[变压器,绕组,变形,其他论文文档]变压器绕组变形原因及危害
判断变压器绕组变形的简单方法

判断变压器绕组变形的简单方法摘要:本文主要针对判断变压器绕组变形的简单方法,明确了具体的方法和内容,对于今后如何更好的做好判断变压器绕组变形的工作非常富有意义,也具有参考意义。
关键词:变压器,绕组,变形,方法前言在判断变压器绕组变形方面,应该要采取更好的方法,与此同时,我们也应该明确判断变压器绕组变形的简单方法的使用的要求,以及在使用的过程中要更加的重视效果。
1、变压器绕组变形的原因及危害变压器是电网中的主要核心设备,其安全状况对整个系统的安全运行具有举足轻重的地位,而从变压器事故的情况看,很多都伴随有绕组的变形现象,甚至是由于绕组变形引起的。
仅2000年,广东省内通过绕组变形测试就发现8台运行中的110kV变压器存在绕组变形,并及时对这些变压器进行了维修和加固改造,消除了事故隐患,取得了显著的效益。
因此,开展变压器绕组变形测试对变压器的安全运行有着重要的意义,也是我们开展变压器状态检修的必备条件。
变压器在运行中不可避免地要遭受各种短路故障电流的冲击,特别是出口短路和近区短路对变压器的危害最大,变压器绕组将承受巨大的、不均匀的轴向和径向电动应力作用。
当绕组内部机械结构存在薄弱环节,必然会产生绕组变形现象。
包括轴向、径向尺寸变化,器身位移,匝间短路及绕组扭曲、鼓包等。
变压器绕组变形后继续运行可有发生下列情况:1.1变压器立即损坏。
我局曾有一台110kv变压器在遭受近区短路,重合成功后,二十多秒后瓦斯动作,事后检查绕组变形,返厂重绕;1.2由于绕组变形,引起变压器的绝缘材料损伤或者绝缘距离发生改变,导致绝缘强度下降,在长期正常电压或过电压作用下,最终可能导致绝缘击穿,此类情况可以用电气试验和油试验等常规的方法检出其绝缘缺陷;1.3绕组变形后,绝缘状况没有损坏,但线圈的机械强度下降,当再次遭受短路故障时,将承受不住巨大的电动力而发生损坏,此类情况由于绝缘没有损坏,常规电气试验及油试反映不出问题,只能通过绕组变形测试的手段才能得出正确的结论。
浅析变压器绕组变形的影响因素

浅析变压器绕组变形的影响因素摘要:变压器是电力系统中必不可少的设备之一。
其中,绕组是变压器组成部分的重要部件之一,其变形会影响变压器的性能和稳定性。
本文从理论和实践的角度,深入探讨了影响变压器绕组变形的因素,以期为变压器的研究和应用提供参考。
关键词:变压器,绕组变形,影响因素正文:绕组作为变压器的重要组成部分之一,其变形会对变压器的性能和稳定性产生很大的影响。
以下是一些常见的绕组变形的影响因素:1.温度绕组变形与温度密切相关,当变压器长时间工作后,绕组会因为内部温度过高而发生变形。
此时,绕组的导体会发生热膨胀效应,从而导致绕组膨胀或收缩。
这将导致绕组的位置发生变化,从而影响变压器的工作性能。
2.机械负载在电力系统的运行过程中,变压器经常会受到各种机械负载的作用,如风力、机械振动、设备波动等。
当机械负载较大时,容易导致绕组受到扭曲和变形,这也会影响变压器的性能和稳定性。
3.电流当绕组通电时,由于电磁力作用,电流会产生一定的磁场效应,从而产生一个与电流方向垂直的磁场力。
当电流变化时,磁场力也会随之变化,这会导致绕组受到强大的拉力或挤压力,这也是绕组变形的一个重要因素。
4.绝缘性能绝缘是变压器中重要的保护措施之一,如果绕组的绝缘性能差,当绕组通电时,可能会出现绕组短路、操作不当等问题,导致变压器损坏、损失等情况。
因此,对于变压器的绕组,一定要注意绝缘性能。
