555定时器报告
555定时器 实验报告

555定时器实验报告555定时器实验报告引言:555定时器是一种常用的集成电路,具有广泛的应用领域。
本实验旨在通过对555定时器的实验研究,探索其工作原理和特性,并进一步了解其在电子电路中的应用。
一、实验目的本实验的主要目的是:1. 了解555定时器的基本结构和工作原理;2. 掌握555定时器的基本参数和特性;3. 学习使用555定时器设计和实现简单的定时器电路。
二、实验原理555定时器是一种集成电路,由比较器、RS触发器和输出驱动器组成。
它可以工作在单稳态、多稳态和振荡器模式下,具有广泛的应用。
555定时器的主要参数有供电电压、触发电平、输出电流等。
三、实验步骤1. 实验前准备:准备好实验所需的555定时器芯片、电源、电阻、电容等器件。
2. 搭建电路:按照实验指导书上的电路图搭建555定时器电路。
3. 调试电路:根据实验指导书上的调试步骤,逐步调整电路参数,确保电路正常工作。
4. 测量参数:使用万用表等仪器,测量电路中的电压、电流等参数,并记录下来。
5. 分析结果:根据实验数据,分析555定时器的工作特性和参数变化规律。
6. 总结实验:总结实验过程中遇到的问题和解决方法,总结实验结果和心得体会。
四、实验结果与分析在实验过程中,我们观察到555定时器在不同电路条件下的稳定工作。
通过调整电路参数,我们成功实现了定时器电路的设计和实现。
根据测量数据和分析结果,我们得出以下结论:1. 555定时器的稳定工作与供电电压、触发电平等参数密切相关;2. 555定时器的输出电流能力有一定限制,需要根据具体应用场景选择合适的驱动电路;3. 555定时器可以通过改变电阻和电容值来调整输出波形的频率和占空比。
五、实验应用555定时器具有广泛的应用领域,常见的应用包括:1. 交通信号灯控制:通过555定时器实现交通信号灯的定时控制,实现交通流畅和安全;2. 脉冲发生器:利用555定时器的振荡特性,设计和实现各种脉冲发生器电路;3. 声音发生器:通过555定时器产生不同频率的方波,实现声音发生器电路;4. 脉宽调制:利用555定时器的占空比可调特性,实现脉宽调制电路。
集成555定时器实验报告

集成555定时器实验报告集成555定时器实验报告引言:集成555定时器是一种常见的集成电路,具有广泛的应用领域。
本实验旨在通过实际操作,深入了解555定时器的原理和特性,并通过实验结果验证其性能。
一、实验目的本实验的目的是掌握集成555定时器的工作原理和使用方法,通过实际操作验证其功能和性能。
二、实验器材和原理1. 实验器材:- 集成555定时器芯片- 电源- 电阻、电容等元件- 示波器- 万用表2. 原理简介:集成555定时器是一种多功能定时器,内部由比较器、触发器、控制逻辑和输出驱动等部分组成。
它可以实现单稳态、多谐振荡和脉冲宽度调制等功能。
其中,单稳态和多谐振荡是本实验的重点。
三、实验步骤1. 单稳态实验:- 连接电路:将555定时器芯片、电阻和电容等元件按照实验电路图连接起来。
- 施加电源:将电源接入电路,保证电压稳定。
- 测量电压:使用万用表测量电路中各个节点的电压,记录下来。
- 观察输出:使用示波器观察555定时器的输出波形,记录下来。
- 调整参数:根据实验要求,逐步调整电阻和电容的数值,观察输出波形的变化。
- 总结结果:根据实验结果,总结单稳态实验的特点和应用。
2. 多谐振荡实验:- 连接电路:将555定时器芯片、电阻和电容等元件按照实验电路图连接起来。
- 施加电源:将电源接入电路,保证电压稳定。
- 测量电压:使用万用表测量电路中各个节点的电压,记录下来。
- 观察输出:使用示波器观察555定时器的输出波形,记录下来。
- 调整参数:根据实验要求,逐步调整电阻和电容的数值,观察输出波形的变化。
- 总结结果:根据实验结果,总结多谐振荡实验的特点和应用。
四、实验结果与分析1. 单稳态实验结果:- 记录了不同电阻和电容数值下的输出波形。
- 分析了电阻和电容对输出波形的影响。
