简单的几何证明课件.ppt

合集下载

11.3 什么是几何证明 课件 (青岛版八年级下)

11.3 什么是几何证明 课件  (青岛版八年级下)

几何证明过程的步骤 (1)根据题意,画出图形。 (2)结合图形,写出已知、求证。
(3)找出由已知推出求证的途径,写出证明。
第11章
几何证明初步
(第一课时)
预习提纲
1、什么是公理?举例说明。 2、背诵课本上列举的公理? 3、什么是证明? 4、什么是定理? 5、所有的公理、定理是真命题吗? 6、弄懂课本上的两个例题,注意书写格式。 7、证明的过程分几步?在书写上注意哪些问题? 8、完成第122页练习。 9、完成综训第一课时的题目,不会的小组交 流。
释疑解难
本书把下列基本事实也作为公理。
( ( ( (
) ) ) )
即:两直线平行,同旁内角互补。

) ( )
( ( )

即:对顶角相等。

结 几何证明过程的步骤
(1)根据题意,画出图形。
(2)结合图形,写出已知、求证。
(3)找出由已知推出求证的两直线平行,同旁内角互补。 7、如果两条直线都和第三条直线平行,那么这两条直线也 互相平行。
8、如果两条直线都和第三条直线垂直,那么这两条直线
也互相平行。 9、同角或等角的余角相等;同角或等角的补角相等
.
由已知条件、定义、公理或已经证实了的真 命题出发,通过推理的方法得到证实的真命 题称作定理。

几何图形(39张PPT)数学

几何图形(39张PPT)数学

第6章 图形的初步知识
6.1 几何图形
学习目标 1.在具体情况中认识立方体、长方体、圆柱体、圆锥体、球体,并能理解和描述它们的某些特征,进一步认识点、线、面、体,体验几何图形是怎样从实际情况中抽象出来的.2.了解几何图形、立体图形与平面图形的概念.掌握重点 认识常见几何体并能描述它们的某些特征.突破难点 体验几何图形与现实生活中图形的关系,区分立体图形与平面图形.

返回
解 立方体由6个面围成,它们都是平的;圆柱由3个面围成,其中有2个平的,1个曲的.解 圆柱的侧面和两个底面相交成2条线,它们都是曲的.解 立方体有8个顶点,经过每个顶点有3条线段(棱).
典例精析
例1 (教材补充例题)如图所示的图形.平面图形有_____________;立体图形有_____________.
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
①,②,⑥
③,④

②,③,⑤
①,④,⑥
19
13.如图是一个三棱柱,观察这个三棱柱,请回答下列问题:(1)这个三棱柱共有多少个面?(2)这个三棱柱一共有多少条棱?(3)这个三棱柱共有多少顶点?
解 这个三棱柱共有5个面.解 这个三棱柱一共有9条棱.解 这个三棱柱共有6个顶点.
C
解析 观察图形可知,其中一面、两面、三面涂色的小正方体的个数分别为x1=6,x2=12,x3=8,则x1-x2+x3=2.故选C.
1
2
3
4
5
6
7
8
9
10
11
12

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)