总之,绕组变形是导致变压器损坏的一个重要因素,因此,在变压器的使用和维护过程中,需要注意以上影响因素。
只有加强维护和管理,才能更好地保护变压器,延长其使用寿命。
除了影响因素之外,绕组变形还有一些处理方法和预防措施,这也是我们必须重视的。
针对以上影响因素,下面是一些常见的处理方法和预防措施:1.温度在变压器的设计和制造过程中,需要考虑到绕组的材料和结构,以适应高温环境下的运行。
同时,在长时间工作之前,可通过温度计等工具对变压器进行检测监控,确保其不会在高温环境下工作。
变压器绕组变形原因及危害

变压器绕组变形原因及危害摘要:变压器是整个电网传输系统中最核心的设备,由此可见,它安全运行对整个电网的安全而言是起到至关重要作用的。
本文主要通过对变压器的常见故障绕组变形进行分析,探讨变压器绕组变形的原因以及由此产生的危害。
这对整个电网系统安全系统的正常有序的进行意义重大。
关键词:变压器;绕组;变形1.变压器绕组变形的定义所谓的变压器绕组变形的定义根据电力行业标准DL/T911-2004《电力变压器绕组变形的频率响应分析法》可知:在电动力或机械力的作用下电力变压器绕组发生了变化,它的轴向或径向尺寸有所改变。
一般情况下具体的表现有,绕组位置发生移动、鼓包或者局部扭曲等。
变压器在运输过程中遭受冲撞时或者遭受短路电流冲击的时候,都有可能发生变形,影响变压器的正常运行,甚至整个电网的安全运行。
2.变压器绕组变形的原因变压器绕组变形主要的形式为绕组发生扭曲、鼓包、移位等不可恢复的变形现象,其中最常见也是对典型的形式就是伴随着绝缘破坏而出现的绕组匝间短路、主绝缘放电或完全击穿。
在日常生活中,引起变压器变形的原因有很多,一般主而言,主要有以下几种:2.1变压器绕组在运行过程中受到来自短路故障电流的冲击在运行过程中受到各种短路故障电流的冲击是不可避免的。
尤其是在近距离短路和出口故障时,绕组会受到来自短路电流带来的非常大的冲击力,从而使得绕组温度升高,且变压器有关导线的机械强度削弱,最终变压器绕组在电动力的运作下会产生变形甚至完全报废。
一般而言,变压器的电动力有两种,一种是径向(横向)力,另一种是轴向(纵向)力。
2.1.1径向(横向)力电流的方向和线圈的相互位置决定径向力的作用,在双线圈变压器上,径向力的作用主要是起到奔窜内部线圈、拉伸外部线圈的作用,以此来增强整个线圈相对径向力的硬度。
普遍的做法是把条用绝缘筒支撑,然后绕上线圈,此时线圈要受到撑条所导致的弯曲力作用和压缩力的作用。
所以,假如这种合力超过了线圈刚度的最大受力点,就会造成线圈变形或者永久损坏,变现方式如:梅花状或鼓包状绕组。
电力变压器绕组的形变分析与对策

电力变压器绕组的形变分析与对策发布时间:2022-05-05T13:11:46.734Z 来源:《科学与技术》2022年2期作者:范水明余婵吴利华[导读] 变压器组成部件有很多,因此故障问题发生类型有很多样范水明余婵吴利华衢州杭甬变压器有限公司摘要:变压器组成部件有很多,因此故障问题发生类型有很多样,其中本文所研究的绕组形变故障就是最常发生的一种,主要发生在变压器的绕组部件上。
本文就电力变压器绕组的形变分析与对策进行了论述。
关键词:电力变压器;绕组;形变分析;对策前言在当今电力盛行的时代,电力几乎支撑了整个社会体系的运转,因此一旦电力停止运转,将会造成巨大损失,如2021年2月中旬,美国德州遭遇大寒潮,导致大范围停电,伴生电价飙涨,严重影响民生和经济。
我国电力系统是由各种设备组成的一张环环相扣的电网,因此其中一个设备出现故障问题,就会导致局部或者全部范围停电事故。
变压器是电网核心设备之一,主要作用是改变交流电压值,以满足不同区域对电压的需求。