- 总结了单稳态实验的特点和应用。
2. 多谐振荡实验结果:- 记录了不同电阻和电容数值下的输出波形。
- 分析了电阻和电容对输出波形的影响。
555集成定时器的应用试验报告.doc

555集成定时器的应用试验报告.doc555集成定时器广泛应用于电路的计时、频率分频、波形发生、触发延迟、稳幅调制、电压控制振荡器等领域,是电子技术领域中使用最为广泛的集成电路之一。
本文通过实验验证了555定时器在不同工作模式下的应用。
一、实验目的1、了解555定时器的基本结构和工作原理;2、实现555定时器在单稳态触发器、多谐振荡器、方波振荡器、脉冲发生器等不同工作模式下的应用。
二、实验器材1、555集成定时器芯片;2、电阻和电容器;3、数字万用表;4、示波器;5、电源。
三、实验步骤1、单稳态触发器将555芯片的控制端(TRIG)和复位端(RESET)分别通过电阻连接到正电源VCC,将电容器C1放在电阻R1和GND之间,将555的输出端(Q)连接到LED灯和电阻R2上,电源VCC接入电阻R3和LED;利用数字万用表测量电容器充电时间和放电时间,并测量LED闪烁的频率。
2、多谐振荡器将电容器C1、电阻R1、电阻R2和555芯片组成的多谐振荡器电路,电容器C1连接到555芯片的引脚6和2上,电阻R1、电阻R2连接到引脚7和6上,通电后用示波器测量输出波形。
3、方波振荡器4、脉冲发生器四、实验结果本次实验,我们测得电容器充电时间为4.6ms,放电时间为16.0ms。
LED闪烁频率约为31Hz。
本次实验,我们测得输出波形频率为1.26 KHz,波形持续时间为0.7ms。
1、555定时器应用广泛,能够实现不同的工作功能;2、555定时器在多谐振荡器和方波振荡器中能够发挥稳定的输出作用;3、555定时器在脉冲发生器中能够实现精确的脉冲控制。
总之,555定时器的应用十分灵活,能够满足不同电路的需要。
同时,在实践中,我们需要根据具体情况合理地选择电容器、电阻等元器件,以达到更好的实验效果。
实验报告555集成定时器的应用

实验报告555集成定时器的应用
555集成定时器是一种很方便的定时器芯片,它将电子计时和一些基本的功能融合在
一起,拥有实用的应用,可以起到控制时间的作用,具有实用的属性。
555集成定时器可以实现多功能的计时,用较少的零件实现精确的定时,被广泛应用
于时控装置、家用电器、短信提醒、售货机、安全门等场景。
555集成定时器应用于家用电器,实现自动定时关机,比如对于目前电视市场上许多
涉及节目订购的节目,可以通过555集成定时器实现定时功能,当订购的节目时间到达时,自动开机观看节目;同理,可以用来实现电暖自动定时启动和关闭,便于家庭节能。
555集成定时器也能应用于安全门,具有延时关门、多按钮控制开关门等功能,保证
安全性。
此外,将它应用于短信提醒,能实现当实现时间到达条件时,集成定时器自动发
出提醒,发出报警信息,以实现人们的时效跟踪管理。
另外,555集成定时器也可以被应用于售货机,实现定时发放物品和打印发票等功能,保证售货机的安全性。
总之,555集成定时器由于其节省零件、高可靠性和精准控制时间的优点,凝聚着许
多实用的功能,被广泛应用于各种场景。
555定时器的实验报告

555定时器的实验报告555定时器的实验报告引言:555定时器是一种广泛应用于电子电路中的集成电路,它具有稳定可靠、功能强大的特点。
本次实验旨在通过对555定时器的实际操作,进一步了解其原理和应用。
一、实验目的:通过555定时器的实验,掌握其基本工作原理和使用方法,进一步了解其在电子电路中的应用。
二、实验器材:1. 555定时器集成电路芯片2. 电源3. 电阻、电容等元件4. 示波器5. 多用途实验板三、实验步骤:1. 搭建基本的555定时器电路首先,将555定时器芯片插入多用途实验板中,并根据电路图连接所需的电阻、电容等元件。
接下来,将电源连接到实验板上,并确保电路连接正确无误。
2. 测量输出信号频率使用示波器测量555定时器输出信号的频率。
