C.2015 D.﹣20154.(3分)12-的相反数是()A.2 B.﹣2 C.12D.12-5.(3分)6的绝对值是()A.6 B.﹣6 C.16D.16-6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃ B.10℃ C.14℃ D.﹣14℃8.(4分)下列说法错误的是()A.﹣2的相反数是2B .3的倒数是13C .(﹣3)﹣(﹣5)=2D .﹣11,0,4这三个数中最小的数是09.(3分)如图,数轴上的A 、B 、C 、D 四点中,与数3-表示的点最接近的是( )A .点AB .点BC .点CD .点D10.(3分)(2015•娄底)若|a ﹣1|=a ﹣1,则a 的取值范围是( ).A .a ≥1B .a ≤1C .a <1D .a >1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为 .12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).13.-3的倒数是 ,-3的绝对值是 .14.数轴上到原点的距离等于4的数是 .15.|a|=4,b 2=4,且|a+b|=a+b , 那么a-b 的值是 .16.在数轴上点P 到原点的距离为5,点P 表示的数 .17.绝对值不大于2的所有的整数是 .18..把下列各数分别填在相应的集合内(本小题每空2分,满分6分)-11、 5%、 -2.3、61 、3.1415926、0、 34-、 39 、2014、-9 分数集: 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数单元测试1.若x =7,则x = ;若42=-x ,则x = . 14.已知a <0,ab <0,并且∣a ∣>∣b ∣,那么a ,b ,-a ,-b 按照由小到大的顺序排列是_____________.3.若 0)3(22=++-y x ,则x+y= .4、如果x <0,y >0且x2=4,y2 =9,那么x +y =5.若a 、b 互为相反数,c 、d 互为倒数,则=++b a cd 2 .6. 计算:(每小题5分,共30分)(1)、206137+-+- (2)、()()()()499159--+--+- (3)、(-5)×6+(-125) ÷(-5) (4)、532)2(1---+-+; (5)、8+2×32-(-2×3)2 (6)、-1 2008×[(-2)5-32-)71(145-÷]-2.57.(本题满分4分)若220x y -++=,求y x -的相反数。

8. (本题满分4分)把下列各数分别填入相应的集合里.()88.1,5,2006,14.3,722,0,34,4++-----(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}9.(8分)(1)计算:-33×(-2)+42÷(-2)3-∣-22∣÷5;10、计算:(20分)(1))41(855.2-⨯÷-; (2))24(9441227-÷⨯÷-(3)213443811-⨯⨯÷-. (4)2)2(2)1(3210÷-+⨯-(5)200420094)25.0(⨯-11、(8分)已知03=++-y x y ,求xy yx -的值.12.(6分)若5=a ,3=b ,求2)(b a ⋅的值.13.计算:2(2)[18(3)2]4-+--⨯÷14、(8分)10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.这10袋大米共超重或不足多少千克?总重量是多少千克?15.计算(共20分)⑴312 +(-12 )-(- 13 )+223 (2)(23 -14 -38 +524)×48(3)⎪⎭⎫ ⎝⎛----+⎪⎭⎫ ⎝⎛-⨯-21)2(21232; (4) 222183(2)(6)()3-+⨯-+-÷-16.(10分)已知有理数a 、b 、c 在数轴上的位置如图所示,且a b =。

①求55a b +的值; ②化简2a a b c a c b ac b -+--+-+--。

17、(本题10分)计算: ①1511312()812232(+)⨯(-24)+⨯-⨯ ②2211()42-⨯(-2)--⨯418、 )342()(0.25423⨯--÷- 18、 100211(10.5)3(3)3⎡⎤⎢⎥⎣⎦---⨯⨯--19、计算:(1) )21(237)2(2-⨯-+---; (2) ⎥⎦⎤⎢⎣⎡-+-⨯-⨯-322)2()32(323. 整式的加减1.(每小题4分,共16分):(1)2235(37)a ab a ab -+-++; (2)()⎪⎭⎫ ⎝⎛---+412342222a a a a . 2、计算22(521)4(382)a a a a +-+-+3、(本题5分)已知2(2)3a b ++-||=0,求222213ab a b ab a b(9-3)+(7-2)+2(+1)-2的值。