变压器故障类型多样,其中,变压器绕组形变故障是最常发生的。
1变压器绕组形变因素的分析1.1绕组结构的变化变压器绕组结构的变化,也将引起电磁力大小及分布规律的变化,其中轴向结构的变化对其影响最大。
一般在电磁力作用下,结构的平衡是不稳定的,为使结构的平衡保持稳定,则必须增加额外的约束。
因此在变压器设计时,为保证变压器高、低压绕组的轴向稳定性,绕组上必须施加足够的预紧力。
当变压器绕组有轴向位移时,其高、低压绕组各对应分区中的安匝不再平衡,并且上、下也不对称,此时将在变压器高、低压绕组中产生巨大的轴向电磁力,此轴向电磁力在高、低压绕组中的方向是相反的。
方向相反的轴向电磁力将使绕组的这种不平衡进一步扩大,直到绕组损坏。
1.2绕组材料属性绕组的材料属性往往会直接影响形变情况,同时温度对材料属性的影响较大,在实际变压器绕组上,温度分布是不均匀的,这就导致绕组高度范围内各位置的材料属性并不相同,因此导致了绕组各处的强度不能以相同的标准衡量;同时变压器在长期服役期间,在每次经过短路电流冲击后,绕组导线都会产生一定程度的弹性应变和微小的塑性应变,当长期积累后产生的累积效应就可能会造成绕组的形变。
大型电力变压器绕组变形的防止对策

大型电力变压器绕组变形的防止对策电力变压器是电力系统中不可或缺的重要设备,它承担着电力输送、变电、配电等一系列关键功能。
而电力变压器的核心部件就是绕组,它负责将电能从一种电压等级向另一种电压等级转换。
然而,由于长期使用以及现场环境等因素的影响,大型电力变压器的绕组存在一定程度的变形风险。
因此,本文将探讨如何防止大型电力变压器绕组变形的对策。
绕组变形的危害大型电力变压器绕组的变形会给电力系统带来诸多危害,主要包括以下两个方面:对设备的影响绕组变形会导致设备性能下降,变压器容量降低,电流能力受限,损耗增大,噪声加大等一系列问题。
特别是对高压电气设备来说,绕组变形会导致电气局部放电现象的增加,从而引发绝缘性能下降、绝缘击穿、设备损坏等更为严重的安全隐患。
对系统的影响绕组变形会使变压器内部电场分布不均,从而导致局部过电压的产生,进而引发系统的跳闸、设备损耗增大等问题。
特别是在短路故障时,绕组变形会使得变压器的短路电流增大,从而加剧系统的损坏程度。
防止绕组变形的对策针对以上危害,我们应当采取必要的措施,防止大型电力变压器绕组的变形。
目前,主流的防止绕组变形的对策主要包括以下几个方面:选材优化选择合适的绕组材料和结构,以保证其高强度、高耐腐蚀性和高绝缘性能。
同时,应针对具体情况对绕组结构进行优化设计,增强其自支撑能力和抗震性能。
加强维护管理定期对大型电力变压器进行检修和保养,及时修复绕组部件的损坏,以减缓绕组变形的速度,并防止变形程度过于严重。
特别是在电力系统负荷变化大的情况下,应加强维护管理,防止绕组长时间处于过载状态,从而减少绕组的压力。
采用支撑和固定措施针对大型电力变压器的特殊情况,可以采用支撑和固定措施,增强绕组自身的承载能力。
例如,在变压器的气隙中设置撑杆,可以在一定程度上增强变压器的自支撑能力;使用铆接板和大型螺栓来固定绕组,可以使其更加稳固牢固。
强化监测和检测对大型电力变压器的绕组变形程度要进行实时监测和检测,以及时发现和解决问题。
变压器绕组变形原因及危害

变压器绕组变形原因及危害1.什么是绕组变形?电力行业标准DL/T911-2004《电力变压器绕组变形的频率响应分析法》对绕组变形的定义是:电力变压器绕组在机械力或电动力作用下发生的轴向或径向尺寸变化,通常表现为绕组局部扭曲、鼓包或移位等特征。