调节电阻和电容的数值,观察输出信号频率的变化。
记录不同参数下的频率值,并进行比较分析。
3. 观察输出信号波形通过示波器观察555定时器输出信号的波形。
调节电阻和电容的数值,观察波形的变化。
分析不同参数对波形的影响,并记录观察结果。
4. 实现定时功能利用555定时器的稳定性和精确性,设计并实现一个简单的定时器电路。
通过调节电阻和电容的数值,设置所需的定时时间。
观察定时器的准确性和稳定性,并记录实验结果。
四、实验结果和分析:通过实验,我们得到了不同参数下555定时器输出信号的频率和波形。
实验结果表明,电阻和电容的数值对555定时器的工作频率和波形有较大的影响。
较大的电阻和电容数值将导致较低的频率和较长的周期,而较小的数值则会得到相反的结果。
此外,我们还实现了一个简单的定时器电路。
通过调节电阻和电容的数值,我们成功设置了所需的定时时间,并观察到定时器的准确性和稳定性。
这进一步证明了555定时器在电子电路中的实用性和可靠性。
五、实验总结:通过本次实验,我们深入了解了555定时器的工作原理和应用。
通过调节电阻和电容的数值,我们可以灵活地控制555定时器的输出频率和波形。
555定时器的应用实验报告总结

555定时器的应用实验报告总结
555定时器的应用实验报告总结
本次实验中,我们使用555定时器,研究它的重要性与应用。
本次实验,我们分别搭建了一只可以控制继电器进行开关控制的定时器,以及一只控制单色LED灯的定时器,并从中体会到了555定时器的重要性与应用。
首先,我们搭建了可以控制继电器进行开关控制的定时器,利用它可以实现有定时自动控制的需求。
当我们搭建并调试好定时器后,可以实现继电器每隔一定的时间,就会进行一次开关控制,这样就可以实现一些延时自动控制的功能,极大的方便我们的使用。
其次,我们搭建了一个控制单色LED灯的定时器,实现了定时开关LED灯的功能。
这是一个极其简单的实验,但是展现出了定时器的重要性,以及它拥有的相关应用。
定时器不仅可以控制继电器,也可以控制LED灯,实现定时开关的功能,让被它控制的电器自动完成开关的控制。
通过本次实验,我们可以清楚的看到555定时器的重要性与应用。
它不仅能够控制继电器的开关,还可以控制LED灯的定时开关,极大的方便了我们对电器的控制。
555定时器实验报告

555定时器实验报告555定时器实验报告引言:在电子学中,定时器是一种常见的集成电路,用于产生各种精确的时间延迟和脉冲信号。
其中,555定时器是最常用的一种,因其简单可靠而被广泛应用于各种电子设备中。
本文将介绍555定时器的基本原理、实验过程以及实验结果,并对其应用进行探讨。
一、555定时器的基本原理555定时器是一种集成电路,由比较器、RS触发器和放大器构成。
其工作原理是通过比较器的输出控制RS触发器的状态,从而产生稳定的方波信号。
555定时器有三个工作模式:单稳态、自由运行和双稳态。
单稳态模式下,输出信号为一次性的脉冲;自由运行模式下,输出信号为连续的方波;双稳态模式下,输出信号为两个稳定的状态。
根据外部电路的连接方式,可以实现不同的定时功能。
二、实验过程1. 准备实验材料:555定时器芯片、电阻、电容、开关、电源等。
2. 搭建实验电路:按照实验要求,将555定时器与其他元件连接在一起,形成一个完整的电路。
3. 设置实验参数:根据实验要求,选择合适的电阻和电容数值,并将它们连接到555定时器的相应引脚上。
4. 进行实验观测:将电源接通,观察555定时器的输出信号,并记录实验数据。
5. 分析实验结果:根据实验数据,分析555定时器的工作状态和输出特性。
6. 进一步实验:根据实验结果,可以尝试调整电阻和电容数值,观察输出信号的变化。
三、实验结果通过实验观测和数据记录,我们得到了如下实验结果:1. 当电阻和电容数值较大时,输出信号的频率较低,周期较长。
2. 当电阻和电容数值较小时,输出信号的频率较高,周期较短。
3. 当电阻和电容数值相等时,输出信号的占空比为50%。