4.先化简,再求值:22225(37)(25)x y xy y x -++-,其中1x =,2y =-.5.若()0232=-++b a ,则=+ab a b. 6.计算:123(1)3x x -+-=_____________.7.(5分)先化简,再求值()()222222b ab a b ab a +--++,其中41=a ,1-=b8.(7分)化简与求值:(1)若a = -1,则式子12-a 的值为 ;(2)若b a += -1,则式子12++b a 的值为 ;(3)若b a 35+= -4,请你仿照以上求式子值的方法求出2)2(4)(2-+++b a b a 的值.9、(6分)先化简,再求值:()()x x x x x x 4329722323+----,其中x=-110、已知[])的值()(求ab b a ab ab b a ---+=-=+2332,3,2.一元一次方程1.若方程332n x +-1=0是关于x 的一元一次方程,则n =_________;2.方程1103x -=的解是 .3.已知2x =是方程13ax x -=+的一个解,那么a = .4.写出一个满足下列条件的一元一次方程:①未知数的系数是-12,②方程的解是3,则这样的方程可写为______________.5.已知三个连续偶数的和是24,则这三个数分别是___________.6.A 、B 、C 三辆汽车所运货物的吨数比为2:3:4,已知C 汽车比A 汽车多运货物4吨,则B 汽车运货物_____吨.7.已知2x =是方程13ax x -=+的一个解,那么a = .8.关于x 方程5230k x k -+=是一元一次方程,则方程的解是__________.9.当m= 时,代数式353+m 的值是2. .10.若79x a b 与 3477x a b --是同类项,则x = .11.当2x =时,二次三项式223x x c -+的值是5,若当4x =时,这个二次三项式的值是.12.三个连续奇数的和是15,那么其中最大的奇数是 .13.已知某数的13等于这个数减去4,那么这个数是 .14.杏花村现有手机188部,比2004年底的3倍还多17部,则该村2004年底有手机 部.15.解下列方程(每小题4分,共12分):(1)43(3)10x x --=+; (2)325146x x --+=;(3)23(37)272y y+=-. (4)32542132--=+-x x x .16、解方程 :(1)() ()x x =585627+-- (2) 5415523412x x x+--+=-(3))12(357)35(46+-=---x x x x x ; (4)13453=---x x .17、当m为何值时,关于x的方程5m+12x=12+x的解比关于x的方程x(m+1)=m(1+x)的解大2.18、(本题10分)解方程:①、121243x x--=-②、0.20.1120.30.4x x---=19.解方程:(1)5(x+8)=6(2x-7)+5;(2)26x--23x+=1+12x-;20.已知x=-3是方程13mx=2x-6的一个解.(1)求m的值;⑵求式子(2m-13m+11)2008的值.21.已知关于x的一元一次方程2009x-1=0与4018x-327a-=0有相同的解,求a的值.22.解方程:341 53x x---=23.(4分)当x为何值时,63x+比12x-大1?24.(8分)某空调器销售商,今年四月份销出空调(a-1)台,五月份销售空调比四月份的2倍少1台,六月份销售空调比前两个月的总和的4倍还多5台.(1)用式子表示该销售商今年第二季度共销售空调多少台?(2)若a=220,求第二季度销售的空调总数.25、(本题8分)一水池装有甲、乙、丙三个水管,甲、乙是进水管,丙是放水管,分别单独开放甲、乙水管各需45分钟和60分钟注满水池,单独打开丙水管,90分钟可放完一池水,现三管一齐开放,多少分钟可以注满水池?26、(本题8分)虹远商场原计划以1500元出售甲、乙两种商品,通过调整价格,甲提价20%,乙降价30%后,实际以1600元售出,问甲商品的实际售价是多少元?27、一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过18s,已知客车与货车的速度之比是5∶3,问两车每秒各行驶多少米?28.(6分)据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍,求严重缺水城市有多少座?29.(6分)一批商界人士在露天茶座聚会,他们先是两人一桌,服务员给每桌送上一瓶果汁.后来他们又改为三人一桌,服务员又给每桌送上一瓶葡萄酒.不久他们改坐成四人一桌,服务员再给每桌一瓶矿泉水.此外他们每人都要了一瓶可口可乐.聚会结束时服务员收拾到了50个空瓶.如果没人带走瓶子,那么聚会有几人参加?30.当得知2008年5月12日四川汶川大地震时,某校学生第一时间内伸出于援助之手.已知七年级(1)班有50人,捐款总数为全校人均捐款数的10倍多20元;七年级(2)班有54人,捐款总数为全校人均捐款数的12倍少30元.(1)如果两个班的捐款总数相等,那么这个学校人均捐款数为多少元?(2)如果七年级(1)班人均捐款数比七年级(2)班人均捐款数多0.5元,则这个学校人均捐款数为多少元?31.在学完“有理数的运算“后,实验中学七年级每班各选出5名学生组成一个代表队,在老师组织下进行一次知识竞赛.竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.(1)如果(2)班代表队最后得分142分,那么(2)班代表队回答对了多少道题?(2)(1)班代表队的最后得分能为145分吗?请简便说明理由.32.(12分)某一家服装厂接受一批校服订货任务,按计划天数进行生产,如果每天平均生产20套,就比订货任务少生产100套,如果每天平均生产23套,就可超过订货任务20套,问这批服装订货任务是多少套?原计划多少天完成?33.邮购一种图书,每本定价m 元,不足150本,另加书价5%的邮资(1)要邮购x 本(x 小于150本),总金额是多少元?(2)当一次邮购超过150本,书店除免邮资外,还给予优惠10%,计算当m=4,x=200本时金额是多少元?34.商场将某种品牌的冰箱按进价提高50%作为标价,然后打出“八折酬宾,外送100元运装费”的广告,结果每台冰箱应获利300元,求每台冰箱的进价是多少元?35、(6分)一个三角形的第一边是2a b +,第二边比第一边长32b -,第二边比第三边短2a b --,求这个三角形的周长。

36、(8分)如右图所示,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?37.(5分)小红:昨天我们8个人去凤凰山公园玩,买门票花了260元,小明:哦,门票挺贵的,听说成人票每张40元,孩子票每张20元,是吗?小红:哼,是的,那你猜猜我们去了几个大人,几个小孩子?小明:去了……根据以上的对话,你能用列方程的知识帮助小明回答小红的提问吗?图形1.(8分)如图所示, OE 、OD 分别平分∠AOB 和∠BOC, 若∠AOB=900, ∠EOD=700, 求∠BOC 的度数.2.如图,已知直线AB 和CD 相交于O 点,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求BOD ∠的度数.3、(6分)如图,C 、D 是线段AB 上两点,已知AC ∶CD ∶DB=1∶2∶3,M 、N 分别为AC 、DB 的中点,且AB=18㎝,求线段MN 的长。

相关文档
最新文档