变压器在遭受短路电流冲击或运输过程中遭受冲撞时,均有可能发生绕组变形现象,它将直接影响变压器的安全运行。
2.绕组变形的原因造成绕组变形的主要原因有:2.1短路故障电流冲击电力变压器在运行过程中,不可避免地要遭受各种短路电流的冲击,特别是变压器出口或近区短路故障,巨大的短路冲击电流将使变压器绕组受到很大的电动力(是正常运行时的数十倍至数百倍),并使绕组急剧发热。
在较高的温度下,导线的机械强度变小,电动力更容易使绕组破坏或变形。
短路故障电流冲击是变压器绕最主要外因。
众所周知,电力变压器线圈是以绝缘垫块隔开的铜或铝线段所构成的。
这种系统的动特性在发生突发短路时是变化的。
因为绝缘热的弹性与其压紧程度有关,即与作用力有关。
电动力本身也不是恒定不变的,而是按照复杂的规律变化。
虽然对短路时作用在变压器线圈上的电动力的研究始于四十年代,但是由于动态过程分析的复杂性,到目前为止尚不能用理论计算结果正确反映出变压器随突发短路电流冲击的能力。
a)扩张径向力b)压缩径向力理论分析表明,作用在变压器上的电动力可分为轴向(纵向)和径向(横向)力两种。
径向力的作用方向取决于线圈相互位置及其电流的方向,对双线圈变压器而方,径向力拉伸外部线圈,奔窜内部线圈,为了提高内部线圈对径向力的刚度。
通常是将线圈绕制在由绝缘筒支撑的条上。
此时,该线圈不但要随到压缩力作用,还会同时受到撑条所产生的弯曲力作用,如果所受到的合应力超过线圈刚度的屈服点,必将导致线圈发生永久变形,出现经常见到的梅花状或鼓包状绕组变形现象。
变压器线圈遭受到的轴向力可使线段和线匝在竖直方向弯曲,压缩线段间的垫展示会,并部分地传递到铁轭,力求使其离开心柱。
一起变压器绕组变形故障的分析与判断

一起变压器绕组变形故障的分析与判断变压器绕组变形故障是变压器在运行过程中常见的故障之一,一旦发生此类故障,不仅会影响变压器的正常运行,还可能造成严重的安全隐患。
因此,及时检测变压器绕组的变形故障并做出判断是非常重要的。
本文将结合理论知识对变压器绕组变形故障进行分析与判断,以期为相关人员提供参考。
一、变压器绕组变形原因分析1.运行过程中受外力影响:变压器在运行过程中受到外部振动或碰撞等外力影响,可能导致绕组变形。
2.设计缺陷或制造缺陷:在变压器的设计、制造过程中出现缺陷,造成绕组结构不稳定或受力不均匀,从而引发绕组变形故障。
3.绕组绝缘老化:长时间运行后,变压器绕组绝缘老化,失去原有的弹性和韧性,容易发生变形。
4.运行时电流过载:长期运行时,绕组承受过大的电流负荷,可能导致绕组变形。
5.温度变化引起的热胀冷缩:变压器温度的周期性变化会引起绕组的热胀冷缩,长期作用下可能导致绕组变形。
二、变压器绕组变形故障的判断方法1.视觉检查法:通过目视检查变压器绕组的外观形态,观察是否存在变形、裂缝、变色等现象,一般能初步判断是否发生绕组变形故障。
2.绕组外观尺寸测量法:通过测量绕组外观尺寸的变化情况,分析和判断绕组是否发生了变形。
3.热像仪检测法:利用热像仪检测变压器绕组的温度分布情况,对比不同位置的温度差异,可以判断绕组是否发生了变形。
4.声波检测法:利用声波检测设备检测变压器绕组发出的声波信号,分析声波频率和振幅的变化,判断绕组是否存在变形故障。
5.阻抗变化监测法:通过监测变压器绕组的电阻、电感和电容等参数变化情况,分析变压器绕组的状态,判断是否存在变形故障。
三、变压器绕组变形故障的处理方法1.及时停机检修:一旦发现变压器绕组存在变形故障,应立即停机检修,找出故障原因并及时处理,避免故障进一步恶化。