4. 当电阻和电容数值不相等时,输出信号的占空比会发生变化。
四、555定时器的应用探讨555定时器作为一种常见的定时器,被广泛应用于各种电子设备中。
它的应用领域包括但不限于以下几个方面:1. 脉冲发生器:通过调整电阻和电容数值,可以产生不同频率和占空比的脉冲信号,用于驱动其他电路或设备。
555定时器应用实验报告

555定时器应用实验报告555定时器应用实验报告引言:555定时器是一种经典的集成电路,具有广泛的应用。
本实验旨在通过实际操作,探索555定时器的基本原理和应用。
一、实验目的本实验的目的是通过555定时器的应用实验,了解555定时器的基本工作原理、特性和应用场景。
二、实验器材1. 555定时器芯片2. 电源3. 电阻、电容、电感等元件4. 示波器5. 连线电缆等三、实验步骤1. 搭建基本的555定时器电路,包括电源、555芯片、电阻、电容等元件。
2. 连接示波器,观察输入和输出信号的波形。
3. 调节电阻和电容的数值,观察波形的变化。
4. 尝试不同的输入信号,如方波、正弦波等,观察输出信号的响应。
5. 探索不同的应用场景,如脉冲发生器、频率分频器等,观察555定时器的工作情况。
四、实验结果与分析在实验过程中,我们观察到了以下现象和结果:1. 通过调节电阻和电容的数值,可以改变555定时器的输出频率和占空比。
2. 输入信号的不同波形对输出信号的响应也有影响,方波信号能够得到更稳定的输出。
3. 在不同的应用场景中,555定时器表现出了良好的性能,如在脉冲发生器中能够产生稳定的脉冲信号,在频率分频器中能够实现精确的频率分频。
通过对实验结果的分析,我们可以得出以下结论:1. 555定时器是一种非常实用的集成电路,具有广泛的应用前景。
2. 通过调节电阻和电容的数值,可以实现对555定时器的频率和占空比的精确控制。
3. 在不同的应用场景中,555定时器表现出了良好的稳定性和可靠性。
五、实验总结通过本次实验,我们深入了解了555定时器的基本原理和应用。
通过实际操作,我们掌握了555定时器的调节方法和应用技巧。
同时,我们也发现了555定时器在不同应用场景中的优势和局限性。
通过对实验结果的分析和总结,我们对555定时器有了更深入的理解。
总之,555定时器作为一种经典的集成电路,在电子领域有着广泛的应用。
通过实验,我们对555定时器的工作原理和应用场景有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定时开关电路1.设计目的、任务、要求。
1.1设计目的(1).熟悉用555定时器组成的单稳态触发器电路.(2).掌握555定时器的使用方法.(3).了解定时器时间的计算和元件的选择.1.2设计任务能完成定时功能且定时时间可调,保证精度要求.1.3设计要求(1).电路简单可靠,实用性强.(2).画出原理电路图,标明元件参数,简单计算.2.设计原理及说明(1).说明:555定时器是电子工程领域中广泛使用的一种中规模集成电路,它将模拟与逻辑功能巧妙地组合在一起,具有结构简单、使用电压范围宽、工作速度快、定时精度高、驱动能力强等优点。
555定时器配以外部元件,可以构成多种实际应用电路。
广泛应用于产生多种波形的脉冲振荡器、检测电路、自动控制电路、家用电器以及通信产品等电子设备中。
(2).555定时器电路原理555定时器电路是一块介于模与数字电路的一种混合电路,在报警电路、控制电路得到了广泛的应用。
下图为555的内部电路,从图上可以看出,其仅有两个比较器、一个触发器、一个倒相器、放电管和几个电阻构成,由于比较器电路是一个模拟器,而触发器电路为数字电路,故其为混合器件。
图5-2 555定时器管脚555定时器管脚功能描述:(功能表如表3所示)1管脚:接地端(Uss)。
2管脚:低电平触发端( )。
由此输入触发脉冲,当2脚的输入电压高于时,C2的输出为1,当管脚的输入电压低于时,C2的输出为0,基本RS触发器置0。