最新青岛版初二数学八年级上册第五章 几何证明初步 ppt课件

最新青岛版初二数学八年级上册第五章 几何证明初步 ppt课件

笑不笑由你
电视里正在播放精彩的乒乓球比赛,奶奶边 看比赛边说:打得好!打得好!可惜播音员不识 数……
孙子听了不解地问:人家咋不识数? 奶奶说:明明是两个人在打球,他却说单打; 明明是四个人在打球,他却说双打,你说他识数 不识数?
合作解疑
一般地,用来说明一个概念含义的语句叫做 这个概念的定义。
例如: 1、“具有中华人民共和国国籍的人,叫做中华人 民共和国公民” 是“ 中华人民共和国公民 ”的定义; 2、 “两点之间 线段的长度,叫做这两点之间的距离” 是两点之间的距离 “ ”的定义;
两个角所对的边也相等。
(4)对顶角相等。 条件是: 两个角是对顶角 结论是: 这两个角相等 改写成: 如果两个角是对顶角,那么这两个角相等。
做一做
指出下列命题的条件和结论,并改写 “如果……那么……”的形式: ⑴两条边和它们的夹角对应相等的两 个三角形全等; 如果两个三角形有两条边和它们的夹角对 应相等,那么这两个三角形全等。 ⑵直角三角形两个锐角互余。
“直观”可靠吗?
直观是重要的,但它有时也会骗人.观察下列图形,回 答问题: a a b b 线段a,b相等吗?
线段a,b相等吗?
a bc
d
线段d与哪条线段在同 一条直线上?
红色线围成的图形是 正方形吗?
精讲点拨 1.
解: 小亮的结论错误. 当n=6时 n2+3n+1 =36+18+1 =55 ∵55为合数 ∴当n为正整数时, n2+3n+1的值一定是质数错误.
如何给名词下定义
去除与众不同的一个选项
(A)
(B)
(C)
(D) 共同点:三角形
特点:A、B、D有一个角是直角

课件皮克定理PPT

课件皮克定理PPT
近似形式二
在数值计算中,皮克定理的近似形式也可以通过蒙特卡洛方法或随机抽样方法来实现。这些方法通过随机生成大 量的点或粒子,并计算这些点或粒子落在整个形状内部的概率来近似计算整个形状的面积或体积。
04
皮克定理的几何意义和物理应用
几何意义
01 02
面积与点密度关系
皮克定理描述了点密度与区域面积的关系,即在一个二维区域中,如果 将每个点赋予一个权重,则该区域的总面积等于所有点的权重与其距离 的平方之和的总和。
特例二
在平面几何中,如果一个点位于多边形的边上,那么这个点 与多边形的顶点相连形成的线段将把多边形的面积分成若干 个小三角形,这些小三角形的面积之和等于多边形的面积。
高维几何中的变种
变种一
在高维几何中,如果一个点位于多面体的内部,那么这个点与多面体的顶点相连形成的 线段将把多面体的体积分成若干个小四面体,这些小四面体的体积之和等于多面体的体
在深度学习中,皮克定理也常被用于优化神经网络的架 构和参数,提高了模型的性能和泛化能力。
06
皮克定理的进一步研究和发展方向
深入研究皮克定理的数学性质
皮克定理的精确表述
进一步明确皮克定理的数学定义和适用范围,以便更准确地应用 和推广。
皮克定理的证明方法
研究和发展新的证明方法,以验证皮克定理的正确性和可靠性。
在量子力学中,皮克定理可以用于描 述量子态的几何属性,例如量子态的 曲率、流形等。
量子干涉与波函数
几何相位
在量子力学中,皮克定理还可以用于 计算几何相位,即量子态在演化过程 中由于几何形状改变而产生的相位差 。
通过皮克定理,可以分析波函数的形 状和干涉现象,从而理解量子力学的 本质和规律。
物理应用二:流体动力学

《初中几何证明题》课件

《初中几何证明题》课件

提高练习题
总结词:能力提升
详细描述:提高练习题是在基础练习题的基础上,进一步加深对几何证明题的理解和应用。这些题目 通常涉及多个知识点,需要学生综合运用所学知识进行解答,有助于提高学生的思维能力和解题技巧 。
竞赛练习题
总结词
挑战与突破
VS
详细描述
竞赛练习题是针对初中数学竞赛的几何证 明题,难度较大,对学生的思维能力和解 题技巧提出了更高的要求。这些题目通常 需要学生突破常规思维,寻找独特的解题 方法,有助于培养学生的创新思维和解决 问题的能力。
反证法
总结词
通过假设结论不成立,然后推导出矛盾,从而证明结论成立 。
详细描述
反证法是一种常用的证明方法。首先假设结论不成立,然后 在此基础上进行推理和计算,如果推导出矛盾,则说明假设 不成立,从而证明结论成立。
综合法与分析法
总结词
综合法是从已知条件出发,逐步推导到结论;分析法是从结论出发,逐步推导到已知条 件。
05
几何证明题总结与反思
总结几何证明题的解题思路
明确已知条件和求证目标
在解题前,应仔细阅读题目,明确已 知的条件和需要证明的目标,以便确 定解题方向。
分析图形结构
根据题目的描述,分析图形的结构, 包括角度、线段、平行、垂直等关系 ,为解题提供依据。
选择合适的证明方法
根据图形的结构和已知条件,选择合 适的证明方法,如利用全等三角形、 相似三角形、勾股定理等。
逐步推导
根据选择的证明方法,逐步推导所需 证明的结论,每一步推导都要有明确 的逻辑依据。
反思几何证明题的常见错误与注意事项
常见错误
在解题过程中,容易出现一些常 见的错误,如混淆已知条件和求 证目标、忽略图形的结构、选择 错误的证明方法等。