2.绕组加固处理:对于轻微的绕组变形故障,可以采取绕组加固处理的方式,以增强绕组的结构稳定性,防止绕组进一步变形。
变压器绕组变形原因及危害

变压器绕组变形原因及危害变压器绕组变形原因及危害引导语:变压器是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。
以下是店铺整理的变压器绕组变形原因及危害,欢迎参考!1.什么是绕组变形?电力行业标准DL/T911-2004《电力变压器绕组变形的频率响应分析法》对绕组变形的定义是:电力变压器绕组在机械力或电动力作用下发生的轴向或径向尺寸变化,通常表现为绕组局部扭曲、鼓包或移位等特征。
变压器在遭受短路电流冲击或运输过程中遭受冲撞时,均有可能发生绕组变形现象,它将直接影响变压器的安全运行。
2.绕组变形的原因造成绕组变形的主要原因有:2.1短路故障电流冲击电力变压器在运行过程中,不可避免地要遭受各种短路电流的冲击,特别是变压器出口或近区短路故障,巨大的短路冲击电流将使变压器绕组受到很大的电动力(是正常运行时的数十倍至数百倍),并使绕组急剧发热。
在较高的温度下,导线的机械强度变小,电动力更容易使绕组破坏或变形。
短路故障电流冲击是变压器绕最主要外因。
众所周知,电力变压器线圈是以绝缘垫块隔开的铜或铝线段所构成的。
这种系统的动特性在发生突发短路时是变化的。
因为绝缘热的弹性与其压紧程度有关,即与作用力有关。
电动力本身也不是恒定不变的,而是按照复杂的规律变化。
虽然对短路时作用在变压器线圈上的电动力的研究始于四十年代,但是由于动态过程分析的复杂性,到目前为止尚不能用理论计算结果正确反映出变压器随突发短路电流冲击的能力。
a)扩张径向力b)压缩径向力理论分析表明,作用在变压器上的电动力可分为轴向(纵向)和径向(横向)力两种。
径向力的作用方向取决于线圈相互位置及其电流的方向,对双线圈变压器而方,径向力拉伸外部线圈,奔窜内部线圈,为了提高内部线圈对径向力的刚度。
通常是将线圈绕制在由绝缘筒支撑的条上。
此时,该线圈不但要随到压缩力作用,还会同时受到撑条所产生的弯曲力作用,如果所受到的合应力超过线圈刚度的屈服点,必将导致线圈发生永久变形,出现经常见到的梅花状或鼓包状绕组变形现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器绕组变形原因及危害
变压器绕组变形原因及危害
1.什么是绕组变形?
2.绕组变形的原因
造成绕组变形的主要原因有:
2.1短路故障电流冲击
电力变压器在运行过程中,不可避免地要遭受各种短路电流的冲击,特别是变压器出口或近区短路故障,巨大的短路冲击电流将使变压器绕组受到很大的电动力(是正常运行时的数十倍至数百倍),并使绕组急剧发热。
在较高的温度下,导线的机械强度变小,电动力更容易使绕组破坏或变形。
短路故障电流冲击是变压器绕最主要外因。
众所周知,电力变压器线圈是以绝缘垫块隔开的铜或铝线段所构成的。
这种系统的动特性在发生突发短路时是变化的。
因为绝缘热的弹性与其压紧程度有关,即与作用力有关。
电动力本身也不是恒定不变的,而是按照复杂的规律变化。
虽然对短路时作用在变压器线圈上的电动力的研究始于四十年代,但是由于动态过程分析的复杂性,到目前为止尚不能用理论计算结果正确反映出变压器随突发短路电流冲击的能力。
a)扩张径向力 b)压缩径向力
理论分析表明,作用在变压器上的电动力可分为轴向(纵向)和径向(横向)力两种。
径向力的作用方向取决于线圈相互位置及其电流的方向,对双线圈变压器而方,径向力拉伸外部线圈,奔窜内部线圈,为了提高内部线圈对径向力的刚度。