3管脚:输出端(OUT):输出电流可以达到200MA,因此可以直接驱动继电器,发光二极管,扬声器,指示灯等,输出电压约低于电源电压(VCC)1- 3V。
4管脚:复位端( R ):由此输入负脉冲而使触发器直接复位(置0)。
5管脚:电压控制端(CO):在此端可以外加电压改变比较器的参考电压。
不使用时,经0.01的电容接地,以防止干扰的引入。
6管脚:高电平触发端(TH):由此输入触发脉冲,当其输入电压低于时,C1的输出为1,当其输入电压高于时,C1的输出为0,使触发器置0。
7管脚:放电端(D):当触发器的为1时,放电晶体管V导通,外接电容元件通过V放电。
8管脚:电源端(UDD):可以在5--18V范围内使用。
按基本R-SFF的工作原理有:当Rd=O,Sd=1时,Q=0,Q=1 触发器清零;当Sd=0时,Rd=1时,Q=1,Q=0 触发器置1;当Sd=1时,Rd=1时,Q,Q保持原态。
由图5-1可见,当第5脚悬空时,第8脚所接的电源电压Vcc经三个5kΩ的电阻R分压,电压比较器C1同相输入端的电压为,该电压是电压比较器C1的参考电压;电压比较器C2反相输入端的电压为,该电压是电压比较器C2的参考电压。
555定时器的工作原理是:当输入电压时,电压比较器C1反相输入端的输入电压小于参考电压,相当于在电压比较器C1的反相输入端输入一个负极性的信号,电压比较器C1的输出电压为正极性的信号,即高电平信号“1”;电压比较器C2同相输入端的输入电压小于参考电压,相当于在电压比较器C2的同相输入端输入一个负极性的信号,电压比较器C2的输出电压为负极性信号,即低电平信号“0”;RS触发器被置位,输出电压u0等于1。
当输入端R为低电平时,不管别的输入端为何种情况,输出为低电平,CMOS管工作。
当引脚6的输入电平大于2/3UDD 并且引脚2的输入电平大于1/3UDD,输出为低电平,CMOS管工作当引脚6的电平小于2/3UDD 并且引脚2的输入电平大于1/3UDD,输出为原状态.当引脚2的电平小于1/3UDD,电路输出为高电平,NMOS管关断.当输入电压时,ui2从变化到时,电压比较器C1反相输入端的输入电压小于参考电压,电压比较器C1的输出电压为高电平信号“1”;电压比较器C2同相输入端的输入电压从小于参考电压变化到大于参考电压,电压比较器C2的输出电压从低电平信号“0“变为高电平信号“1”;RS触发器处在保持的状态,保持时的输出状态,输出电压u等于1。
当输入电压时,电压比较器C1反相输入端的输入电压大于参考电压,相当于在电压比较器C1的反相输入端输入一个正极性的信号,电压比较器C1的输出电压为负极性的信号,即低电平信号“0”;电压比较器C2同相输入端的输入电压大于参考电压,相当于在电压比较器C2的同相输入端输入一个正极性的信号,电压比较器C2的输出电压为正极性信号,即高电平信号“1”;RS触发器被复位,输出电压u等于0。
当输入电压时,ui1从变化到时,电压比较器C2同相输入端的输入电压大于参考电压,电压比较器C2的输出电压为高电平信号“1”;电压比较器C1反相输入端的输入电压从大于参考电压变化到小于参考电压,电压比较器C1的输出电压从低电平“0”变为高电平“1”;RS触发器处在保持的状态,保持时的输出状态,输出电压u等于0。
555定时器输出与输入的关系也可用功能表来描述,555定时器的功能表如表5-1所示。
表5-1 555定时器功能表(3).555定时器电路组成单稳态触发器的原理叙述.1.电路结构将5G555定时器的TR端(2脚)作为触发器信号Ui的输入端,VT管的集电极(7脚)和阈值触发端TH连在一起,通过电阻R接电源Vcc,组成了一个反向器,其集电极(7脚)通过电容C接地,控制CO(5脚)通过Co(0.01μF)接地,便构成了图22-2-1所示的单稳态触发器.R和C为定时元件.图22-2-2为其工作波形.2.工作原理1)稳定状态电路接通电源后,在没有施加负脉冲时,触发信号Ui保持不变,即 Ui为高电平Uih.