10-1几何证明选讲 39张 公开课一等奖课件

10-1几何证明选讲  39张  公开课一等奖课件

[证明]
EP AE (1)∵EP∥BC,∴ = . BC AB
PF DF 又∵PF∥BC,∴ = . BC DC AE DF EP PF ∵AD∥EF∥BC,∴AB=DC,∴BC=BC, ∴EP=PF.
(1)△DFE∽△EFA;
(2)△EFG∽△EFC.
[解析] 证明:(1)∵EF∥CB,
∴∠DEF=∠DCB. ∵∠DCB和∠DAB都是弧DB上的圆周角, ∴∠DAB=∠DCB=∠DEF. ∵∠DFE=∠EFA,
∴△DFE∽△EFA.
(2)由(1)知:△DFE∽△EFA, EF FD ∴ = , FA EF 即 EF2=FA· FD. 由割线定理得 FA· FD=FG· FC. EF FC ∴EF =FG· FC,即 = . FG EF
线 AD 的延长线交它的外接圆于点 E. (1)证明:△ABE∽△ADC; 1 (2)若△ABC 的面积 S=2AD· AE, 求∠BAC 的大小.
[分析] (1)利用两角对应相等,两三角形相似. (2)利用△ABE∽△ADC及面积公式来求解. [证明] (1)由已知条件,可得∠BAE=∠CAD. 因为∠AEB与∠ACB是同弧上的圆周角,所以∠AEB= ∠ACD. 故△ABE∽△ADC.
与另一个三角形的两个角对应相等,那么这两个三角形相 似 ( 简叙为:两角对应相等,两三角形相似 ) ;如果一个三 角形的两条边和另一个三角形的两条边对应成比例,并且 夹角相等,那么这两个三角形相似(简叙为:两边对应成比
例且夹角相等,两个三角形相似);如果一个三角形的三条
边与另一个三角形的三条边对应成比例,那么这两个三角 形相似(简叙为:三边对应成比例,两个三角形相似).
(8)直角三角形的射影定理:直角三角形斜边上的高是

相似三角形完整版PPT课件

相似三角形完整版PPT课件
通过已知条件推导出新的相似关系,逐步 构建完整的相似三角形体系。
强调逻辑推理的严密性和条理性,培养学 生分析问题和解决问题的能力。
分析法证明
从结论出发,逆向分析, 寻找使结论成立的条件。
通过分析已知条件和结论 之间的关系,找到证明相 似三角形的关键步骤。
培养学生的逆向思维能力 和分析问题的能力。
构造法证明
相似三角形在几何变换中的应用
在平移、旋转、轴对称等几何变换中,相似三角形可以保持其形状不变,因此具有一些重要的应用。例 如,在建筑设计、地图制作等领域中,常常需要利用相似三角形进行比例缩放和形状保持。
谢谢您的聆听
THANKS
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
性质
相似三角形的对应边成比例,对 应角相等。
判定方法
预备定理
SSS相似
平行于三角形的一边,并且和其他两边相 交的直线,所截得的三角形的三边与原三 角形三边对应成比例。
如果两个三角形的三组对应边的比相等, 那么这两个三角形相似。
SAS相似
AA相似
如果两个三角形的两组对应边的比相等, 并且夹角相等,那么这两个三角形相似。
在证明两个三角形相似时,要严 格按照相似三角形的判定定理进
行推导,避免出现逻辑错误。
拓展延伸:更高阶相似性质探讨
相似多边形
对应角相等,对应边成比例的两个多边形相似。相似多边形具有与相似三角形类似的性质。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档