通常是将线圈绕制在由绝缘筒支撑的条上。
此时,该线圈不但要随到压缩力作用,还会同时受到撑条所产生的弯曲力作用,如果所受到的合应力超过线圈刚度的屈服点,必将导致线圈发生永久变形,出现经常见到的梅花状或鼓包状绕组变形现象。
变压器线圈遭受到的轴向力可使线段和线匝在竖直方向弯曲,压缩线段间的垫展示会,并部分地传递到铁轭,力求使其离开心柱。
通常,最大的弯曲力产生在位于线圈端部的线段中,而最大的压缩力则出现在位于线圈高度中心的垫块上。
当线圈不等高时(主要由于高压分接头所致)或磁势颁布不均匀时,轴向力较之径向力更能引起变压器事故。
由此可见,当变压器在运行过程中遭受突发性短路故障电流冲击时,每个线圈都将宏观世界到强大的径向力和轴向力的共同作用。
变压器绕组寝故障的表现形式大多表现为内绕组出现变形(尤其是对自耦变压器),发知鼓包、扭曲、移位等不可恢复的变形现象,其发展的典型形式是绝缘破坏,随后出现饼间击穿、匝间短路、主绝缘放电或完全击穿。
2.2在运输、安装或者吊罩过程中,可能会受到意外的冲撞、颠簸和振动等,导致绕组变形。
2.3保护系统有死区,动作失灵
保护系统存在死区或动作失灵都会导致变压器承受稳定短路电流作用的时间长,也是也是造成变压器绕组变形故障的原因之一。
粗略统计结果,在遭受外部短路时,因不能及时跳闸而发生损坏的变压器约占短路损坏事故的30%。
2.4绕组承受短路能力下降
当变压器绕组出现短路时,会因其承受不了短路电流冲击力而发生变形。
近几年来,对全国110KV的电力变压器事帮统计分析表明,因绕组承受短路能力不够已成为电力变压器事故的首要内部原因,严重影响电力变压器的安全、可靠运行。
3、绕组变形的危害
绕组变形是电力变压器安全运行的一大隐患。
多台变压器的实际试验经验表明,绕组变形后,绝缘试验和油的试验都难于发现,表现为潜伏性故障。
按照第12届国际大电网会议委员会的评估,变压器绕组的许多绝缘故障均是由于绝缘的最初机械损伤造成的。
变压器在遭受短路故障电流冲击,绕组发生局部变形后,即使没有立即损坏,也有可能留下严重的故障隐患,例如:
a)
绝缘距离发生改变,固体绝缘受到损伤,导致局部放电发生,当遇到雷电过电压作用时有可能发生匝间、饼间击穿,导致突发性绝缘事故,甚至在正常运行电压下,因局部放电的长期作用而发生绝缘击穿事故。
b) 绕组机械性能下降,当再次遭受短路事故时,将承受不住巨大的电动力作用而发生损坏。
既然变压器绕组变形不可避免,怎样检测变压器绕组是否发生了变形?变形的程度如何能否继续运行?如果有严重变形,变形的位置?怎样处理?
因此,积极开展变压器绕组变形诊断工作,及时发现那些有绕组变形的变压器,并有计划地进行员罩检查和检修,不但可节省大量的人力、物力、对防止变压器事故的发生也有及其重要的作用。
目前,世界各国都在积极开展变压器绕组变形诊断工作,有些国家甚至把该项簇在变压器预防性试验项目的首要位置。
国家电力公司在国电发[2000]589号文《防止电力生产重大事故的二十五项重点要求》中,已明确把绕组变形试验列入变压器出厂、交接和发生短路事故后的必试项目。
相关部分条款摘录如下:
(2)第15.6条:变压器在遭受近区突发短路后,应做低电压短路阻抗或用频响法测试绕组变形,并与原始记录比较,判断变压器无故障后,方可投运。
(3)
第20.2.9条:订购变压器时,应要求厂家提供变压器绕组频率响应特性曲线、做过突发短路试验变压器的试验报告和抗议短路能力动态计算报告;安装调试应增做频率响应特性试验;运行中发生变压器出口短路故障后应进行频率响应试验,绕组变形情况的测试结果,作为变压器能否继续运行的判据之一。