接通电源后, Vcc经电阻R对电容C进行充电,当电容上的电压Uc充到Uc≥2/3Vcc,电压比较器C1输出Uc1=0,而在此时Ui为高电平,且Ui>Vcc,电压比较器C2输出Uc2=1,基本RS触发器置0,即Q=0, Q =1,此时,三极管VT饱和导通,电容C经VT迅速防完电,Uc=0,电压比较器C1输出Uc1=1,这是基本RS触发器的两个输入信号都为高电平1,保持0状态不变.所以,在稳定状态时,Uc=0,Uo=0.2)出发进入暂稳态当输入Ui由高电平Uih跃变到小于1/3Vcc的底电平时,电压比较器C2输出Uc2=0,由于此时Uc=0,因此Uc1=1,基本RS触发器被置1,即Q=1, Q =0,输出Uo 由低电平跃变到高电平Uoh.同时三极管VT截止,这时电源Vcc经电阻R对电容C 充电,电路进入暂稳态.在暂稳态期间由输入电压Ui回到高电平.3)自动返回稳定状态随着电容C的充电,电容C上的电压Uc逐渐增大.当Uc1电压上升到Uc=2/3Vcc 时,电压比较器C1的输出Uc1=0,由于此时Ui已为高电平,电压比较器C2输出Uc2=1,基本RS触发器置0即Q=0, Q =0,输出Uo由高电平Uoh跃变到低电平Uol..同时,三极管VT饱和导通,C经VT迅速放完电,Uc=0.电路返回稳定状态.由555定时器构成的单稳态触发器的输出脉冲宽度tw为暂稳态维持的时间,他实际上为电容上电压Uc由0V充到2/3Vcc所需要的时间可按下式计算:Tw=RCln3≈1.1RC图22-2-1 单稳态触发器电路图图22-2-2 单稳态触发器的波形图(4).由555集成电路IC1是一片555定时电路,在这里接成单稳态电路。
平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。
图2-5-3 555定时器基本电路构成的定时开关电路当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。
同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。
当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。
定时长短由R1、C1决定:T1=1.1R1*C1。
按图中所标数值,定时时间约为4分钟。
D1可选用1N4148或1N4001。
3.组装与调试1)按上图2-5-3组装电路,555时基电路输出端可接入继电器,也可接入200Ω电阻与发光二极管LED串联来观察单稳态时间。
2)调节定时时间要准确的调定所需时间,应先计算Rt的数值,然后将Rp调节在该值附近,接入电路再精确调节所需时间。
调节定时元件,使Td分别为30秒、60秒,测量Rt的阻值与计算值比较、分析误差原因。
3)组装与调试应注意555时机电路的电源极性,不可接错。
该接电路时续断电进行,测量元件数值时,必须将元件与电路分离,否则将产生较大的误差4.元件清单NE556,(或LM556,5G556等)双时基电路 1片二极管1N148 2 只电位器 22K、1K 2 只电阻、电容若干扬声器一只 KD-930 0系列音乐集成块一块小型无锁按键开关9013型硅NPN三极管,要求β≥100。
5.结论通过这次课程设计,使我更加明白了以下几点内容:1)555定时器组成的单稳态触发器电路。
2)掌握了555定时器的使用方法。
3)了解定时器时间的计算和元件的选择。
4)了解到555定时器在现实生活中的广泛应用。
5)体会到理论要与实际相联系的重要性。
6)通过本次设计增加了对动手能力的重视,增加了对电子技术这门课程的兴趣,试图以后在此领域有所作为。
7)感谢我的指导老师韩翠霞老师的精心指导。
6.参考书目[1] 罗中华,《数字电路与逻辑设计》,清华大学出版社,北京,2006[2] 刘培植,《数字电路设计与数字系统》,北京邮电大学出版社,北京,2005[3] 杨欣,王玉风,《电子线路设计与仿真》,清华大学出版社,北京,2006[4] 苏丽萍,《电子技术基础》,西安电子科技大学出版社,西安,2005。